Dyonic Bound States

Anson Hook

University of Maryland

w/ Clayton Ristow 2409.07549

Monopoles

Obviously a good idea

$$\partial_{\mu}F^{\mu\nu} = J_{E}^{\nu} \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = J_{M}^{\nu}$$

Maxwell Equation Symmetric

Quantization of Charge

Monopoles

Obviously a good idea

$$\partial_{\mu}F^{\mu\nu} = J_{E}^{\nu} \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = J_{M}^{\nu}$$

Maxwell Equation Symmetric

Monopoles

Two additional interesting facts

- Monopoles break symmetries in a way that is UV dependent and unsuppressed by the UV scale
- 2. Witten Effect
 - Monopoles come with dyons

Callan-Rubakov Effect

Callan-Rubakov Effect

Boundary conditions must break chiral symmetry or Baryon/Lepton number!

Boundary conditions must break chiral symmetry or Baryon/Lepton number!

Witten Effect

Monopoles carry charge $\theta/2\pi$

In EFT after all charged particles are integrated out

$$\delta \mathscr{L} = \frac{e^2 \theta}{16\pi^2} F \tilde{F} = \frac{e^2 \theta}{4\pi^2} E \cdot B = \frac{e^2 \theta}{4\pi^2} \nabla A_0 \cdot B$$
$$-\frac{e^2 \theta}{4\pi^2} A_0 \nabla \cdot B = -\frac{e^2 \theta}{4\pi^2} \frac{2\pi}{e} \delta^3(r) A_0 = -\frac{e\theta}{2\pi} \delta^3(r) A_0$$

$$\theta = \theta + 2\pi$$

Because θ is 2π periodic, monopole must be accompanied by a tower of dyons

't Hooft Polyakov Monopole

$$\frac{OOD}{\Phi \qquad Adj}$$

Explicit monopole solution whenever $\Pi_2(G/H) \neq 0$

$$\Phi_a = v \hat{r}_a Q(r)$$
$$A_i^a = -\epsilon_{iab} \hat{r}_b \frac{A(r)}{e r}$$
$$A_0^a = 0$$

Solve for functions A(r), Q(r)numerically

$$\begin{aligned} A(r) &= Q(r) = 0 & r \ll r_M \\ A(r) &= Q(r) = 1 & r \gg r_M \end{aligned}$$

Dyons

$$Q_E = -2$$
 $Q_E = -1$ $Q_E = 0$ $Q_E = 1$ $Q_E = 2$

 $A_0^a = \dot{\lambda} \, \hat{r}_a$

Quantize the charge rotator degree of freedom λ to get dyons

Since only charged states are the W bosons, dyons often called bound states of W boson and Monopole

$$\Delta M \sim \alpha m_W \ll m_W$$

If interpreted as bound states, $\mathcal{O}(m_W)$ binding energy

Bound States

Are there other bound states?

- 1. Specify UV theory to obtain boundary conditions
 - Depending on the bound states you're interested in, this may not be needed
- 2. Solve Dirac Equation ala Hydrogen Atom
 - Important caveat, need to take into account the anomaly!
 - I will only consider s-wave solutions

Outline

- Witten Effect with light fermions
- A plethora of bound states
- The massless limit
- Conclusion

What is the ground state?

To find the ground state monopole solution Just solve Dirac equation (kinda) and Maxwell's equation

- 1. Reduce to the s-wave
- 2. Derive boundary conditions
- 3. Turn into 2D problem on half plane
- 4. Bosonize
- 5. Numerically solve

Step 1 - Reduce to the s-wave

$$\Phi_{a} = v \hat{r}_{a} Q(r) \qquad \text{Break SU(2)xSU(2) to SU(2)}_{D}$$

$$A_{i}^{a} = -\epsilon_{iab} \hat{r}_{b} \frac{A(r)}{e r} \qquad e^{-i\vec{J}\cdot\vec{\theta}} = e^{-i(\vec{L}+\vec{S})\cdot\theta} e^{i\frac{\vec{\tau}}{2}\cdot(-\theta)} = e^{-i(\vec{L}+\vec{\sigma}/2+\vec{\tau}/2)\cdot\theta}$$

Decompose fermion into two types spin 0 states

$$\psi_{J=0} = g(r,t)\psi_{J=0;L=0} + p(r,t)\psi_{J=0;L=1}$$

$$= \frac{g(r,t) + p(r,t)(\hat{r}\cdot\vec{\sigma})}{\sqrt{8\pi r^2}} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \text{Spin}$$

Step 2 - Boundary Conditions

$$\psi_{J=0} = g(r,t)\psi_{J=0;L=0} + p(r,t)\psi_{J=0;L=1}$$

$$= \frac{g(r,t) + p(r,t)(\hat{r}\cdot\vec{\sigma})}{\sqrt{8\pi r^2}} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \text{Spin}$$

Near monopole, symmetry restored and angular momentum p(r, t) = 0of the L=1 state reappears

> Note that this mixes left handed baryons and right handed leptons

Step 2 - Boundary Conditions

$$\psi_{J=0} = g(r,t)\psi_{J=0;L=0} + p(r,t)\psi_{J=0;L=1}$$

$$= \frac{g(r,t) + p(r,t)(\hat{r}\cdot\vec{\sigma})}{\sqrt{8\pi r^2}} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \text{Spin}$$

Fix gauge near monopole

 $A_0^a = 0$

 $g' = \frac{g}{g}$

 $g \propto r$

 $p' = -\frac{p}{r}$

 $p \propto$

Dirac Equation

Step 3 - Simplify to 2D theory on half plane

2D fermions

$$\xi_b = \frac{1}{\sqrt{2}} \begin{pmatrix} g_1 - p_1 \\ g_2^* + p_2^* \end{pmatrix} \quad \xi_l = \frac{1}{\sqrt{2}} \begin{pmatrix} g_2 - p_2 \\ g_1^* + p_1^* \end{pmatrix}$$

$$\mathscr{L}_{\text{Fermion}} = \sum_{i=b,\ell} \int_{0}^{\infty} dr \, i \overline{\xi}_{i} \overline{\gamma}^{\mu} \partial_{\mu} \xi_{i} + \frac{e}{2} \dot{\lambda} \overline{\xi}_{i} \overline{\gamma}^{1} \xi_{i} - m \overline{\xi}_{i} \xi_{i}$$
$$\mathscr{L}_{\text{Gauge}} = \int_{0}^{\infty} dr 2\pi r^{2} \dot{\lambda}^{2} + \frac{\overline{\theta}e}{2\pi} \dot{\lambda}^{2}$$

Step 4a - Why Bosonize?

- 1. Computers don't like Grassman numbers
- 2. Dirac equation doesn't depend on the phase of the fermion mass
 - Misses the anomaly!
 - Critical for the Witten effect

Step 4b - Bosonize

Quantum Duality!

Only of the radial and time coordinates though

Critical Aspect : 1-loop quantum anomaly is now tree level classical physics

Tree level physics uses bosons and sees the anomaly Ready for computers!

Step 4b - Bosonize

Fermions are exponential of scalars

$$\psi_{2D} = \begin{pmatrix} b(r-t) \\ l^c(r+t) \end{pmatrix} \sim \begin{pmatrix} e^{i\phi(r-t)} \\ e^{i\phi(r+t)} \end{pmatrix}$$

$$\xi_i(r,t) = Z^{1/2}(r) : \begin{pmatrix} e^{i\sqrt{\pi}\left(\phi(r,t) - \int_0^r dx \dot{\phi}(x,t)\right)} \\ e^{i\alpha} e^{-i\sqrt{\pi}\left(\phi(r,t) + \int_0^r dx \dot{\phi}(x,t)\right)} \end{pmatrix}:$$

Normal ordered exponential of integral of scalar have exactly the same correlators as fermions

Step 4b - Bosonize

Lagrangian

$$\mathcal{L} = \frac{1}{8\pi} \sum_{i=B,L} (\partial \phi_i)^2 + \frac{\pi m^2}{16} \cos(\phi_i + \theta_m) - \frac{g^2}{8\pi r^2} (\frac{\phi_B + \phi_L}{4\pi} - \frac{\theta}{2\pi})^2$$

Boundary Conditions

 $\phi_B(0) = \phi_L(0) \qquad \partial \phi_B(0) = -\partial \phi_L(0)$

Step 4b - Bosonize

Lagrangian

$$\mathscr{L} = \frac{1}{8\pi} \sum_{i=B,L} (\partial \phi_i)^2 + \frac{\pi m^2}{16} \cos \phi_i - \frac{g^2}{8\pi r^2} (\frac{\phi_B + \phi_L}{4\pi} - \frac{\theta}{2\pi})^2$$

Boundary Conditions

 $\phi_B(0) = \phi_L(0) \qquad \partial \phi_B(0) = -\partial \phi_L(0)$

Step 5 - Numerical Solution

r m

$$\rho = -\frac{1}{8\pi^2 r^2} \partial_r \phi = \frac{\theta \alpha}{2\pi^5 m^2 r^5} \neq e^{-mr}$$

Non-Exponential Polynomial fall off is required by anomaly equation

$$\partial_{\mu}J_{5}^{\mu} \sim \alpha F\tilde{F} + m\overline{\psi}\gamma_{5}\psi$$

$$\operatorname{Im}(bb^c) \sim \operatorname{Im}(\ell\ell^c) \sim \frac{\alpha\theta}{mr^4}$$

Massless limit

Witten effect : Total electric charge is always $g\theta/2\pi$

Massless limit : θ is unphysical

Massless limit

Witten effect : Total electric charge is always $g\theta/2\pi$

Massless limit : θ is unphysical

Observer sits a fixed distance away from monopole

 $r_{\rm obs} \gg 1/m$ Total electric charge is $g\theta/2\pi$

 $r_{\rm obs} \ll 1/m$

Total electric charge is 0

Resolution is order of limits issue as well as what is called a monopole

Outline

Witten Effect with light fermions

- A plethora of bound states
- The massless limit
- Conclusion

UV Theories

Mass term breaks Flavor symmetry

$$\delta \mathscr{L} = -m \psi_a^i \psi_b^j \epsilon^{ab} \epsilon_{ij}$$
$$\delta \mathscr{L} = -y \psi_a^i \Phi_b^a \psi_c^j \epsilon^{ab} \delta_{ij}$$

$$SU(N_f)/Sp(N_f)$$

 $SU(N_f)/SO(N_f)$

UV Theories

Difference Visually

SO(2) Flavor Symmetry

_

Sp(2) Flavor Symmetry

	$SU(2) \rightarrow U(1)_{EM}$	$U(1)_{B-L}$		$SU(2) \rightarrow U(1)_{EM}$	$U(1)_{B-L}$
$\begin{pmatrix} b \\ b^c \end{pmatrix}$ $\begin{pmatrix} \ell \end{pmatrix}$	$\Box \rightarrow \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$ $\Box \rightarrow \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$	1 -1 -1	$ \begin{pmatrix} b \\ \ell^c \end{pmatrix} $ $ \begin{pmatrix} \ell \end{pmatrix} $	$\Box \rightarrow \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$ $\Box \rightarrow \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$	1 1 -1
$\left(\ell^{c}\right)$	$ -\frac{1}{2} $	1	$\left(b^{c}\right)$	$ \qquad \square \land \left(-\frac{1}{2} \right) $	-1

UV Theories

Bosonized Theories only slightly different

$$4\pi\mathcal{L} = \frac{1}{2}\sum_{i} (\partial\phi_i)^2 + \left(\frac{\pi m(r)}{2}\right)^2 \sum_{i} \cos\left(\phi_i\right) - \frac{\alpha}{2\pi r^2} \left(\sum_{i} \frac{1}{2}\phi_i - \theta\right)^2$$

Identical far from the **SO** monopole where you just see **Sp** the identical IR $m(r) = e^{K_0(\pi^2 e^{-\gamma} m r/4)/2} m \qquad m(r) = m$

 $\partial_r \phi_i(0) = 0$

Forces quantization of U(1) $\partial_r \phi_{b,i}(0) = -\partial_r \phi_{\ell,i}(0)$ subgroups of Sp(N_f) $\phi_{b,i}(0) = \phi_{\ell,i}(0)$

Find all stationary solutions to EOM

$$\partial_r^2 \phi = \frac{\pi^2 m^2}{4} \sin \phi + \frac{\alpha}{4\pi r^2} (\phi - \theta) \qquad \partial_r \phi(0) = 0$$

$$\phi(0) = \theta$$
 $\phi(\infty) = 2\pi q$ Finite Energy

Every minimum energy solution is labeled by a single integer q

Find all stationary solutions to EOM

$$\partial_r^2 \phi = \frac{\pi^2 m^2}{4} \sin \phi + \frac{\alpha}{4\pi r^2} (\phi - \theta) \qquad \partial_r \phi(0) = 0$$

$$\phi(0) = \theta$$
 $\phi(\infty) = 2\pi q$ Finite Energy

 $Q_{\rm EM} = q - \theta/2\pi = -\theta_{\rm eff}/2\pi$

Really finding Dyon solutions!

Find all solutions to EOM

 $\phi(\infty) = 2\pi q$

A solution is ALWAYS monopole ground state + q solitons at infinity If $|Q_{\rm EM}| > 1$, this is actually always the minimum energy configuration

In the small α limit, can analytically find the energy

$$E(q, \alpha = 0, m) = \sin^2(\frac{\pi}{2}Q_{\rm EM})m$$

Only two possibly stable solutions q=0,1

θ

θ

α

 $Sp(N_f = 2)$

$$L = \frac{1}{4\pi} \int_0^\infty dr \, \frac{1}{2} \left(\partial_\mu \phi_\ell \partial^\mu \phi_\ell + \partial_\mu \phi_b \partial^\mu \phi_b \right) - \left(\frac{\pi m_\ell(r)}{2} \right)^2 \left(1 - \cos(\phi_\ell) \right) \\ - \left(\frac{\pi m_b(r)}{2} \right)^2 \left(1 - \cos(\phi_b) \right) - \frac{\alpha}{8\pi r^2} \left(\phi_\ell + \phi_b - 2\theta \right)^2$$

Flavor symmetry is Sp(2) if masses equal

 $Sp(N_f = 2)$

Find all solutions

$$\phi_b(0) = \phi_{\ell}(0) = \theta$$
 Finite at origin

$$\begin{aligned} \phi_b(\infty) &= 2\pi n_b \\ \phi_\ell(\infty) &= 2\pi n_\ell \end{aligned} \qquad \text{Finite energy} \end{aligned}$$

All solutions labeled by two integers

$$Q_{B-L} = n_b - n_\ell \qquad Q_{EM} = \frac{n_b + n_\ell}{2} - \frac{\theta}{2\pi} = \frac{q}{2} - \frac{\theta}{2\pi}$$

$Sp(N_f = 2)$

All solutions

 $n_b = n_\ell$ are dyons $n_b \neq n_\ell$ are other bound states

$Sp(N_f = 2)$: Some solutions

 $\mathcal{D}_{0.0}$ $Q_{\ell}(r) \approx -Q_{b}^{\text{tot}}(1-(m_{b}r)^{-\alpha/4\pi})$

- Witten effect vanishes in the massless limit but extremely slowly
- θ dependence is driven
 by heavier particle
- B-L neutral dyon/ monopole must excite heavier baryon even if lepton massless

$Sp(N_f = 2)$: Ground State

What is the lowest energy magnetically charged state?

$Sp(N_f = 2)$: Some solutions

$Sp(N_f = 2)$: Ground State

What is the lowest energy magnetically charged state?

$Sp(N_f = 2)$: Ground State

$\alpha = 0$ limit

$$E_{0,0}(\theta, \alpha = 0, m_b = m_\ell) = 2m \sin^2(\theta/4)$$
$$E_{1,-1}(\theta, \alpha = 0, m_b = m_\ell) = m$$

Monopole is always more stable until dyon is more stable

EM effects eventually stabilize near $\theta = \pi$ as the bound state has smaller total charge

$Sp(N_f = 2)$: Stable States

How many stable states at any given time?

$Sp(N_f = 2)$: Stable States

Larger Mass Splitting destabilizes monopole/dyon

θ

Monopole : below blue Dyon : above green Monopole + fermion : inside red

Stability

Too complicated to study in general

Equal mass

Number of stable states at $\theta = 0$ θ_c when monopole becomes unstable

Separate into $N_f/2$ identical $N_f = 2$ scalars

$$H = \frac{N_f}{2} \frac{1}{4\pi} \int_0^\infty dr \frac{{\phi'_b}^2}{2} + \frac{{\phi'_\ell}^2}{2} + \left(\frac{\pi m(r)}{2}\right)^2 \left(2 - \cos(\phi_b)\right) - \cos(\phi_\ell)\right) \\ + \frac{\alpha N_f/2}{8\pi r^2} \left(\phi_\ell + \phi_b - \frac{4\theta}{N_f}\right)^2$$

Reduces to the same N_f = 2 system we studied before with slightly different parameters

$$\alpha_{\text{eff}} = \alpha N_f / 2 \qquad \qquad \theta_{\text{eff}} = 2\theta / N_f$$
$$E_0^{N_f}(\alpha, \theta) = \frac{N_f}{2} E_0^{N_f = 2} (\alpha N_f / 2, 2\theta / N_f)$$

Dyonic bound states are just lots of copies of Witten effect solutions

$$\alpha_{\text{eff}} = \alpha N_f / 2 \qquad \qquad \theta_{\text{eff}} = 2\theta / N_f$$
$$E_0^{N_f}(\alpha, \theta) = \frac{N_f}{2} E_0^{N_f = 2} (\alpha N_f / 2, 2\theta / N_f)$$

Sp(**N**_f) also has the N_f $\mathscr{D}_{1,\pm \vec{1}}$ bound states, but they are unstable around $\theta = 0$

 $Sp(N_f \ge 4)$

Mapped to numerically solved situation

$SO(N_f \ge 4)$

Mapped to numerically solved situation

Number of stable states : SO

 $\alpha N_f/2 \ll 1$

Number of stable states : Sp

$$N \approx \frac{\sin^{-1}(2/\pi) N_f}{\pi} \qquad \qquad N_f \gg 1$$

Outline

Witten Effect with light fermions A plethora of bound states

- The massless limit
- Conclusion

Callan Rubakov with $N_f \ge 4$

Callan Rubakov with $N_f \ge 4$

Semiton

Charge ±2, no flavor symmetries

I knew my final states (standard quantized fermions), how did this new possible final state come into the story?

Semiton

Ala massless particles and Witten effect, lets take massive fermions then take massless limit

We will be interested in the dyonic bound state $\mathscr{D}_{\pm 2,0}$

 $\mathcal{D}_{\pm 2,0}$

We can solve this the same way as before, but there is a simpler picture

$$n_{b,i} - n_{\ell,i} = 0 \qquad \qquad \sum_{i} \frac{n_{b,i} + n_{\ell,i}}{2} - \frac{\theta}{2\pi} = \pm 1$$

Many gauge equivalent solutions

$$n_{b,i} = n_{\ell,i} = 0 \qquad \qquad \theta = \mp 2\pi$$

 $\mathcal{D}_{\pm 2.0}$

Solution is clearly symmetric $\phi_{b,i} = \phi_{\ell,i} = \phi$

 $\mathcal{D}_{\pm 2,0}$

Large Binding energy $E \approx N_f m \sin^2(\frac{\pi}{N_f}) \approx \frac{m\pi^2}{N_f} \ll 2m$ Radii $r \sim 1/m$

Quantum numbers

Charge ±2, no flavor symmetries

Massless Limit - Monopole

Observer sits at finite radius r_O **Monopole + polarized fermion vacuum of size** $r \sim 1/m$

Decrease fermion mass until $r_0 \approx 1/m$

Charge sweeps over observer and enclosed charge transitions to 0

Definition of monopole changes from size $r \sim 1/m$ **to** $r \sim 1/m_W$

Massless Limit - Dyon

Observer sits at finite radius r_O **Asymptotic s-wave states are quantized fermions** $\chi = (-1, \Box)$ $\chi^{\dagger} = (1, \overline{\Box})$ $\psi = (1, \Box)$ $\psi^{\dagger} = (-1, \overline{\Box})$ **Decrease fermion mass until** $r_O \approx 1/m$

 \mathscr{D}_2 transitions into an asymptotic state + monopole core

New asymptotic state has quantum numbers of semiton!

Massless Limit - Dyon

Caveat

Explains existence of semitons

If cross sections to produce go to zero in the massless limit then it may not matter that they exist

Conclusion

Monopoles are fun

There are often a whole plethora of bound states

These are stabilized by boundary terms at monopole and their existence depends on UV symmetries, not IR properties

Binding energy O(m) Bound state radii ~ 1/m

In the massless limit, due to order of limit, bound states become new asymptotic states