Chapter 8: Experiment

Fermilab

Fermilab

Fermilab CDF

top quark production

Top Quarks

Top Quarks

missing momentum

jet

CERN and LEP

CERN and LEP

Rubbia and Van der Meer

1984 Nobel Prize

Tim Berners-Lee

inventor of HTML and WWW

Precision Measurements

 $\sim R^{\mu}$

Precision Measurements

Land Tides

LEP: Tides

The total strain is 4×10^{-8} ($\Delta C = 1 \text{ mm}$)

LEP: Moon

LEP: Rain

LEP: Trains Correlation between trains and LEP energy

Rutherford

low energy photon cannot resolve proton structure

SLAC-MIT Experiment

1968

high energy photon resolves quarks

SLAC-MIT Experiment

1968

Weak Scale

SM Weak Interactions

consistent with all
precision data
fine-tuned to 1 part in 10³⁰
must be incomplete

proton-proton collisions produce mainly lots of hadrons

Garden Variety Hadrons

particle	mass	main decay	lifetime
π^0	$135{ m MeV}$	$ ightarrow \gamma \gamma$	$8 \times 10^{-17} \mathrm{s}$
π^{\pm}	$140\mathrm{MeV}$	$ ightarrow \mu u_{\mu}$	$3 \times 10^{-8} \mathrm{s}$
K^{\pm}	$494\mathrm{MeV}$	$ ightarrow \mu \overline{ u_{\mu}}$	$10^{-8} {\rm s}$
η	$548{ m MeV}$	$ ightarrow \gamma$ γ	$5 \times 10^{-19} \mathrm{s}$
$ ho^0$	$775{ m MeV}$	$ ightarrow \pi \pi$	$4 \times 10^{-24} \mathrm{s}$
p	$938{ m MeV}$		$> 10^{38} { m s}$
n	$940\mathrm{MeV}$	$\rightarrow p e^- \bar{\nu}_e$	$886\mathrm{s}$
B^0	$5,280{ m MeV}$	$\rightarrow K^{\pm} + \text{hadrons}$	$2 \times 10^{-12} \mathrm{s}$

events/s = cross section x luminosity

$$\frac{\Delta N}{\Delta t} = \sigma L$$

 σ traditionally measured in barns

 $1 b = 10^{-28} m^2 = 100 \text{ fm}^2$ typical nuclear cross section

$$\sigma_{QCD} \sim (1\,\mathrm{fm})^2 = 10^7\,\mathrm{nb}$$

$$\sigma_{weak} \sim \frac{1}{M_W^2} = \frac{1}{(80 \text{ GeV})^2} = 60 \text{ nb}$$

 $\sigma_{higgs} \sim \frac{1}{(16\pi^2 m_{top})^2} = 10^{-3} \text{ nb}$

Travel Distances

$E = \gamma \, m = 10 \, {\rm GeV}$

particle	mass	distance
$ ho^0$	$775{ m MeV}$	$2 \times 10^{-14} \mathrm{m}$
η	$548\mathrm{MeV}$	$3 imes 10^{-9}\mathrm{m}$
π^0	$135{ m MeV}$	$2 \times 10^{-6} \mathrm{m}$
B^0	$5,280{ m MeV}$	$10^{-3}{ m m}$
K^{\pm}	$494\mathrm{MeV}$	60 m
π^{\pm}	$140{ m MeV}$	640 m
n	$940{ m MeV}$	$3 imes 10^{12}\mathrm{m}$
p	$938{ m MeV}$	$> 10^{47} \mathrm{m}$

Travel Distances

$E=\gamma\,m=10\,{\rm GeV}$

particle	mass	distance	_
$ ho^0$	$775\mathrm{MeV}$	$2 \times 10^{-14} \mathrm{m}$	
η	$548\mathrm{MeV}$	$3 \times 10^{-9} \mathrm{m}$	
π^0	$135{ m MeV}$	$2 \times 10^{-6} \mathrm{m}$	
B^0	$5,280{ m MeV}$	$10^{-3}{ m m}$	
K^{\pm}	$494\mathrm{MeV}$	$60\mathrm{m}$	\mathbf{n}
π^{\pm}	$140\mathrm{MeV}$	$640\mathrm{m}$	detector
n	$940\mathrm{MeV}$	$3 imes 10^{12}\mathrm{m}$	stable
p	$938{ m MeV}$	$> 10^{47} \mathrm{m}$	

Travel Distances

$E=\gamma\,m=10\,{\rm GeV}$

	distance	mass	particle	
	$2 \times 10^{-14} \mathrm{m}$	$775{ m MeV}$	$ ho^0$	
	$3 imes 10^{-9}\mathrm{m}$	$548\mathrm{MeV}$	η	
displaced	$2 \times 10^{-6} \mathrm{m}$	$135{ m MeV}$	π^0	
	$(10^{-3} \mathrm{m})$	$5,280{ m MeV}$	B^0	
veriex	60 m	$494\mathrm{MeV}$	K^{\pm}	
detector	$640\mathrm{m}$	$140\mathrm{MeV}$	π^{\pm}	
stable	$3 imes 10^{12}\mathrm{m}$	$940\mathrm{MeV}$	n	
	$> 10^{47} \mathrm{m}$	$938{ m MeV}$	p	

[mm]

Photon Energy Loss

EM Shower

time

EM Shower

time

Hadronic Showers

hadrons are heavier than muons but have strong nuclear interactions more complicated showers

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Run Number: 152166, Event Number: 347262 Date: 2010-03-30 13:05:04 CEST

Actual Data

