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Monopoles

Two additional interesting facts

1. Monopoles break symmetries in a way
that is UV dependent and unsuppressed
by the UV scale

2. Witten Effect

® Monopoles come with dyons



Monopoles break symmetries

Callan-Rubakov Effect
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Monopoles break symmetries

Callan-Rubakov Effect
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Monopoles break symmetries

Boundary conditions must break chiral symmetry or
Baryon/Lepton number!
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Monopoles break symmetries

Boundary conditions must break chiral symmetry or
Baryon/Lepton number!

Ltotal =0 mel = ()
, Lyey = h/2 v Loy = h/2
> L, =12 More to come later - Lypin = h/2
P p
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Witten Effect

Monopoles carry charge 6/2r

In EFT after all charged particles
are integrated out
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Dyons

0=0+2n

Because 0 is 27 periodic, monopole must be

accompanied by a tower of dyons
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Dyons
't Hooft Polyakov Monopole

SU (2) Explicit monopole solution

) Adj whenever I1,(G/H) # 0

O =vr O(r
a aQ( ) Solve for functions A(7), O(r)

A(r) numericall
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Dyons
@

QE=_2 QE=—1 QE:O QE:1 QE=2

Quantize the charge rotator degree
a of freedom 4 to get dyons

Since only charged states are the W
bosons, dyons often called bound states AM ~ a My, << My
of W boson and Monopole
If interpreted as bound states, O(my)
binding energy



Bound States

Are there other bound states?

1. Specify UV theory to obtain boundary conditions
® Depending on the bound states you're interested in, this
may not be needed

2. Solve Dirac Equation ala Hydrogen Atom
® Important caveat, need to take into account the anomaly!
® | will only consider s-wave solutions



Outline

® Witten Effect with light fermions
® A plethora of bound states
® The massless limit

® Conclusion



Witten Effect with Light Fermions

What is the ground state?
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Witten Effect with Light Fermions

To find the ground state monopole solution
Just solve Dirac equation (kinda) and
Maxwell’s equation

Reduce to the s-wave

Derive boundary conditions

Turn into 2D problem on half plane
Bosonize

Numerically solve

SN



Witten Effect with Light Fermions

Step 1 - Reduce to the s-wave

O, =vr,0(r) Break SU(2)xSU(2) to SUQ@)p
e AW o q
e . TG _ (L4800 5(—0) _ —i(L45/247/2)0

Decompose fermion into two types spin 0 states

Yj=0 = 9("“7 tWJ:O;L:O -+ p(T, t)wjzo;Lﬂ

Isospin

g(r,t) + p(r,t)(7-0) (0 1Y __
= \/87-‘-7 (_1 O) Spin




Witten Effect with Light Fermions

Step 2 - Boundary Conditions

Yj—o = 9(7‘7 tWJ:O;L:o + p(T, tWJ:O;L:l

Isospin

g(r,t) +p(r,t)(r-0) [ 0 1 |
m— \/87-‘-7 (_1 O) Spin

Near monopole, symmetry
restored and angular momentum p(r,t) =0
of the L=1 state reappears

Note that this mixes left handed
baryons and right handed leptons



Witten Effect with Light Fermions

Step 2 - Boundary Conditions

Yj=0 = 9(7“7 tWJ:O;L:o -+ p(f'“, t)¢J:0;L:1

Isospin

_ g(rt) +p(r,t)(7 - 5) ( 0 1) i

Vamr 10
Fix gauge near monopole Ag — ()
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§ = P =——
Dirac Equation r 1 r
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Witten Effect with Light Fermions

Step 3 - Simplify to 2D theory on

half plane
. B 1 81— P1 1 82— P>
2D fermions &, = % <g§‘< +p§<> & = % <gik +p{">

(&)

dr ig7"9,&; + %’{5171@ - még,
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Witten Effect with Light Fermions

Step 4a - Why Bosonize?

1. Computers don’t like Grassman numbers

2. Dirac equation doesn’t depend on the

phase of the fermion mass

® Misses the anomaly!
® C(ritical for the Witten effect



Witten Effect with Light Fermions

Step 4b - Bosonize

Quantum Duality! Only of the radial and time coordinates though

Critical Aspect : 1-loop quantum anomaly is
now tree level classical physics

Tree level physics uses bosons and sees the anomaly
Ready for computers!



Witten Effect with Light Fermions

Step 4b - Bosonize

Fermions are exponential of scalars hap = (Zc(r n t)) ~ (6i¢(r+t)

12 ei\/%(ﬁb(?“at)_for dwqﬁ(x,t))
&(747 t) =Z (’I“) . eiae_iﬁ(¢(rat)+f0r dxé(x’t)) .

Normal ordered exponential of integral of scalar have
exactly the same correlators as fermions



Witten Effect with Light Fermions

Step 4b - Bosonize

Lagrangian
1 am? Op+ @ 0
<L = 0,)* + —— +0,) — F L _ .y
B 2 O+ oS +6,) 87rr2( r 2n

I=B,L

Boundary Conditions

CbB(O) — ¢L(O) ()453(0) — = @gbL(O)



Witten Effect with Light Fermions

Step 4b - Bosonize

Lagrangian

Boundary Conditions

CbB(O) — ¢L(O) ()453(0) — = @gbL(O)



Witten Effect with Light Fermions

Step 5 - Numerical Solution

0.06} .
Charge localized around
inverse mass
0.04}
dQ
f —
dr
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Witten Effect with Light Fermions

02¢ ﬂzmz | ¢
= S1n I
d 4 2

a
(¢ —0)

T2

Locked by gradient
and EM term

Exponential fall from
mass + gradient

Polynomial 200

Asymptote 31272




Witten Effect with Light Fermions

1 Oa

0. =
S72r? P 2mIm2r3

# e—mr

p:

Non-Exponential Polynomial fall off is required
by anomaly equation

0,J5 ~ aFF + migysy

0
Im(bb®) ~ Im(££°) ~ ——

mr#



Witten Effect with Light Fermions

Massless limit

Witten effect : Total electric Massless limit : 0 is
charge is always g0/2n unphysical



Witten Effect with Light Fermions

Massless limit

Witten effect : Total electric Massless limit : 0 is
charge is always g0/2n unphysical

Observer sits a fixed distance away from monopole

Vobs = 1/m Total electric charge is g6/2n

Vobs <K 1/m Total electric charge is

Resolution is order of limits issue as well as what is
called a monopole



Outline

« Witten Effect with light fermions
® A plethora of bound states
® The massless limit

® Conclusion



UV Theories

SU(©2) | SUN;)
o | Adj.
(0

Mass term breaks Flavor symmetry

0 = —m l//i l//i G“belj S U(]\Q)/Sp(]\g)
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UV Theories

Difference Visually

SO(2) Flavor Symmetry

SU(Z) — U(l)EM

“ ()
> ()

Sp(2) Flavor Symmetry

SU(Q) — U(l)EM

+ ()
> ()




UV Theories

Bosonized Theories only slightly different

') ')

1 9 rm(r)\? « 1 )
Am L = 52(8@) + ( 2( )> ZCOS () S (; 5@- 6’)

Identical far from the
SO monopole where you just see Sp
the identical IR

) = o Ko(m*e Tmri4)/2,

m(r m(r) =m

Forces quantization of U(1) argbb,i(()) == ar¢f,i(0)

=0
0,90) subgroups of Sp(N¥) ¢b,i(0) — ¢f,i(o)



Getting our feet wet : Nf=1

Find all stationary solutions to EOM

2,12
07 = ——sing+ ——(6—0)  9p(0)=0
gb(()) =0 qb(oo) = 27zq Finite Energy

Every minimum energy solution is
labeled by a single integer q



Getting our feet wet : Nf=1

Find all stationary solutions to EOM

20,2

T me
1 sin ¢

07 = ¢ — 0) 0,(0) = 0

5
472
p0) =46 P(c0) = 2nq Finite Energy

Oecm=9q— 02 =—04/2r Really finding Dyon solutions!



Getting our feet wet : Nf=1

Find all solutions to EOM

P(o0) = 21q
A solution is ALWAYS monopole If | Opp| > 1, this is actually always the
ground state + q solitons at infinity minimum energy configuration

In the small a limit, can analytically

find the energy

E(q. o = 0m) = sin(Z Qg m



Charge

Getting our feet wet : Nf=1

Only two possibly stable solutions q=0,1




Getting our feet wet : Nf=1

a=0.6 Energy of U 0 Analytic lify)ximation
1.0} :
- Numerical Solution
_. 0.8}
£ |
> 0.6}
m J
o |
c 0.4 . . )
Ll | Classical Solution ceases to

exist after 0 i
Only 9, stable at this point ]




Binding Energy (m)

Getting our feet wet : Nf=1

Interpret Y, = <, + fermion

—————————————————— ]
e =4
0.5} 1 >>p
Classical Solution exists
-0.5¢ even when itisn’t the -
: minimum energy solution ;
10 '



Getting our feet wet : Nf=1

Interpret Y, = <, + fermion

7005010 050 1



Sp(Nf = 2)

00 T 2
L :ﬁ : dr % (000" Pp + 0,00  dp) — ( m;(r)) (1 — cos(¢y))
2
- (T (1 - coston)) - 5 (0004 - 207

Flavor symmetry is Sp(2) if masses equal

SU(Q) — U(l)EM U(l B—1T,
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Sp(Nf = 2)

Find all solutions

¢b(0) — €bf(()) =0 Finite at origin
ZZI;((ZZ)) z %];Z[; Finite energy

All solutions labeled by two integers

nb+nf 0

q

0

Op_;=n,—n — =
B—-L b A QEM 7 2

2

27



Sp(Nf = 2)

All solutions

1 4 QEM
_ 0/2n
9 O b/’ﬁ-“-xf O
q')nb_nl 1
-2 9 72
<+~ 1 | :
n, = n, are dyons o Z’\ i </b o
n, # n, are other bound states
O O
—1 4
O ) O




Sp(Nf = 2) : Some solutions

Q(r)




Sp(Nf = 2) : Some solutions

@O 0 Qf(r) ~ — lgot(l . (mbr)—a/47r)

9

Q(r)

As masses become parametrically different,

lepton first screens the charge deposition of
heavier baryon before depositing it's charge

a=1, mb=100m,




Sp(Nf = 2) : Some solutions

g%OO

9

® Witten effect vanishes
in the massless limit but
extremely slowly

® () dependence is driven
by heavier particle

® B-L neutral dyon/
monopole must excite
heavier baryon even if
lepton massless

Energy (m))

1005—
805—
605—
40}

Q(r) & = Q)(1 — (my,r)~*47)

a=1 mb=100m,

-
="
-

2 7T



Sp(Nf = 2) : Ground State

What is the lowest energy magnetically charged state?

4.0
| D2
35 == -'
—----" " D411 | Monopole bound with
0 - { fermion is lower energy
e D4 _, | than monopole by itself!
i D s —
2.5 [ a=0.5 0,0
1 5 10 50 100



Sp(Nf = 2) : Some solutions

Q(r)




Sp(Nf = 2) : Ground State

What is the lowest energy magnetically charged state?

4.5
4.0{
3.5|
3.0
2.5}
2.0}

-
-
-
-
-
-
-
-
-
______
- .
------

This is entirely due to
EM effects!

———————
________
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Sp(Nf = 2) : Ground State
a = 0 limit
Eoo(0, a0 = 0,my, = my) = 2msin®(6/4)

Ei_1(0,a0 =0,mp =my) =m

Monopole is always more stable until dyon is more
stable

EM effects eventually stabilize near @ = r as
the bound state has smaller total charge



Sp(Ng = 2) : Stable States

How many stable states at any given time?

Stability
Monopole : below blue

Dyon : above green

Monopole + fermion :
inside red

-1.0 -0.5 0.0 0.5 1.0



Sp(Ng = 2) : Stable States

Larger Mass Splitting destabilizes monopole/dyon

2 71
Stability

Monopole : below blue

Dyon : above green

Monopole + fermion :
inside red




Sp/SO(N¢ > 4)

Too complicated to study in general

Equal mass

Number of stable states at @ = (

6. when monopole becomes unstable



Sp/SO(N¢ > 4)

Separate into N¢/2 identical N¢ = 2 scalars

N /2 /2 2
= [Tt 2 (T 2 coon) — cos(on)
+ OgvféQ (¢e + &b — 4—9>
r Ny

Reduces to the same N¢ = 2 system we studied before

with slightly different parameters

Oy = AN/2 0

C

Nf =
Ey(a,0) = <L Ey’~ (aNy/2,20/Ny)



Sp/SO(N¢ > 4)

Dyonic bound states are just lots of copies of
Witten effect solutions

Oy = AN/2 0

c

Eévf(a,ﬁ) — %Eévf:2(osz/2, 2(9/Nf)

Sp(Ny) also has the N¢ &, _ — bound states, but they are

unstable around @ = 0



Sp(Nf > 4)

Mapped to numerically solved situation

100 ———— . ——
Sp(Nf), aN¢/2«1

50

10

_.-*"8:=N;Sin™"(2/7)

5 10 " 50 100
N¢



SO(N¢ > 4)

Mapped to numerically solved situation

| SO(Nf), Cle/2<<1

100




Sp/SO(N; > 4)

Number of stable states : SO

3.8N,

N = N; > | aNf/z <1
T

Number of stable states : Sp

sin‘1(2/ ) Nf
N ~ Nf > 1 aNf/z < 1
/A




Outline

« Witten Effect with light fermions
« A plethora of bound states
® The massless limit

® Conclusion



Callan Rubakov with Ny 2> 4

SU(2) | SUN)
¢ Ad] Monopole and two sets of N
T — (0 massless fermions
X
XT — (]‘7 ) Monopole w"' — <_17 )
— @ ° — ®
( 1 ) No s-wave final state that wZ
) preserves all symmetries!



Callan Rubakov with Ny 2> 4

SU(2) | SU(Ny)
¢ Adj. Monopole and two sets of N
U — P massless fermions
X
—_— [l .‘. L —_—
XT = (1,0) Monopole Pl = <_17 )
P

14
Xi oy v,
( 1 ) ) — (_ 1 7 ) T (2 ) ) Fractional state - semiton




Semiton

DY
| N |
N IR X Charge +2, no flavor symmetries

I knew my final states (standard quantized fermions),
how did this new possible final state come into the story?



Semiton

Ala massless particles and Witten effect, lets take
massive fermions then take massless limit

SU() | Sp(Ny)

& Adj.  wiwi ab
0Z =—m¥, ¥ Ve

(%) |
X =0

We will be interested in the dyonic bound state J ,,




D120

We can solve this the same way as before, but there is a
simpler picture

nb-+nbﬂ- 6
My —Ng; =0 Z —— =*1
2 21

l

Many gauge equivalent solutions

”b,i=”f,i:() 0 =x2n



D120

Solution is clearly symmetric ¢,; = ¢,, = ¢

L [0y  am, CaNg2 2 )
L—Nf—( —+ (5 )cos¢>. (¢ Nf(izn»

22

]\chitten effects
. A
with 0 = = —
Ny




D120

m7l'2

Large Binding energy  Ex Nm sinz(i) N —— K 2m
Ny I

Radii r~ 1/m

Quantum numbers Charge +2, no flavor symmetries

0.4 [ .

0.3f —




Massless Limit - Monopole

Observer sits at finite radius 7,

Monopole + polarized fermion vacuum of
sizer ~ 1/m

Decrease fermion mass until r, ~ 1/m

Charge sweeps over observer and enclosed charge
transitions to 0

Definition of monopole changes from size r ~ 1/m
tor ~ l/mW



Massless Limit - Dyon

Observer sits at finite radius 7,

Asymptotic s-wave states are quantized fermions
X = (_17 ) X]L — (17_) Y = (17 ) W — (_17 )

Decrease fermion mass until r, ~ 1/m

<, transitions into an asymptotic state + monopole core

New asymptotic state has quantum numbers of
semiton!



Massless Limit - Dyon

Caveat

Explains existence of semitons

If cross sections to produce go to zero in the massless limit
then it may not matter that they exist



Conclusion

Monopoles are fun

There are often a whole plethora of bound states

These are stabilized by boundary terms at
monopole and their existence depends on UV
symmetries, not IR properties

Binding energy O(m)
Bound state radii ~1/m

In the massless limit, due to order of limit, bound states become
new asymptotic states



