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Why do Statistical Studies?

e Guide for Model Builders

e determine the easiest ways to obtain certain
space-time properties

* Possible method to extract phenomenological
predictions from string theory

e Hypothesis generation for new string
properties and correlations



| imitations of statistical
studies

Results only Statistical (not absolute results)
”Lampp()st” Pr()blem (can only explore certain parts of Landscape)
“Bu | I’S Eye” Pr()blem (not always clear what the target is)

Statistical Bias effects (may not even explore space randomly)



Landscaping

* Lots of theoretical speculation on the form of
the String Landscape

* Few actual statistical studies of the landscape

(Dijkstra et al. hep-th/0411129, Blumenhagen et al.
hep-th/0510170, Dienes. hep-th/0602286)

 What do we find when we look at the space
of actual string models that can be
constructed and analyzed?




Why study the Heterotic
String Landscape!?

* Models generically more constrained than
Type | models

* Lots of positive phenomenological features
(gauge coupling unification, rich massless

spectrum)

e Very different mechanism for generating
gauge groups, thus correlations are expected

to be different



How do we distinguish
models?

Chamacteristics in space-time:
e Particle spectrum
e (Gauge group

e Number of SUSY Generators

If any quantity is different then the model is considered
distinct



Heterotic String Models in
D=10

Only nine unique models
Maximal SUSY is N=T1
Large variation In gauge groups

Rank of gauge group is <16



Orbifold Relations amongst
models

non-SUSY
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Shatter

Shatter | N =1 SUSY N =0 SUSY N =0 SUSY
level: Tachyon-free Tachyonic
1 SO(32) SO(32), Eg
2 FEg x Ej SO(16) x SO(16) | SO(16) x Eg, SO(24) x SO(8), SU(16) x U(1)
4 EZ x SU(2)?

Shatter = # of gauge group factors

e Can be used as an organizing principle for the
heterotic landscape

e Not every possible shatter present

e Different levels of SUSY have different
possible shatter levels




Lessons from D = 10

* Only some gauge groups realizable

e Orbifold techniques utilized for this study will
not find every model

e Correlations can exist between quantities
which are formally independent in Quantum
Field Theory (e.g. gauge group and
supersymmetry)

Now let’s go to D = 4!



Quick Introduction to D=4
Heterotic Strings

* Many more than nine distinct models
e Maximal SUSY is N=4

e Rank of gauge group is <22



Main Characteristics of this
Study

Perturbative Heterotic Strings (main area for string phenomenology
in 80’s and 90’s)

Millions of models randomly generated and
analyzed by computer, all satistying worldsheet
self-consistency constraints

* Models with all of the levels of space-time SUSY
realizable in D=4  N=0,1,2,4

e Uses Free Fermionic Construction Partially overlaps with
Narain bosonic lattice
all gauge groups rank 16+6=22 compactifications and
orbifolds with arbitrary

Wilson Lines



The Free Fermionic
Construction Method (very
quickly)

* String is taken to be two CFTs (left-movers are
conformal, right-movers are super-conformal)

e CFTs are made of tensor products of free non-
interacting complex fermionic fields

* Create different models by changing the
boundary conditions of the fields around the
worldsheet torus while also changing the phase

for the spin-structure’s contribution to the string

partition function. (Phases are +/- signs for

GSOs) Kawai et al, NPB 288, 1 (1987)
Antoniadis et al, NPB 289, 87

(1987)




Advantages of Free
Fermionic Method

* Models which are geometrically complex may
be realized relatively easily

e Can get the full spectrum of the string model

e Can be put on the computer easily

D. Sénéchal, PRD 39, 3717 (1989).



Code I: Generating Models

e Give desired level of SUSY, seed for rand, and

run-time and KLT generates self-consistent sets
of vectors which correspond to models

e For vectors, O(1) = (anti-)periodic

Level of SUSY

Seed for rand()

Run time

KLT
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left-movers phases




Code II: Analyzing Models

Steps to analyze any particle in spectrum:

* Determine all possible string excitations

e Verify that excitation is level-matched

 Verify that excitation satisfies GSO constraints

Steps to classity model:

determine N

find

gravitinos

=)

identify &
analyze
gauge bosons

determine gauge group, G

-

determine spectrum

all other states ¢
by “charges” unc

grouped into suitab

assified
er G and
e multiplets




Sample Output
for each model:

Supersymmetry N = 0

57 gauge bosons in SU(4) x SU((2)A 14 x U(1)A5

34 Fermions irreps:
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How many models were

analyzed?
Class of model it Attempts/Model
models
N=0 1.6 x 10° 2.76
N=1 1.25 x 10° 3.40
N=2 0.5 x 10° 28.15
N=4 900 420.70




Shatter in D = 4

* Only one distinct gauge group with a shatter
of one: SO(44) (just like SO(32) in D = 10)

* Lots of distinct gauge groups with a shatter of
two (but they all consist of SO(44-n) x SO(n))

e Highest level of shatter is 22 and gauge

groups at that level are U(T )22—n x SU@2)"



probability

What level of shatter do we

expect?
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With more SUSY...
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As SUSY increases, even/odd difference disappears!

peak probability shifts towards smaller numbers of factors



When does the Standard
Model gauge group appear?

S = o
= D 0

probability of 5SM gauge group
-
00
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How often do we obtain unique

# of distinct gauge groups
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How likely are different
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How likely are different
gauge group factors?

Group: N=0| N=1| N=2| N=4
) U 98.79 | 99.94 | 99.72 | 89.19
HohT SU, 97.72 | 97.44 | 96.57 | 70.17
iy SUS5 19.58 | 47.84 | 60.42 | 34.13 |
SU, 53.61 | 51.04 | 62.76 | 42.94
SUs 2.79 7.36 | 20.29 | 23.72
Standard Model SU-~ 5 4.03 6.60 | 18.80 | 53.65
limited by SU(3) SOg 19.83 13.75 19.73 19.82
SO0 6.19 4.83 7.57 | 15.42
SO=10 3.75 2.69 4.72 | 19.92
Eg.7.8 0.14 0.27 1.02 | 16.12
Standard Model [[3x2x 1 [[ 1892 | 46.6 | 58.65 | 23.92 ||
Pati-Salam 4x2x2 || 51.04 | 47.03 | 55.52 | 19.02




A brief interlude, A and the
Heterotic Landscape

e Data comes from a
different data set, hep-
th/0602286

e Non-zero value
indicates instability of
vacuum beyond tree
level but,

e Simplest one-loop
amplitude for these
models (many other
amplitudes related
through derivatives)

R /f(dQT Z(7)

Im 7)?
Z(7) = Tr(=1)" glrq’t
F={7:|Re7| < %,ImT O ANl

A~ —-C. C.

123,573
tachyon-free models
with N=0 SUSY

Dienes, K. PRD:73 106010, 2006.



How are the A’s distributed?

e 73% of models have
A > 0 (AdS space)

* Many different models
with completely
different gauge groups
and particle contents
nevertheless have the
exact same /\




How many different values
~of A were found?

High degree of
redundancy
in A\, thus
N models does
not imply N
different values
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How are shatter and A
correlated?

Highly shattered
groups
have smaller A



And the list goes on...

numbers of quark generations
numbers of lepton generations
Chirality

Hypercharge normalizations
Yukawa couplings

etc.



However, there’s one BIG

Issue:

Some of these correlations are NOT STABLE.
MANY of these correlations will “float”, i.e., evolve
as the sample size increases!

Simp

hard

y put,

er to

MUST a

WHY¢¢2?

as we explore more of the model space, it gets
ind new models. Therefore, “rare” properties

ppear more often in the process of obtaining
additional distinct models!

So what can we do?



The Problem of “Float”

* Generic to any landscape study where full
exploration of model space impossible/
impractical

e Need to find method to overcome “float” so
that true continuum limits may be found

This issue has never been addressed before in the literature, but
plays a huge role in obtaining meaningful statistical results.



Need to re-examine the
entire process of random
model generation.

Start from basic
probability analysis



General Features of Random
Searches

x| found models

e Probability to find new red AL [ T
model proportional to e modths
amount of model space
already explored

e Most model generation
methods have biases
which favor certain
space-time properties
over others L L el 0 M g

assuming a finite number of models



Definition of spaces

e {dmodelis a space
where every model
occupies the same
volume

e {)srob IS @ Space
where every model
occupies a volume

oroportional to the

orobability of
oroduction

()4l

‘ deformation due to bias

—H-TLF e

analogous to US map rescaled by
population




Comparison of Spaces

Qmodel Qprob

models
every model generally
occupies same occupy
volume different
volumes
volume volume
relations relations
determine determine

correlations biases




Need to simulate model
production

e Label each model by an integer

e “Randomly” choose an integer to simulate
model production

* Look at correlations among groups of integers
(i.e. all integers which are divisible by 3 are

//gOOC //)




lllustration of Bias Danger

e Apparent correlation
between good model/
total models floats, or
changes as the model
space is explored

e Very hard to
distinguish between
physical correlation
and biases inherent in
model generation
method

good models/total models
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So now what?

Problem 1: Model Spaces sizes are unknown
and are possibly different

Problem 2: Need to eliminate bias

Solution 1: Find way to compare differently
sized model spaces

Solution 2: Find way to restore equal
probability of production to each model



Solution to Problem 1

Riecall:! ! Padw =it

= z|=

number of tries to get
measure of how explored space is # new model increases as
model space explored

\ 4

Nattempts « use this to compare model spaces at
Ninodels equal levels of exploration

new way to measure sample sizes




good models/total models
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Does comparison method
overcome the bias issue?
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e [llustrates bias quite )
o 0.3 P o
Well E 4 v=0.33 /////
8 0.25 /7/;20 ]
S T
* Doesn’t seem to be able W L
to eliminate bias R T ]
[/
:iég 0.15 / |
e Can something else be /
T/\ | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ]
found? o 5 10 15 20 25
attempts/model
ngOd p] 9
i Recall, P; =
Pbad Qprob




Recall the Problem:

e All of the boxes are EEEEEE
different sizes, thus
some boxes are

preferred!
‘ deformation due to bias

e (Can we restrict our
attention to groups of  Group 1 T1 |
all the same sized Group 2 W orob

?
boxes: Group 3 ZH_

Qmodel




New Method of Counting

£ Nattempts

Within each group: Faew = 1—— Therefore,

N Nmodels

tells how explored each group is, at any point.

Thus,
i I eh
X 5 Nattempts 1§ LLE Nattempts ] N
/ ( Nmodels i Nmodels ] ) 1
So long as groups are: []

Not: ol




good models/total models

Quick Confirmation
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| imitations of new method

Need to divide up groups based on space-time

properties
property of correlation stays
Case 1 interest spread constant even in
uniformly amongst old analysis
different biases method
May only get one | bias of generation
GaLl; bias population | method overcome
with the property [using new method
of interest of analysis
roperty of . .
HiiRRe R correlation will
interest somewhat :
float even using
Case 3 randomly spread .
. new analysis
amongst different
; ! method
bias populations

et 2
'




Example 1: Just how
common is SUSY anyway¢

Class of Percentage of

Model Model Space
N=0 71.09%
N=1 28.36%
N=2 0.54%
N=4 0.0047%

37.86% tachyonic
Vol
N

62.14% tachyon-free

e |Less than 30% of
model space has
space-time SUSY

e But, only 1/4 of model
space has tachyons at
tree level

e Very rare to find more
than N=1 SUSY

ALL of these results are stable.



Example 2: Number of
Unique Gauge Groups

Number of

Class of Unique

Model Gauge

Groups

N=0 107.00
N=1 42.01
N=2 1.00
N=4 .0087

# of unique gauge groups in this class of models

Table Entries :
T L # of unique gauge groups for N = 2 models



Example 3: Effects of Float

can be important!

Table Entries:

# of models with gauge group containing given factor

# of models with gauge group containing SUj3

Group: N=0|N=1|N=2| N=4 Group: N=0| N=1|N=2| N=4
SUs 1 1 1 1 SUs; 1 1 1
SU, 2.74 1.07 1.04 1.26 SU, 4.07 | 10.37 1.13
SUs 014 | 015 | 034 | 0.69 SUs 2.01 | 15.25 o 0.70
SU- 5 0.21 0.14 | 0.31 1.57 SU- 5 51.1 72.1 o 1.36
SOg 1.01 0.29 0.33 0.58 SOs 10.4 34.6 = .50
SOq0 032 | 010 | 0.13 | 0.45 SO 33.8 98.6 S 0.41

SO~10 0.19 | 006 | 0.08 | 0.58 SO=10 57.6 | 1780 | < 0.47
Es 75 0.01 0.01 0.02 | 047 Ee.7.8 4.5 9.34 1.35

3x2x1] 097 [ 097 | 097 [ 0.70 3x2x1][ 0.96 978 71
4x2x2 [ 261 098 | 092 | 0.56 4x2x21 3.97 10.2 51

Results from earlier sample

Others float!

After accounting for bias

Some correlations stay the same




Final Gauge Group

Populations
Group: N=0| N=1| N=2| N =
| SUs 1 1 1
SU, 4.07 | 10.37 1.13
SU; 2.01 | 15.25 ~ 0.70
SU-5 51.1 72.1 D 1.36
Large groups SOg 10.4 34.6 %D .00 SM only
most common SO1g 33.8 98.6 el 0.41 || limited by SU(3)
SO=10 57.6 178.0 = 0.47
Eg 75 4.5 9.34 1.35
T3x2x1] 0.96 978 71
4x2x2 | 3.97 10.2 51

Pati-Salam, GUTs favored over SM for such strings.



Conclusions/Future Work

e Using probability analysis, random model
generation biases can be overcome

e Refine understanding of gauge group
probabilities in progress

* Look at massless particle spectrum to
determine probability of realizing Standard
Model in progress

e Use different search techniques to explore
other model spaces




The End



