Flavor Violation in Warped Extra Dimensions at the LHC

Gustavo Burdman

University of São Paulo

with Priscila Aquino and Oscar Eboli

Particle Theory and the LHC, Santa Fe, July 24-29 2006

Outline

- Generalities of the Bulk Randall-Sundrum Models.
- Flavor Violation in Warped Extra Dimension: Solution to the fermion mass hierarchy.
- What are the signals for this theory of flavor? Can they be seen at the LHC?
- Here we consider
 - $t\bar{t}$ resonances
 - $pp \rightarrow t j$ from flavor violation vertex

The Hierarchy Problem in AdS_5

- Randal-Sundrum: Exponential Separation of energy scales induced by bulk metric.
- Warped 5D metric in RS

$$ds^2 = e^{-2\kappa|y|} \eta^{\mu\nu} dx_\mu dx_\nu + dy^2$$

• Compactified on S_1/Z_2 with $L=\pi R$

and $k \leq M_P$, AdS_5 curvature.

Warped Extra Dimensions

One compact extra dimension. Non-trivial metric induces small energy scale from Planck scale.

• For $kR \simeq (11-12) \Rightarrow$

 $\Lambda_{\rm TeV} \sim M_{\rm Planck} \, e^{-k \, L}$

with k the curvature

Bulk Life in WED

- In original proposal, only gravity propagates in 5D bulk.
- RS is a solution of the hierarchy problem. But origin of EWSB? And flavor? ...
- Allowing gauge fields and matter to propagate in the bulk opens many possibilities: models of EWSB, GUTs, <u>flavor</u>, ...
- The 5D mass of a bulk fermion => localization of zero-mode.
- If Higgs remains on TeV brane: Fermions localized toward TeV brane are more massive Fermions localized toward the Planck brane are lighter

Gauge Fields in the 5D bulk

■ Gauge Fields in the 5D bulk: KK decomposition in 4D (for $A_y = 0$ gauge):

$$A_{\mu}(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=0}^{\infty} A_{\mu}^{(n)}(x) \chi^{(n)}(y) ,$$

Zero-mode $A_{\mu}(x)^{(0)}$ + KK tower of massive gauge bosons for n>0, with masses

$$m_n \simeq (n - O(1)) \times \pi \kappa e^{-\kappa \pi R}$$

I.e. for appropriate choice of κR 1st KK excitations are O(TeV).

- 1st KK excitations have $\chi^{(n)}(y)$ localized toward TeV fixed point.
- The Gauge Symmetry usually either is or embeds the SM: e.g. $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X$ (restores custodial symm.)

WED and Flavor

Fermion Fields in the bulk: 5D fermion field KK decomposition

$$\Psi_{L,R}(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=0}^{\infty} \psi_n^{L,R}(x) e^{2\kappa|y|} f_n^{L,R}(y)$$

5D fermion bulk mass term → localization of fermion fields:

$$S_f = \int d^4x \ dy \ \sqrt{-g} \left\{ \cdots - \ \mathbf{c} \ \kappa \bar{\Psi}(x, y) \Psi(x, y) \right\} ,$$

with $c \simeq O(1)$.

ullet => Fermion zero-modes can be localized by choosing c:

$$f_0^{R,L}(y) = \sqrt{\frac{\kappa \pi R (1 \pm 2c)}{e^{\kappa \pi R (1 \pm 2c)} - 1}} e^{\pm c \kappa y}$$

Flavor Models in WED

O(1) flavor breaking in bulk can generate fermion mass hierarchy:

Fermions localized toward the TeV brane can have larger Yukawas, Those localized toward the Planck brane have highly suppressed ones.

■ But fermions at $\simeq \pi R =>$ strong couplings to 1st KK gauge bosons.

E.g: 3rd generation quarks might have large couplings → flavor violation.

Electroweak Symmetry Breaking and WED

Several possibilities for model building:

- Higgs or Higgsless (BC breaking)
- Light fermions on or towardsPlanck brane
- ightharpoonup Third generation needs special care $(Z o b\bar{b})$.

Signals for a Theory of Flavor

- Assume a generic RS bulk model:
 - Bulk fermions and gauge bosons.
 - Bulk masses (c's) ⇒ Fermion masses / CKM.
- Model(s) satisfy all EWPC (S, T, $Z \rightarrow b\bar{b}$, etc.).
- **●** Assume typical masses $m_{KK} \simeq O(1)$ TeV

How do we test this flavor theory at the LHC?

Flavor Violation in WED

The effective 4D couplings of the KK gauge bosons to the zero-mode fermions are flavor violating.

Compute the coupling of the 1st KK gauge boson to ZM fermions. From:

$$\int d^4x \, dy \, \sqrt{-g} \, g_5 \, \bar{\Psi}(x,y) \, i\gamma_\mu \, A_\mu(x,y) \, \Psi(x,y)$$

we get $g^{(1)}$.

- For the 3rd generation, $g^{(1)}/g$ can be large $(g = g_5/\sqrt{2\pi R})$.
- ullet $g^{(1)}$ depends on the bulk masses c's.

oupling of KK Gauge Boson to Zero-Mode Ferm

For $c_{q_L} < 1/2$ coupling of 1st KK Gauge boson o zero-mode fermion can be large.

Flavor Violation in WED

Non-Universal quark couplings ⇒ *Flavor Violation at Tree Level* E.g.:

$$G_{\mu}^{(1)} t \bar{t}$$
 coupling = g_t

such that

$$g_t \gg g_q$$
, for $q = u, d, s, c, b_R$

To get m_t right and avoid $Z \to b\bar{b}$ constraints:

$$g_{t_L} = g_{b_L} = (1.0, 2.8) * g_s$$
 $g_{t_R} = (1.5, 5.0) * g_s$
 $g_{q_L} = g_{q_R} = g_{b_R} \simeq -0.20 * g_s$

Signals for Flavor Violation

What is the best signal for flavor violation?

Flavor diagonal vertices:

Compare $t\bar{t}$ resonances with light quark resonances. Observing these is hard.

Signals for Flavor Violation

Or Direct observation of flavor violating vertices:

- Flavor violation suppressed by some mixing.
- Backgrounds too large ? E.g. Single top (> 300pb).

Signals: KK Gluon as $t\bar{t}$ resonance

Parameters allow narrow or broad resonance

$$\Gamma \simeq \frac{\alpha_s}{12} M_G \left(\tilde{g}_q^2 * 9 + \tilde{g}_{t_L}^2 * 2 + \tilde{g}_t^2 \right)$$

$$\Gamma_{\min} = 0.04 M_G$$

$$\Gamma_{\max} = 0.35 M_G$$

We take

$$M_G \simeq (2-4) \text{ TeV}.$$

Signals: KK Gluon as $t\bar{t}$ resonance

Standard Cuts:

$$p_T > 20$$
 GeV, $|\eta_\ell| < 2.5$, $|\eta_j| < 3.2$, $\Delta R = 0.4$

Signals: KK Gluon as $t\bar{t}$ resonance

- ▶ Narrow Resonance can be seen up to $\simeq 3$ TeV ($\sigma*BR \sim 200fb-1$).
- Broad Resonance probably hopeless.
- Seeing a resonance in $t\bar{t}$ does not necessarily mean seeing flavor violation, seeing the light quark resonances might be challenging.
- We might need to see the flavor violating vertex.

Flavor Violating Vertices

After diagonalizing the quark mass matrix with U_L and U_R

If we take $U_L \sim V_{\rm CKM}$, then bulk mass parameters give some indication of U_R . We'll take

$$U_L^{tc} \simeq \lambda^2 \simeq 0.05$$

and leave U_R^{tc} as a free parameter (typically of O(1/10)).

Tree Level Flavor Violation

Constraints from low energy/flavor physics? Potentially, deviations in

- CP asymmetries in B decays (G.B. '03)
- $b \rightarrow s\ell^+\ell^-$ (G.B. '02; G.B., Y.Nomura '03; K. Agashe, G. Perez, A. Soni '04)
- $m{\bullet}$ ϵ_K (K. Agashe, G. Perez, A. Soni '04)
- lacksquare Δm_{B_s}
- $D^0 \bar{D}^0$ mixing (G.B., I. Shipsey '03)

But for $M_{KK} \gtrsim 2$ TeV, and/or adjusting the down-quark rotation matrices $D_{L,R}$, these bounds can be evaded.

- Signal: t + jet, very large invariant mass (>1.5 TeV).
- Use $t \to b\ell\nu$.
- Typically few hundred fb^{-1} .

Backgrounds I

Single Top Production - Wg fusion:

- 250 pb.
- Problem if miss extra jet.

But smaller invariant mass.

Backgrounds II

Single Top Production - W^* :

- ho $\simeq 60~\mathrm{pb}$
- Misstag b

Also smaller invariant mass.

Backgrounds III

KK Gluon $\rightarrow t\bar{t}$:

- In lepton + jets, miss a lepton ($|\eta_\ell| > 2.5$)
- Misstag b

Can be eliminated by cut on visible energy.

E.g. For Γ_{\min} and $U_R^{tc}=0.3$:

 M_G -independent Backgrounds (W^* and Wg fusion) included.

E.g. For Γ_{\min} and $U_R^{tc}=0.3$:

Including the $t\bar{t}$ background for $M_G=2$ TeV.

Reach: Assuming 10 Events for $30fb^{-1}$:

M_G [TeV]	Γ	U_R^{tc}
2	Max.	0.07
	Min.	0.06
3	Max.	0.19
	Min.	0.16
4	Max.	0.40
	Min.	0.37

Encouraging.

More work is needed, especially for the high luminosity stage.

Summary/Outlook

- Flavor violation at tree level is present in a broad variety of RS models. Always present if bulk RS models include a theory of flavor.
- It is possible to observe flavor violation signals at the LHC, even at low luminosity and for various values of M_{KK} and the mixing parameters.
- What's the reach at high luminosity?