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LITTLE HIGGS GOES TO TASI

M. SCHMALTZ∗

Physics Department, Boston University

590 Commonwealth Avenue, Boston, MA 02215, USA

Email: schmaltz@bu.edu

These TASI 2004 lecture notes provide a pedagogical introduction to Little Higgs
models. The “Simplest Little Higgs” is used wherever explicit examples are given.
Precision electroweak constraints and collider phenomenology as well as T-parity
are briefly discussed.

1. Introduction

A few years before the start of the LHC program, electroweak symmetry

breaking remains poorly understood. The detailed quantitative fit of Stan-

dard Model predictions to precision experiments at the weak scale strongly

suggests that electroweak symmetry is broken by one or more weakly cou-

pled Higgs doublets. However, fundamental scalar particles suffer from a

radiative instability to their masses, leading us to expect additional struc-

ture (such as compositeness, supersymmetry, little Higgs, ...) near the weak

scale.

Interestingly, we can turn this problem into a prediction for the LHC.

The argument goes as follows: Let us assume that precision electroweak

data are indeed telling us that there are no new particles beyond the Stan-

dard Model (with the exception of possible additional Higgs doublets) with

masses at or below the weak scale. Then physics at the weak scale may be

described by an “effective Standard Model” which has the particle content

of the Standard Model and in which possible new physics is parametrized

by higher dimensional operators suppressed by the new physics scale Λ >
∼

TeV. All renormalizable couplings are as in the Standard Model. If there

are additional Higgs fields then more complicated Higgs self-couplings as
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well as Yukawa couplings are possible. Since no Higgs particles have been

discovered so far, the effects of additional Higgs fields can be parametrized

by effective operators for the Standard Model fields.

The higher dimensional operators can be categorized by the symmetries

which they break. The relevant symmetries are baryon and lepton number

(B and L), CP and flavor symmetries, and custodial SU(2) symmetry. The

wealth of indirect experimental data can then be translated into bounds on

the scale suppressing the operators 1,2,3,4. Examples of such operators and

the resulting bounds are summarized in Table 1.

Table 1. Lower bounds on the scale which suppresses higher
dimensional operators that violate approximate symmetries
of the Standard Model.

broken symmetry operators scale Λ

B, L (QQQL)/Λ2 1013 TeV

flavor (1,2nd family), CP (d̄sd̄s)/Λ2 1000 TeV

flavor (2,3rd family) mb(s̄σµνF µνb)/Λ2 50 TeV

custodial SU(2) (h†Dµh)2/Λ2 5 TeV

none (S-parameter) (D2h†D2h)/Λ2 5 TeV

The bounds imply that physics at the TeV scale has to conserve B and

L, flavor and CP to a very high accuracy, and that violations of custodial

symmetry and contributions to the S-parameter should also be small.

The question then becomes if it is possible to add new physics at the

TeV scale to the SM which stabilizes the Higgs mass but does not violate

the above bounds. To understand the requirements on this new physics

better we must look at the source of the Higgs mass instability. The three

most dangerous radiative corrections to the Higgs mass in the Standard

Model come from one-loop diagrams with top quarks, SU(2) gauge bosons,

and the Higgs itself running in the loop (Figure 1).

All other diagrams give smaller contributions because they involve small

coupling constants. Assuming that the Standard Model remains valid up

to a cut-off scale Λ the three diagrams give

top loop − 3
8π2 λ

2
t Λ

2
top ∼ −(2 TeV)2

SU(2) gauge boson loops 9
64π2 g

2Λ2
gauge ∼ (700 GeV)2

Higgs loop 1
16π2 λ

2Λ2
Higgs ∼ (500 GeV)2

The Higgs soft mass includes the sum of these contributions and a tree level
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γW,Z, higgstop

Figure 1. The most significant quadratically divergent contributions to the Higgs mass
in the Standard Model.

mass-squared parameter.

In order for this to produce an expectation value for the Higgs of order

the weak scale without fine tuning to more than 10%, the cut-off must

satisfy

Λtop
<
∼ 2 TeV Λgauge

<
∼ 5 TeV ΛHiggs

<
∼ 10 TeV (1)

We see that the Standard Model with a cut-off near the maximum at-

tainable energy at the Tevatron (∼ 1 TeV) is natural, and we should not

be surprised that we have not observed any new physics. However, the

Standard Model with a cutoff of order the LHC energy would be fine tuned

and we expect to see new physics at the LHC.

More specifically, we expect new physics which cuts off the diverging

top loop at or below 2 TeV. In a weakly coupled theory this implies that

there are new particles with masses at or below 2 TeV. These particles

must couple to the Higgs, and enable us to write a one-loop quadratically

divergent diagram which cancels the contribution from the top loop. In

order for this cancellation to be natural, the new particles must be related

to the top quark by a symmetry which implies that the new particles have

similar quantum numbers to top quarks. Thus naturalness arguments pre-

dict a new multiplet of particles with mass below 2 TeV which carry color

and are therefore easily produced at the LHC. In supersymmetry these new

particles are of course the top squarks.

The contributions from SU(2) gauge loops must also be canceled by

new particles which are related to the Standard Model SU(2) gauge bosons

by a symmetry. The masses of these particles must be at or below 5 TeV

for the cancellation to be natural. Similarly, the Higgs loop requires new

particles related to the Higgs at 10 TeV. We summarize the upper bounds

on new particle masses which we obtain from naturalness in Table 2.

Given the center of mass energy of the LHC of 14 TeV these predictions

are very exciting, and encourage us to explore different possibilities for what
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Table 2. Predictions for maximum masses of
“partner” particles.

Standard Model loop maximum partner mass

top 2 TeV

weak bosons 5 TeV

Higgs 10 TeV

the new particles could be.

One example of new particles near the TeV scale which can appear in

loops to cancel quadratic divergences are the superpartners predicted in the

Minimal Supersymmetric Standard Model 5. There the top quark loop is

canceled by a corresponding loop with stop squarks. Supersymmetry also

predicts the necessary relationship between top and stop coupling constants.

Furthermore, the two diagrams are each proportional to Λ2, the cut-off used

to regulate the two divergences. In general, the cut-offs for the two diagrams

need not be the same, and therefore the divergences from two diagrams do

not cancel. However, if a supersymmetric cut-off is used, then the Λ’s for

the Standard Model particles and their superpartners are the same.

Another possibility is that the Higgs is a composite resonance at the

TeV scale as in technicolor 6 or composite Higgs models 7,8,9. Or extra

dimensions might be lurking at the TeV scale with possible new mechanisms

to stabilize the Higgs mass 10.

Here, we explore another possibility, that the Higgs is a pseudo-Nambu-

Goldstone boson as suggested in 11,12. This idea was recently revived by

Arkani-Hamed, Cohen and Georgi who also constructed the first successful

“little Higgs” model 13, and thereby started an industry of “little model

building” [14–33].

2. Nambu-Goldstone Bosons

Nambu-Goldstone bosons (NGBs) arise whenever a continuous global sym-

metry is spontaneously broken. If the symmetry is exact, the NGBs are

exactly massless and have only derivative couplings.

U(1) example: Consider for example a theory with a single complex scalar

field φ with potential V = V (φ∗φ). The kinetic energy term ∂µφ
∗∂µφ and

the potential are invariant under the U(1) symmetry transformation

φ→ eiαφ (2)
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If the minimum of the potential is not at the origin but at some distance

f away as in the famous “wine bottle” or “Mexican hat” potential (Figure

2), then the U(1) symmetry is spontaneously broken in the vacuum. We

θ

r

Figure 2. The “Mexican hat” potential for Φ. The black dot represents the vacuum
expectation value f , r is the radial mode and θ the Nambu-Goldstone boson.

expand the field for small fluctuations around the vacuum expectation value

(VEV)

φ(x) =
1√
2
(f + r(x)) eiθ(x)/f (3)

where f is the VEV of r, r(x) is the massive “radial mode” and θ(x) is the

NGB. The factor of 1/
√

2 ensures canonical kinetic terms for the real fields

r and θ.

The radial field r is invariant under the U(1) symmetry transformation

Eq. (2) whereas the NGB field θ shifts

θ → θ + α (4)

under U(1) transformations. We say that the U(1) symmetry is ”non-

linearly” realized. We may now imagine integrating out the massive field r

and writing the resulting effective Lagrangian for the NGB θ(x). θ cannot

have a mass or any potential, because the shift symmetry forbids all non-

derivative couplings of θ.

Non-Abelian examples: In the generalization to spontaneously broken non-

Abelian symmetries we find one NGB for every broken symmetry generator.

For example, we may break SU(N) → SU(N − 1) with a VEV for a single

fundamental φ of SU(N). The number of broken generators is the total

number of generators of SU(N) minus the number of unbroken generators,
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i.e.

[N2 − 1] − [(N − 1)2 − 1] = 2N − 1 (5)

The NGBs are conveniently parametrized by writing

φ = exp



















i

f











π1

...

πN−1

π∗
1 · · ·π∗

N−1 π0/
√

2







































0
...

0

f











≡ eiπ/fφ0 (6)

The field π0 is real whereas the the fields π1 · · ·πN−1 are complex. The last

equality defines a convenient short-hand notation which we will employ

whenever the precise form of π and φ0 is clear from the context.

Another example of symmetry breaking and NGBs which has found

applications in little Higgs model building is

SU(N) → SO(N) . (7)

Here the number of NGBs is the number of fields in the adjoint of SU(N)

minus the number of fields in the adjoint of SO(N) (antisymmetric tensor),

i.e.

[N2 − 1] − N(N − 1)

2
=
N(N + 1)

2
− 1 . (8)

For even N we also have

SU(N) → SP (N) (9)

and the number of NGBs is the number of fields in the adjoint of SU(N)

minus the number of fields in the adjoint of SP (N) (symmetric tensor), i.e.

[N2 − 1] − N(N + 1)

2
=
N(N − 1)

2
− 1 . (10)

Finally, for

SU(N) × SU(N) → SU(N) (11)

the number of NGBs is

2[N2 − 1] − [N2 − 1] = N2 − 1 . (12)

In this last case the symmetry breaking is achieved by a VEV which trans-

forms as a bi-fundamental under the two SU(N) symmetries. Denoting

transformation matrices of the two SU(N) as L and R respectively we

have

φ→ LφR† . (13)
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The symmetry breaking VEV is proportional to the unit matrix

<φ>≡ φ0 = f







1 0
. . .

0 1






(14)

This VEV is left invariant under “vector” transformations for which L =

R ≡ U

φ0 −→ U φ0 U
† = φ0 , (15)

all other symmetry generators (the “axial” generators) are broken and cor-

respond to NGBs which can be parametrized as

φ = φ0 e
iπ/f = f eiπ/f (16)

where π is a Hermitian traceless matrix with N2 − 1 independent compo-

nents.

2.1. How do NGBs transform ?

We now show how NGBs transform under the broken and unbroken symme-

tries in the example of SU(N) → SU(N−1) which is often denoted in more

mathematical notation as SU(N)/SU(N−1). The NGBs are parametrized

as φ ≡ eiπφ0 as in Eq. (6). Let’s consider first transformations under the

unbroken SU(N − 1). Then we have

φ→ UN−1 φ = (UN−1 e
iπ U †

N−1)UN−1 φ0 = ei(UN−1 π U†

N−1
) φ0 (17)

where in the second equality we used the fact that the symmetry breaking φ0

is invariant under the unbrokenUN−1 transformations. Therefore the NGBs

transform in the usual “linear” way under SU(N −1) transformations π →
UN−1 π U

†
N−1. Explicitly, in the case of SU(N)/SU(N − 1) the unbroken

SU(N − 1) transformations are

UN−1 =

(

ÛN−1 0

0 1

)

. (18)

The single real NGB transforms as a singlet whereas the N − 1 complex

NGBs transform as




0 ~π

~π† 0



→ UN−1





0 ~π

~π† 0



U †
N−1 =







0 ÛN−1~π

~π†Û †
N−1 0






(19)
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where we used a vector notation ~π to represent the N−1 complex NGBs

as a column vector. We see that ~π → ÛN−1~π, i.e. ~π transforms in the

fundamental representation of SU(N−1).

Under the broken symmetry transformations we have

φ→ U eiπ φ0 = exp

{

i

(

0 ~α

~α† 0

)}

exp

{

i

(

0 ~π

~π† 0

)}

φ0

≡ exp

{

i

(

0 ~π′

~π′† 0

)}

UN−1(~α, ~π) φ0

= exp

{

i

(

0 ~π′

~π′† 0

)}

φ0 (20)

where in the second equality we used the fact that any SU(N) trans-

formation can be written as a product of a transformation in the coset

SU(N)/SU(N) times an SU(N − 1) transformation 34. The UN−1(~α, ~π)

transformation which depends on ~α and ~π leaves φ0 invariant and can there-

fore be removed. Equation (20) defines the transformed field ~π′ which –

in general – is a complicated function of ~α and ~π. To linear order the

transformation is simple

~π → ~π′ = ~π + ~α (21)

which shows that the NGBs shift under the non-linearly realized symmetry

transformations. As in the U(1) case, the shift symmetry ensures that

NGBs can only have derivative interactions.

2.2. Effective Lagrangian for NGBs

Our goal for this section is to write the most general allowed effective La-

grangian for only the massless NGB fields, and respecting the full SU(N)

symmetry. This is where the utility of the exponentiated fields φ becomes

obvious: while the full SU(N) transformations on the π’s are complicated,

the φ’s transform very simply. To get the low energy effective Lagrangian we

expand in powers of ∂µ/Λ and write the most general possible SU(N) invari-

ant function of φ = eiπ/fφ0 at every order. With no derivatives we can form

two basic gauge invariants objects φ†φ = f2 and εa1... aNφa1
φa2

· · ·φaN
= 0.

Thus the most general invariant contribution to the potential is simply a

constant. You can convince yourself that the most general term that can

be written at quadratic order is a constant times |∂µφ|2 and therefore, we

have

L = const+ f2|∂µφ|2 + O(∂4) (22)
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where we normalized the coefficient of the second order term such that the

π fields have canonical kinetic terms. Note that the second order term ex-

panded to higher order in the π fields contains interactions which determine

the scattering of arbitrary numbers of π’s at low energies in terms of the

single parameter f .

3. Constructing a little Higgs model

Now that we know how to write a Lagrangian for NGBs we would like

to use this knowledge to write a model where the Higgs is a NGB. The

explicit model we are going to construct in the remainder of this section

is the “simplest little Higgs” 19,20,29. For example, consider the symmetry

breaking pattern SU(3)/SU(2) with NGBs

π =





−η/2 0

0 −η/2 h

h† η



 (23)

Note that h is a doublet under the unbroken SU(2) as required for the

Standard Model and it is an NGB, it shifts under “broken” SU(3) transfor-

mations. η is an SU(2) singlet which we will ignore for simplicity in most

of the following. To see what interactions we get for h from the Lagrangian

we expand

φ = exp

{

i

f

(

0 h

h† 0

)}(

0

f

)

=

(

0

f

)

+ i

(

h

0

)

− 1

2f

(

0

h†h

)

+ · · · (24)

and therefore

f2|∂µφ|2 =

∣

∣

∣

∣

(

∂µh

0

)

+ · · ·
∣

∣

∣

∣

2

= |∂µh|2 +
|∂µh|2h†h

f2
+ · · · (25)

which contains the Higgs kinetic term as well as interactions suppressed

by the symmetry breaking scale f . Since the Lagrangian contains non-

renormalizable interactions, it can only be an effective low-energy descrip-

tion of physics. To determine the cut-off Λ at which the theory becomes

strongly coupled we can compute a loop and ask at which scale it becomes

as as important as a corresponding tree level diagram. The simplest ex-

ample is quadratically divergent one-loop contribution to the kinetic term

which stems from contracting h†h in the second term in Eq. (25) into a

loop. Cutting the divergence off at Λ we find a renormalization of the

kinetic term proportional to

1

f2

Λ2

16π2
(26)
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and therefore Λ <
∼ 4πf .

Summarizing, we now have a theory which produces a “Higgs” doublet

transforming under an exactly preserved (global) SU(2). This “Higgs” is a

NGB and therefore exactly massless. It has non-renormalizable interactions

suppressed by the scale f which become strongly coupled at Λ = 4πf .

Because of the shift symmetry no diagrams, divergent or not, can give rise

to a mass for h. Anticipating that we are going to use this theory as a

model for the Higgs in the Standard Model we summarize the relevant

scales in Figure 3. On the other hand, this theory is still vary far from

1 TeV

100 GeV

10 TeV Λ

f

Mweak

Figure 3. Energy scales of a typical Little Higgs theory.

what we want. An NGB can only have derivative interactions, i.e. no

gauge interactions, no Yukawa couplings and no quartic potential. Any of

these interactions explicitly break the shift symmetry h → h + const. In

the following subsections we discuss how to add these interactions without

re-introducing quadratic divergences.

3.1. Gauge interactions

Let us try to introduce the SU(2) gauge interactions for h (we ignore hy-

percharge for the moment, it will be easy to add later). To do so we simply

follow our nose and see where it leads us. We will arrive at the right answer

after a few unsuccessful attempts.

First attempt: Let’s simply add couplings to SU(2) gauge bosons in the

usual way, i.e. in addition to the Lagrangian Eq. (25) we add the term

|gWµh|2 (27)

and another term with one derivative and one SU(2) gauge boson Wµ as

required by gauge invariance. These terms allow us to write Feynman
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(a) (b)

Figure 4. Quadratically divergent gauge loop contributions to the Higgs mass.

diagrams with quadratic divergences (Figure 4) which contribute to the

“Higgs” mass

g2

16π2
Λ2h†h (28)

Note that these diagrams are exactly the quadratically divergent Stan-

dard Model gauge loops which we set out to cancel. We apparently gained

nothing, we started with a theory in which the Higgs was protected by a

non-linearly realized SU(3) symmetry (under which h shifts) but then we

added the term Eq. (27) which completely and explicitly breaks the sym-

metry. Of course, we necessarily have to break the shift symmetry in order

to generate gauge interactions for h but we must break the symmetry in a

subtler way to avoid quadratic divergences in the Higgs mass.

Second attempt: Let’s write more SU(3) symmetric looking expressions

and add the coupling

|g
(

Wµ

0

)

φ |2 (29)

where Wµ contains the three SU(2) gauge bosons. (Really, we write |Dµφ|2
where the covariant derivative involves only SU(2) gauge bosons. The two-

gauge-boson-coupling is then Eq. (29)). This still allows a quadratically

divergent contribution to the Higgs mass. The diagram is the same as

before except with external φ fields and gives

g2

16π2
Λ2 φ†





1

1

0



φ =
g2

16π2
Λ2 h†h+ · · · (30)

where the projection matrix diag(1, 1, 0) arises from summing over the three

SU(2) gauge bosons running in the loop. Not surprisingly, we got the same
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answer as before because we added the same interactions, just using a

fancier notation.

Third attempt: Let us preserve SU(3) by gauging the full SU(3) sym-

metry, i.e. by adding |Dµφ|2 where now the covariant derivative contains

the 8 gauge bosons of SU(3). Again we can write the same quadratically

divergent diagram and find

g2

16π2
Λ2 φ†





1

1

1



φ =
g2

16π2
Λ2f2 (31)

which has no dependence on the Higgs field. The quadratic divergence

only contributes a constant term to the vacuum energy but no Higgs mass!

Unfortunately, we have also lost the “Higgs”! The NGBs are “eaten” by

the heavy SU(3) gauge bosons corresponding to the broken generators, i.e.

they become the longitudinal components of the gauge bosons.

We have now exhausted all possible ways of adding SU(2) gauge inter-

actions to our simple toy model for h. The lesson is that we can avoid the

quadratically divergent contribution to the Higgs mass by writing SU(3)

invariant gauge interactions, the problem that remains is that our “Higgs”

was eaten. But this is easy to fix.

Fourth attempt (successful): We use two copies of NGBs φ1 and φ2 and

add SU(3) invariant covariant derivatives for both. We expect no quadratic

divergence for either of the NGBs but only one linear combination will be

eaten. To see how this works in detail we parametrize

φ1 = eiπ1/f

(

f

)

φ2 = eiπ2/f

(

f

)

(32)

where – for simplicity – we assumed identical symmetry breaking scales

f1 = f2 = f , and we also assumed that the VEVs for φ1 and φ2 are

aligned. We write the Lagrangian

L = |Dµφ1|2 + |Dµφ2|2 (33)

The two interaction terms allow writing two quadratically divergent one-

loop diagrams similar to the one’s of the previous attempt (Figure 5.a)

which give

g2

16π2
Λ2 (φ†1φ1 + φ†2φ2) =

g2

16π2
Λ2 (f2 + f2) (34)

i.e. no potential or mass term for any of the NGBs. However only one linear

combination of π1 and π2 is eaten as there is only one set of hungry massive
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a.)

iφ iφi φ

b.) 2 2

11φ φ

φ φ

φφi i

Figure 5. a.) Quadratically divergent gauge loop contributions which do not contribute
to the Higgs potential, b.) log-divergent contribution to the Higgs mass.

SU(3) gauge bosons. A simple way to understand this result is to notice

that each of the two diagrams only involves one of the φ fields, therefore the

diagrams are the same as in the theory with only one φ in which all NGBs

are eaten, therefore none can get a potential. This reasoning changes once

we consider diagrams involving both φ1 and φ2. For example, the diagram

in Figure 5.b gives

g4

16π2
log

(

Λ2

µ2

)

|φ†1φ2|2 (35)

which does depend on the “Higgs” field but is not quadratically divergent.

To calculate the Higgs dependence we choose a convenient parametrization

φ1 = exp

{

i

(

k

k†

)}

exp

{

i

(

h

h†

)}(

f

)

(36)

φ2 = exp

{

i

(

k

k†

)}

exp

{

−i
(

h

h†

)}(

f

)

(37)

The field k can be removed by an SU(3) gauge transformation, it corre-

sponds to the “eaten” NGBs, h cannot simultaneously be removed from φ1

and φ2, it is physical. In the following we will work in the unitary gauge
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for SU(3) where k has been rotated away. Then we have

φ†1φ2 =
(

0 f
)

exp

{

−2i

f

(

h

h†

)}(

0

f

)

=

[

f2

(

1

1

)

− 2fi

(

h

h†

)

− 2

(

h†h

h†h

)

+ · · ·
]

33

= f2 − 2h†h+ · · · (38)

and we see that Eq. (35) contains a mass for h g4/(16π2) log
(

Λ2

µ2

)

f2 ∼
M2

weak for g equal to the SU(2) gauge coupling and f ∼ TeV. To summarize,

the theory of two complex triplets which both break SU(3) → SU(2) auto-

matically produces a “Higgs” doublet pseudo-NGB which does not receive

quadratically divergent contributions to it’s mass. There are log-divergent

and finite contributions and from these the natural size for the “Higgs”

mass is f/4π ∼Mweak.

3.2. Symmetry argument, collective breaking

Let us understand the absence of a quadratic divergence to the mass of h

using symmetries. The lesson we learn is valuable as it generalizes to other

couplings, it provides a general recipe for constructing little Higgs theories.

Without gauge interactions, our theory would consist of two non-linear

sigma models corresponding to the spontaneous breaking of SU(3) to

SU(2), the coset [SU(3)/SU(2)]2. There are 10 spontaneously broken gen-

erators and therefore 10 NGBs. The gauge couplings explicitly break some

of the global symmetries. For example, the two gauge boson - two scalar

coupling

L ∼ |gAµφ1|2 + |gAµφ2|2 (39)

breaks the two previously independent SU(3) symmetries to the diagonal

(gauged) SU(3). Thus only one of the spontaneously broken symmetries

is exact, and therefore only one set of exact NGBs arises, the eaten ones.

The other linear combination, corresponding to the explicitly broken axial

SU(3), gets a potential from loops.

However, as we saw before, there is no quadratically divergent contri-

bution to the potential. This is easy to understand by considering the sym-

metries left invariant by each of the terms in Eq. (39) separately. Imagine

setting the gauge coupling of φ2 to zero, then the Lagrangian has 2 in-

dependent SU(3) symmetries, one acting on φ1 (and Aµ) and the other
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acting on φ2. Thus we now have two spontaneously broken SU(3) sym-

metries and therefore 10 exact NGBs (5 of which are eaten). Similarly, if

the gauge coupling of φ1 is set to zero, there are again two spontaneously

broken SU(3)’s. Only in the presence of gauge couplings for both φ1 and

φ2 are the two SU(3) symmetries explicitly broken to one SU(3) and only

then can the ”Higgs” h develop a potential. Therefore any diagram which

contributes to the Higgs mass must involve the gauge couplings for both

φ1 and φ2. But there are no quadratically divergent one-loop diagrams

involving both couplings.

This is the general mechanism employed by “little Higgs” theories 13:

The “little Higgs” is a pseudo-Nambu-Goldstone boson of a spontaneously

broken symmetry. This symmetry is also explicitly broken but only “col-

lectively”, i.e. the symmetry is broken when two or more couplings in the

Lagrangian are non-vanishing. Setting any one of these couplings to zero

restores the symmetry and therefore the masslessness of the “little Higgs”.

We now know how to construct a theory with a naturally light scalar

doublet coupling to SU(2) gauge bosons. To turn this into an extension of

the Standard Model we still need i. Yukawa couplings, ii. hypercharge and

color, and iii. a Higgs potential with a quartic coupling.

3.3. Top Yukawa coupling

The numerically most significant quadratic divergence stems from top quark

loops. Thus the cancellation of the quadratic divergence associated with

the top Yukawa is the most important. Let us construct it explicitly. The

crucial trick is to introduce SU(3) symmetries into the Yukawa couplings

which are only broken collectively. First, we enlarge the quark doublets into

triplets Ψ ≡ (t, b, T ) transforming under the SU(3) gauge symmetry. The

quark singlets remain the same tc and bc except that we also need to add

a Dirac partner T c for T . Note that we are using a notation in which all

quark fields are left-handed Weyl spinors, and the Standard Model Yukawa

couplings are of the form h†Qtc. Let us change notation slightly to reflect

the fact that tc and T c mix and call them tc1 and tc2. We can now write two

couplings which both look like they contribute to the top Yukawa couplinga

Lyuk = λ1φ
†
1Ψt

c
1 + λ2φ

†
2Ψt

c
2 (40)

aWe do not write the couplings φ†
1
Ψtc

2
and φ†

2
Ψtc

2
as they would reintroduce quadratic

divergences. They can be forbidden by global U(1) symmetries and are therefore not
generated by loops.
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To see what couplings for the Higgs arise we substitute the parametrization

Eq. (37) and expand in powers of h. For simplicity, let us also set λ1 ≡
λ2 ≡ λ/

√
2. This will reduce the number of terms we encounter because it

preserves a parity 1 ↔ 2, but the main points here are independent of this

choice. We find

L ∼ λ√
2

[

fT (tc2 + tc1) + ih†Q(tc2 − tc1) −
1

2f
h†hT (tc2 + tc1) + · · ·

]

= λf(1 − 1

2f2
h†h)TT c + λh†Qtc + · · · (41)

where in the second line we have redefined fields T c = (tc2 + tc1)/
√

2 and

tc = i(tc2 − tc1)/
√

2. We find a top Yukawa coupling and identify λ = λt.

The Dirac fermion T, T c has a mass λtf and a coupling to two Higgs fields

with coupling constant λt/(2f). The couplings and masses are related by

the underlying SU(3) symmetries. To see how the new fermion and it’s

ct

Q

T T c

h h

h h
Figure 6. The quadratically divergent contribution to the Higgs mass from the top loop
is canceled by the T loop.

couplings to the Higgs cancel the quadratic divergence from the top quark

loop we compute the fermion loops including interactions to order λ2. The

two relevant diagrams (Figure 6) give

λ2
t

16π2
Λ2h†h+

λ2
t f

2

16π2
(1 − h†h

f2
) Λ2 + O(h4) = const.+ O(h4) (42)

The quadratically divergent contribution to the Higgs mass from the top

and T loops cancel!b

While this computation allowed us to see explicitly that the quadratic

divergence from t and T cancel, the absence of a quadratic divergence to the

bIn order for the two cut-offs for the two loops to be identical, the new physics at the
cut-off must respect the SU(3) symmetries. This is analogous to the situation in SUSY
where the boson-fermion cancellation also relies on a supersymmetric regulator/cutoff.
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Higgs mass is much more naturally understood by analyzing the symmetries

of the Lagrangian for the φi fields, Eq. (40). First note that the Yukawa

coupling Lagrangian preserves one SU(3) symmetry, the gauge symmetry.

The term proportional to λ1 forces symmetry transformations of φ1 and Ψ

to be aligned and the term proportional to λ2 also forces φ2 to transform

like Ψ. Thus, in the presence of both terms the global symmetry breaking

pattern is only SU(3)/SU(2) with 5 NGBs which are all eaten by the

heavy SU(3) gauge bosons. However, if we set either of the λi to zero the

symmetry of Eq. (40) is enhanced to SU(3)2 because the φi can now rotate

independently. Thus with either of the λi we expect two sets of NGBs.

One linear combination is eaten but the other is the “little Higgs”. To

understand radiative stability of this result we observe that a contribution

to the Higgs potential can only come from a diagram which involves both λi.

The lowest order fermion diagram which involves both λi is the loop shown

in Figure 7, it is proportional to |λ1λ2|2. You can easily convince yourself

φ φ

φ

1

1t

t2c

c

2

1

φ2
Figure 7. A log divergent contribution to the Higgs mass from the top and T loops
proportional to |λ1λ2|2.

that you cannot draw a diagram which contributes to the Higgs potential

and is proportional to only a single power of λ1λ2. This also follows from an

argument using “spurious” symmetries: assign tc1 charge 1 under a U(1)1
symmetry while all other fields are neutral. The symmetry is broken by

the Yukawa coupling λ1, but we can formally restore it by assigning the

“spurion” λ1 charge -1. Any effective operators which may be generated

by loops must be invariant under this symmetry. In particular, operators

which contribute to the Higgs potential and do not contain the fermion

field tc1 can depend on the spurion λ1 only through |λ1|2. Of course, the

same argument shows that the dependence on λ2 is through |λ2|2 only. A

contribution to the Higgs potential requires both couplings λ1 and λ2 to

appear and therefore the potential is proportional to |λ1λ2|2, i.e. at least
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four coupling constants. But a one-loop diagram with 4 coupling constants

can at most be logarithmically divergent, and therefore does not destabilize

the Higgs mass.

In the explicit formulae above, we assumed - for simplicity - that f1 =

f2 = f and λ1 = λ2 = λt/
√

2. In the general case we find

mT =
√

λ2
1f

2
1 + λ2

2f
2
2 (43)

λt = λ1λ2

√

f2
1 + f2

2

mT
(44)

Note that the top Yukawa coupling goes to zero as either of the λi is taken

to zero as anticipated from the SU(3) symmetry arguments. Furthermore

note that the mass of the heavy T quark can be significantly lower than

the larger of the two fi if the corresponding λi is smaller than 1. This is a

nice feature because it will allow us to take the heavy gauge boson’s masses

large (>
∼ few TeV as required by the precision electroweak constraints) while

keeping the T mass near a TeV. Keeping the T mass as low as possible is

desirable because the quadratic divergence of the top loop in the Standard

Model is cut off at the scale of the mass of T .

3.4. Other Yukawa couplings

The other up-type Yukawa couplings may be added in exactly the same

way. We enlarge the SU(2) quark doublets into triplets because of the

gauged SU(3). Then we add two sets of Yukawa couplings which couple

the triplets to φ1 and φ2 and quark singlets qc
1 and qc

2.

In the Standard Model, Yukawa couplings for down type quarks arise

from a different operator where the SU(2) indices of the Higgs doublet and

the quark doublets are contracted using an epsilon tensor (or, equivalently,

the conjugate Higgs field hc = iσ2h
†) is used. Before explicitly constructing

this operator from the quark and φi fields note that even the bottom Yukawa

coupling is too small to give a significant contribution to the Higgs mass.

The quadratically divergent one loop diagram in the Standard Model yields

λ2
b

16π2
Λ2 ≈ (30 GeV)2 . (45)

Therefore, we need not pay attention to symmetries and collective breaking

when constructing the down type Yukawa couplings. The Standard Model

Yukawa is

λbεijhiQj b
c (46)
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To obtain the epsilon contraction from an SU(3) invariant operator we

write

λb

f
εijkφ

i
1φ

j
2Ψ

k
Q b

c (47)

Note that the εijk contraction breaks both SU(3) symmetries (acting on

the two scalar triplets φ1 and φ2) to the diagonal and therefore this oper-

ator does lead to a quadratic divergence. But the quadratic divergence is

harmless because of the smallness of the bottom Yukawa coupling.

3.5. Color and hypercharge

Color is added by simply adding SU(3)color indices where we expect them

from the Standard Model. SU(3)color commutes with all the symmetry

arguments given above, therefore nothing significant changes.

hypercharge is slightly more complicated. The VEVs φi ∝ (0, 0, 1) break

the SU(3)weak gauge group to SU(2), i.e. no U(1) hypercharge candidate is

left. Therefore, we gauge an additional U(1)X . In order for the hypercharge

of the Higgs to come out correctly, we assign the SU(3)×U(1)X quantum

numbers

φi = 3−1/3 (48)

The combination of generators which is unbroken by φi ∼ (0, 0, 1) is

Y =
−1√

3
T 8 +X where T 8 =

1

2
√

3





1

1

−2



 (49)

and X is the generator corresponding to U(1)X . This uniquely fixes the

U(1)X charges of all quarks and leptons once their SU(3) transformation

properties are chosen.

For example, the covariant derivative acting on φi is

Dµφ = ∂µφ− 1

3
igXA

X
µ φ+ igASU(3)

µ φ (50)

Note that the U(1)X generator commutes with SU(3), and the U(1)X gauge

interactions do not change any of the symmetry arguments which we used

to show that the Higgs does not receive quadratic divergences to its mass.

There are now three neutral gauge bosons corresponding to the gen-

erators T 3, T 8, X . These gauge bosons mix, the mass eigenstates are the

photon, Z and a Z ′ which leads to interesting modifications to predictions

for precision electroweak measurements.
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3.6. Quartic Higgs coupling

To generate a quartic Higgs coupling we want to write a potential V (φ1, φ2)

that i. contains no mass at order f for the Higgs, ii. contains a quartic

coupling, iii. preserves the “collective” symmetry breaking of the SU(3)’s:

i.e. the quartic coupling is generated by at least two couplings in V and if

one sets either one of them to zero the Higgs becomes an exact NGB. This

last property is what guarantees radiative stability, no Λ2 contributions to

the Higgs mass.

Writing down a potential which satisfies these properties appears to

be impossible for the pure SU(3) model (if you can figure out how to do

it please let me know, and write a paper about it). To see why it is not

straightforward, note that φ†1φ2 is the only non-trivial gauge invariant which

can be formed from φ1 and φ2. (φ†1φ1 = const = φ†2φ2 and εijkφiφjφk = 0.)

But the φ†1φ2 invariant is a bad starting point because it breaks the two

SU(3)’s to the diagonal, and it is not surprising that generic functions of

φ†1φ2 always contain a mass as well as a quartic. For example,

φ†1φ2 ∼ f2 − h†h+
1

f
(h†h)2 + · · · (51)

so that

1

f2n−4
(φ†1φ2)

n ∼ f4 − f2h†h+ (h†h)2 + · · · (52)

By dialing the coefficient of this operator we can either get a small enough

mass term or a large enough quartic coupling but not both. Of course, we

could try to tune two terms with different powers n such that the mass

terms cancel between them but that tuning is not radiatively stable.

There are two different solutions to the problem in the literature. Both

require enlarging the model and symmetry structure. One solution, due to

Kaplan and Schmaltz 20, involves enlarging the gauge symmetry to SU(4)

and introduce four φ fields which transform as a 4 of SU(4). The four φ

fields break SU(4) → SU(2), yielding 4 SU(2) doublets. Two of them are

eaten, the other two are “little Higgs” fields with a quartic potential similar

to the quartic potential in SUSY.

The other solution, due to Skiba and Terning 22, keeps the SU(3) gauge

symmetry the same but enlarges the global SU(3)2 symmetry to SU(3)3

which is then embedded in a SU(9). The larger symmetry also leads to two

“little” Higgs doublets for which a quartic coupling can be written. Both

of these solutions spoil some of the simplicity of the SU(3) model but they

allow a large quartic coupling for the Higgs fields with natural electroweak
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symmetry breaking. I refer you to the original papers for details on these

models.

A third option 29 is to simply add a potential with a very small coeffi-

cient. The resulting quartic coupling is then also very small but radiative

corrections from the top loop as in the MSSM give a contributions which can

raise the Higgs mass above the experimental bound of 114 GeV. Explicitly,

h

h

h
h

Figure 8. The top loop contribution to the Higgs quartic coupling.

below the T mass the cancellations in the top sector no longer occur and

the diagram in Figure 8 gives a contribution to the quartic

3λ4
t

16π2
log(

m2
T

m2
t

) (h†h)2 (53)

which is too small by itself but does give successful electroweak symmetry

breaking when combined with a small tree level contribution. Since the tree

level term also contributes to the soft mass for the Higgs a moderate amount

of tuning (∼10%) is required. While this is not completely satisfactory it

is better than most other models of electroweak symmetry breaking and

certainly better than the MSSM with gauge coupling unification which

requires tuning at the few % level or worse.

3.7. The simplest little Higgs

This section summarizes the construction and salient features of the “sim-

plest little Higgs” 29, the SU(3) model in which the Higgs quartic coupling

is predominantly generated from the top loop. In the phenomenology sec-

tion, we will use the model as an example to discuss typical experimental

signatures and constraints.

The model has an SU(3)color × SU(3)weak × U(1)X gauge group with
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each of the three generations of quark and lepton fields transforming as

ΨQ = (3, 3) 1

3

ΨL = (1, 3)− 1

3

dc = (3̄, 1) 1

3

ec = (1, 1)1

2 × uc = (3̄, 1)− 2

3

nc = (1, 1)0 (54)

The triplets ΨQ and ΨL contain the quark and lepton doublets, the (charge-

conjugated) singlets are the fields uc, dc, ec, nc.c

The SU(3)w×U(1)X symmetry breaking stems from expectation values

for φ1 = φ2 = (1, 3)−1/3.

The Lagrangian of the model contains the usual kinetic terms

Lkin ∼ Ψ†
Q /DΨQ + · · · + |Dµφ1|2 + · · · (55)

Yukawa couplings

Lyuk ∼ λu
1φ

†
1ΨQu

c
1 + λu

2φ
†
2ΨQu

c
2 +

λd

f
φ1φ2ΨQ d

c

+ λnφ†1ΨLn
c +

λe

f
φ1φ2ΨL e

c + h.c. (56)

and the tree level Higgs potential arises from

Lpot ∼ µ2φ†1φ2 + h.c. (57)

We substitute the parametrization for the NGBs

φ1 = e
iΘ

f2

f1





0

0

f1



 , φ2 = e
−iΘ

f1

f2





0

0

f2



 (58)

where

Θ =
η√
2f

+
1

f





0 0

0 0
h

h† 0



 and f2 = f2
1 + f2

2 . (59)

and solve for the spectrum of massive particles. The numerical values

provided below correspond to the example point f1 = 0.5 TeV and f2 = 2

cThis fermion content is anomalous under the extended electroweak gauge group. The

anomaly must be canceled by additional fermions which can be as heavy as Λ. It is also
possible to change the charge assignments such that anomalies cancel among the fields
ΨQ, ΨL, uc, dc, ec, nc alone 29,35,36.
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TeV (f ∼ 2 TeV). In addition to the Standard Model particles we have

heavy gauge bosons











(

W+′

W 0′

)

Z ′

∼
√

1/2 gf ∼ 0.9 TeV

∼
√

2/3 gf ∼ 1.1 TeV

top partner T =
√

(λ1f1)2+(λ2f2)2 ∼ 1 TeV

up, charm partners U,C ∼ λ2f2 ∼ 0.7 TeV

real scalar η ∼ 300 GeV (60)

4. Phenomenology

4.1. Direct production of little partners

Precision electroweak constraints (which we will discuss in the next section)

force the masses of the new states to be at or above 1 TeV, and therefore

probably out of reach of the Tevatron.

LHC (“Little Higgs Collider”) little Higgs phenomenology is very ex-

citing [37–44]. All new states may be within reach and give interesting

signatures.

q

q
Z

l

l

(a)

+

−

# Events/bin

M(b)

_

z

Figure 9. a.) Lepton pairs from s-channel Z′ production, b.) bump in the invariant
mass distribution of lepton pairs.

little Z (Z’): Heavy neutral gauge bosons would be produced in the s-

channel in quark-antiquark collisions with large rates. An easy signature

comes from the decay of the Z’ to pairs of highly energetic leptons (Figure

9.a). A plot of the invariant mass of the lepton pairs should show a clear

bump at the mass of the Z ′ (Figure 9.b). The reach in this channel is about

5-7 TeV 37.

little W (W’): The heavy SU(2) doublet gauge bosons W ′ =

(W 0′,W+′
)T are less straightforward to see. The reason is that to lowest
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order in an expansion in mW /f they couple an SU(2)weak doublet fermion

of the Standard Model Q to a heavy partner fermion as can be seen explic-

itly from the gauge couplings of the triplet fermions

g
(

Q† U †
)

(

W ′

W ′†

)

(

Q

U

)

(61)

Thus W’ gauge bosons would always have to be produced in association

with heavy “little quarks” (U). This picture is not quite correct because

we ignored mixing effects. In fact, little quarks mix with the light quarks

Uheavy = U − v

f
u (62)

which results in v/f suppressed couplings of pairs of light quarks to W ′.

For example, a chargedW+′
may be produced (Figure 10.a) and then decay

into a light quark and a little quark (Figure 10.b) which then decays further

as in Figure 10.d. However the rates are expected to be small because the

W ′ is heavy and because of the v/f in the coupling.

u

d

W

W

d

U

(d)

W

d
U

U

u

Z l

l

+

−

(a) (b)

(c)

Figure 10. a.) W ′ production, b.) U production, c.) W ′ decay d.) U decay.

The signatures quoted here for little W’s are unique to “simple little

Higgs” models. Models based on product gauge groups such as [SU(2) ×
U(1)]2 have little W’s which transform as triplets under SU(2)weak which

can couple directly to pairs of light quarks. They are produced with larger
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cross sections and also contribute more strongly to precision electroweak

observables.

little quarks (U): Heavy U quarks may be pair produced directly via

their coupling to gluons. However, because of mixing there is also the

possibility of single U production as shown in Figure 10.c. The produced

U ’s would subsequently decay into a light quark and a Standard Model

gauge boson (U → u+ Z , U → d+W ). The rate is suppressed by v2/f2

from the coupling in the production cross section and the reach is estimated

to be of the order 2-3 TeV.

4.2. Precision electroweak constraints

As we already showed in the Introduction, indirect constrains from precision

electroweak (PEW) measurements on any new Physics in the TeV energy

regime are very severe. Little Higgs models are no exception and we must

check that there are significant regions of parameter space in which the

model is not ruled out by PEW, and where the little Higgs mechanism

solves the Higgs naturalness problem.

In practice, the most significant effects arise from the exchange of the

new neutral gauge boson, the Z ′. The SU(3) model has three neutral gauge

bosons which mix (in the SU(3) charge eigenstate basis: A3, A8, AX). The

mass eigenstates are the photon, Z, and a Z’. To understand all possible

effects from the Z’ we must work out it couplings.

From the gauge couplings of the fermions ψ†i/Dψ and scalars |Dµφ|2
we find the mass and couplings. Neglecting order one group theory factors,

these couplings are

|Dµφ|2 →
{

g2f2Z ′
µZ

µ′

Z ′
µgh

†Dµh→ g2v2Z ′
µZ

µ

ψ†i/Dψ → gZ ′
µψ

†iγµψ (63)

The Feynman diagrams corresponding to these three Z ′ interactions are

shown in Figure 11. Integrating out the Z ′ at tree level by solving it’s

classical equations of motion we find the following effective Lagrangian

Leff ∼ (ψ†iγµψ)2 + 2(ψ†iγµψ)(h†Dµh) + (h†Dµh)
2

f2
(64)

These three operators correspond to new four fermion operators, modifi-

cations of the Z couplings to fermions, and modifications of the Z mass,

respectively. In terms of Feynman diagrams they arise as shown in Figure

12. The four fermion operators are most strongly constrained by limits from
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(b)

Z Z

(a)

Z Z Z

(c)

Figure 11. a.) Z′ coupling to fermions, b.) Z-Z′ mixing c.) Z′ mass.

ZZ

Z

ZZ Z

Z ZZ

(b) (c)(a)

Figure 12. Integrating out Z′ to obtain a.) four fermion operators, b.) shift in Z
couplings c.) shift in Z mass.

LEP II and from atomic parity violation 2,45. Modifications of the Z cou-

plings are constrained by Z-pole data such as Rb and AFB
b . Finally, shifts

in the Z mass change the mass splitting between the Z and the W from the

Standard Model prediction, deviations from the Standard Model value are

usually parametrized with the ρ or T parameters. These constraints gener-

ally imply f ≥ 2− 4 TeV. A global fit of various little Higgs theories using

a general operator analysis and the Han-Skiba precision electroweak ma-

trix is currently being performed 4,46. For more details regarding precision

electroweak constraints on little Higgs models see [47–53].

4.3. Precision electroweak, fine-tuning, and T -parity

The result of PEW is that the scale of the new particles in most little Higgs

models is somewhat higher than 1 TeV. This implies some fine tuning as

quantum corrections to the Higgs (mass)2 parameter are directly propor-

tional to the new particle masses. In particular, we would really like the

mass of the top partner to be at or below 1 TeV, not 2-4 TeV. Since the
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naturalness problem we set out to solve involved fine tuning of order 1%,

it is somewhat disappointing to find that fine-tuning is still on the order of

10%. Can we do better?

The answer is “yes”. To understand the problem better, note that the

problematic contributions to PEW all stem from tree level exchange of

little partners (as in Figure 12). However, naturalness only requires the

new particles to appear in loops in order to cancel quadratic divergences.

Thus a solution would be to forbid all tree level couplings of little partners

to Standard Model particles while keeping the loops. But how can this be

enforced in a natural way?

To see how it might work, note that the MSSM does not appear to

have this problem. In the MSSM superpartner masses can be well below

1 TeV without causing problems with PEW. Why is that? The answer is

R-parity. R-parity has a reputation of being the ugliest part of the MSSM

but with regards to PEW R-parity is really the MSSM’s best part. Recall

that R parity is defined such that all Standard Model particles are R-parity

even and all superpartners are odd. If R-parity is exact then all interactions

must involve an even number of superpartners. Interactions of single super-

partners with Standard Model fields are forbidden. Therefore contributions

from superpartners to processes in which all external states are Standard

Model particles are loop suppressed as shown in Figure 13. Thus contri-

butions to PEW from superpartners suppressed by 1/(16π2)m2
W /M2

SUSY

which is sufficiently small even for MSUSY ≤ 1 TeV.
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Figure 13. a.) forbidden by R-parity, b.) superpartner loop, allowed.

The equivalent of R-parity in the case of the little Higgs models has been

dubbed T-parity by Cheng and Low 24,27,30. Under T-parity all Standard

Model fields are even whereas little partners are odd. Just like in the

case of supersymmetry, this forbids the dangerous contributions to PEW

while allowing the cancellation of quadratic divergences. The difficult part,

of course, is to construct a model in which T-parity can be consistently
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imposed. It appears that this is impossible to do with any of the “simple

group” models, such as our favorite SU(3) model. However, it can be done

with all the other little Higgs models. In models with T-parity the masses

of little partners can be smaller than 1 TeV. The phenomenology of such a

model was recently discussed in 54.
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