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Monopoles

Two additional interesting facts

1. Monopoles break symmetries in a way 
that is UV dependent and unsuppressed  
by the UV scale

2. Witten Effect 
• Monopoles come with dyons



Monopoles break symmetries 

Callan-Rubakov Effect
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Monopoles break symmetries 

Boundary conditions must break chiral symmetry or 
Baryon/Lepton number!
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Monopoles break symmetries 

Boundary conditions must break chiral symmetry or 
Baryon/Lepton number!
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More to come later



Witten Effect

δℒ = e2θ
16π2 FF̃ = e2θ

4π2 E ⋅ B = e2θ
4π2 ∇A0 ⋅ B

− e2θ
4π2 A0∇ ⋅ B = − e2θ

4π2
2π
e

δ3(r)A0 = − eθ
2π

δ3(r)A0

Monopoles carry charge θ/2π

In EFT after all charged particles 
are integrated out



Dyons

Because  is  periodic, monopole must be 
accompanied by a tower of dyons

θ 2π

θ = θ + 2π

QE = 0 QE = 1 QE = 2QE = − 2 QE = − 1



Dyons

’t Hooft Polyakov Monopole

2

the U(1)A axial rotation can be used to remove ✓ from
the theory entirely.

In what follows, we support our previous statements
by explicitly calculating several physical e↵ects associ-
ated with ✓ when me = 0. The physical e↵ects that we
calculate are the ✓ dependence of the monopole mass and
the charge density surrounding the monopole.

Our toy model is the one originally used by Callan
when discussing the Callan Rubakov e↵ect. As such, we
will only give a quick summary of the techniques used
to solve the system and refer the reader to Ref. [9] for
more details. Our example is an SU(2) gauge theory with
Nf = 2 fermions that is spontaneously broken down to
U(1) and the Z2 center of SU(2). The only e↵ect of the
unbroken center gauge symmetry is that the monopole
has half the magnetic charge that one would have other-
wise thought.

SU(2) U(1)B�L

� Adj 0

 =

✓
b
lc

◆
⇤ 1

 c =

✓
l
bc

◆
⇤ -1

� obtains a vev, v, and spontaneously breaks SU(2)
down to U(1) and results in a ’t Hooft-Polyakov
monopole [11, 12]. The fermions obtain a mass from a
term in the Lagrangian of the form

L � m  c + y � c = mBbb
c +mLll

c, (1)

with mB = m+ y v and mL = m� y v. Note that while
our choice of language is inspired by the real world, our
example is not meant to actually reproduce the real world
but merely illustrate a point, e.g. our lepton has charge
1/2 as opposed to -1. This particular way of embedding
the lepton and baryon into the UV SU(2) theory imposes
chirality violating boundary conditions.

There is an alternative UV completion which real-
izes the B � L violating boundary condition. The two
UV SU(2) doublet fermions would be constructed as

 b =

✓
b
bc

◆
and  l =

✓
l
lc

◆
with mass terms of the

form yB b� b with analogous terms for the leptons. If
mL = 0, one could remove ✓ from the UV theory by ro-
tating  l. As ✓ really is unphysical in this particular UV
completion, we will not discuss it any further.

Around a monopole,  and  c can be decomposed
into various angular momentum states. As the fermionic
ground state is likely minimized by spherically symmetric
solutions, we follow Callan and consider only the J = 0
state. Restricting ourselves to this limit, the J = 0
fermions written as a matrix of spin and gauge indices,
take the form

 =
g(r, t) + p(r, t)r̂i�i

p
8⇡r2

�y. (2)

The monopole solution breaks UV rotations and the

SU(2) gauge group down to the diagonal. There are
two ways to get a rotationally invariant solution : if the
solution is a singlet under both UV rotations and SU(2),
the g(r, t) solution, or if the solution transforms under
both symmetries but is a singlet when both are done
at the same time, p(r, t). In the limit of an infinitely
small monopole, exciting the p(r, t) mode inside of the
monopole costs infinite energy as the angular momen-
tum barrier reemerges so that the boundary condition at
the origin is p(0, t) = 0. This specification of the bound-
ary conditions also involves gauge fixing as g and p rotate
into each other under a U(1) gauge transformation.

As a result of this simplification, our four-dimensional
problem reduces to a two-dimensional problem complete
with two 2D fermions built out of b, bc, l, lc. Famously,
there is a duality between two-dimensional fermions and
bosons [13, 14]. Very schematically, this duality proceeds
as

 2D =

✓
b(r � t)
bc(r + t)

◆
⇠

✓
ei�B(r�t)

ei�B(r+t)

◆
(3)

with a similar expression for the leptons. After integrat-
ing out the U(1) gauge boson, the two bosons �B and �L
have the Lagrangian

S =

Z
dr dt

1

8⇡
(@�B)

2 +
1

8⇡
(@�L)

2 +
⇡m2

B

16
cos�B

+
⇡m2

L

16
cos�L �

g2

8⇡r2
(
�B
4⇡

+
�L
4⇡

�
✓

2⇡
)2, (4)

with the normalization that B and L carry charge g/2.
Far from the monopole, this sine-Gordon theory has soli-
tons and anti-solitons for both �B and �L. This bosonic
theory is related back to the original fermionic theory as
a �B (anti) soliton is a (anti) proton while a �L (anti)
soliton is an (anti) electron. The mass terms were nor-
malized such that the energy of a soliton at rest is equal
to that of a fermion at rest. Finally, the scalars �B,L and
✓ are 2⇡ periodic. We have gauge fixed by taking �B,L

to go to 0 at r ! 1. Meanwhile, we have fixed ourselves
to studying the monopole, as opposed to the dyons, by
restricting �⇡ < ✓ < ⇡. keep this?

As emphasized before, boundary conditions are criti-
cal. Translating the p(0, t) = 0 boundary conditions into
the bosonized language Callan obtained

�B(0) = �L(0) mod 2⇡ @r�B(0) = �@r�L(0). (5)

The first of these boundary conditions is what forces the
conserved B�L charge to be integer. The charge density
can be obtained using

4⇡r2⇢(r) =
1

4⇡
@r(�B + �L). (6)

Given that we have imposed that � asymptotes to 0, the

Explicit monopole solution 
whenever Π2(G/H) ≠ 0

Φa = v ̂raQ(r)

Aa
i = − ϵiab ̂rb

A(r)
e r

Aa
0 = 0

Solve for functions 
numerically

A(r), Q(r)

A(r) = Q(r) = 0 r ≪ rM
A(r) = Q(r) = 1 r ≫ rM



Dyons

QE = 0 QE = 1 QE = 2QE = − 2 QE = − 1

Aa
0 = ·λ ̂ra

Quantize the charge rotator degree 
of freedom  to get dyonsλ

Since only charged states are the W 
bosons, dyons often called bound states 

of W boson and Monopole
ΔM ∼ α mW ≪ mW

If interpreted as bound states,  
binding energy

/(mW)



Bound States

Are there other bound states?

1. Specify UV theory to obtain boundary conditions
• Depending on the bound states you’re interested in, this 

may not be needed

2. Solve Dirac Equation ala Hydrogen Atom
• Important caveat, need to take into account the anomaly!
• I will only consider s-wave solutions



Outline

• Witten Effect with light fermions 

• A plethora of bound states

• The massless limit

• Conclusion



Witten Effect with Light Fermions

What is the ground state?

<latexit sha1_base64="Zfl+AOtLqvGQgBJN7q86zRiwJsw="></latexit>

SU(2) U(1)B�L

� Adj 0

 1 =

✓
b
lc

◆
⇤ 1
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✓
l
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◆
⇤ -1
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Witten Effect with Light Fermions

To find the ground state monopole solution
Just solve Dirac equation (kinda) and 

Maxwell’s equation

1. Reduce to the s-wave
2. Derive boundary conditions
3. Turn into 2D problem on half plane
4. Bosonize
5. Numerically solve



Witten Effect with Light Fermions

Step 1 - Reduce to the s-wave

Φa = v ̂raQ(r)

Aa
i = − ϵiab ̂rb

A(r)
e r

Break SU(2)xSU(2) to SU(2)D

We will only keep the terms that contain � as it is the only remaining degree of freedom in

the gauge sector.

LGauge =

Z 1

0
dr2⇡r2�̇02 +

✓e

2⇡
�̇0 (A.4)

A.1.2 J = 0 Fermion Modes

This background gauge field is rotationally symmetric as long as spatial rotations about

some axis by an angle ✓ must be compensated by a gauge rotation by �✓ about that same

axis in gauge space. This breaks rotational symmetry and gauge symmetry into its diagonal

subgroup (crossed with the electromagnetic U(1) group) where one transforms both the gauge

and rotational degrees of freedom equally and opposite. This implies that the unitary operator

U(✓a) = exp(�iJa✓a), defined as

e�i ~J ·~✓ = e�i(~L+~S)·✓ei
~⌧
2 ·(�✓) = e�i(~L+~�/2+~⌧/2)·✓ (A.5)

where ~⌧ and ~� are both Pauli matrices acting on gauge and spin indices respectively, leaves the

Lagrangian invariant. We can therefore interpret ~J as the total angular momentum operator

on fermions. We are interested in fermions states that interact with the monopole core and

thus have ~J = 0. One can find the most general form of the ~J = 0 state is a superposition of

two states

 J=0 = g(r, t) J=0;L=0 + p(r, t) J=0;L=1 =
g(r, t) + p(r, t)(~̂r · ~�)

p

4⇡r2
|~⌧ + ~� = 0i (A.6)

where |~⌧ + ~� = 0i is the spin-isospin singlet state and can be thought of as a 2 ⇥ 2 matrix

i�2↵↵2
/
p
2 with doublet gauge index ↵2 and Lorentz spin index ↵. In App. A.3 we derive the

following identities for any  in the ~J = 0 mode.

i †�̄µ@µ =
i

4⇡r2

✓
⇠̄�̄µ@µ⇠ �

1

r
⇠̄�̄5⇠

◆
(A.7)

j0 ⌘  †�̄0 =
1

4⇡r2
⇠̄�̄0⇠ (A.8)

jr ⌘ r̂i 
†�̄i =

1

4⇡r2
⇠̄�̄1⇠

j0EM ⌘  †(~̂r · ~⌧)�̄0 =
1

4⇡r2
⇠̄�̄1⇠ (A.9)

jrEM ⌘ r̂i 
†(~̂r · ~⌧)�̄i =

1

4⇡r2
⇠̄�̄0⇠

e †�̄i
⌧a

2
 Aa

i =
i

4⇡r2
A(r)

r
⇠̄�̄5⇠ (A.10)

where ⇠ and �̄µ are 1+1D fermions and 1+1D gamma matrices respectively defined as

⇠ =
1
p
2

 
g � p

�i(g + p)

!
�̄0 = �2 �̄1 = i�1 �̄5 = �3 . (A.11)

– 29 –
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Decompose fermion into two types spin 0 states

<latexit sha1_base64="EroH5XR6TF47Adnp8W9nMLbWO5Q="></latexit>

=
g(r, t) + p(r, t)(r̂ · ~�)p

8⇡r2

✓
0 1
�1 0

◆
Spin

Isospin



Witten Effect with Light Fermions

Step 2 - Boundary Conditions

Near monopole, symmetry 
restored and angular momentum 

of the L=1 state reappears

We will only keep the terms that contain � as it is the only remaining degree of freedom in

the gauge sector.
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=
g(r, t) + p(r, t)(r̂ · ~�)p

8⇡r2

✓
0 1
�1 0

◆
Spin

Isospin

p(r, t) = 0

Note that this mixes left handed 
baryons and right handed leptons



Witten Effect with Light Fermions

Step 2 - Boundary Conditions

Fix gauge near monopole

We will only keep the terms that contain � as it is the only remaining degree of freedom in

the gauge sector.
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A.1.2 J = 0 Fermion Modes
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=
g(r, t) + p(r, t)(r̂ · ~�)p

8⇡r2

✓
0 1
�1 0

◆
Spin

Isospin

Aa
0 = 0

Dirac Equation
g′ = g

r
p′ = − p

r
g ∝ r p ∝ 1

r



Witten Effect with Light Fermions

Step 3 - Simplify to 2D theory on 
half plane

ξb = 1
2 ( g1 − p1

g*2 + p*2 )2D fermions ξl = 1
2 ( g2 − p2

g*1 + p*1 )

ℒGauge = ∫
∞

0
dr2πr2 ·λ′ 2 + θe

2π
·λ′ 2

ℒFermion = ∑
i=b,ℓ

∫
∞

0
dr iξiγμ∂μξi + e

2
·λξiγ1ξi − mξiξi



Witten Effect with Light Fermions

Step 4a - Why Bosonize?

1. Computers don’t like Grassman numbers

2. Dirac equation doesn’t depend on the 
phase of the fermion mass

• Misses the anomaly! 
• Critical for the Witten effect



Witten Effect with Light Fermions

Quantum Duality! Only of the radial and time coordinates though

Critical Aspect : 1-loop quantum anomaly is 
now tree level classical physics

Tree level physics uses bosons and sees the anomaly
Ready for computers!

Step 4b - Bosonize



Witten Effect with Light Fermions

Step 4b - Bosonize

3

each other under a U(1) gauge transformation.
As a result of this simplification, our four-dimensional

problem reduces to a two-dimensional problem com-
plete with two 2D fermions built out of the two SU(2)
doublets. Famously, there is a duality between two-
dimensional fermions and bosons [13, 14]. Very schemat-
ically, this duality proceeds as

 2D =

✓
b(r � t)
lc(r + t)

◆
⇠

✓
ei�(r�t)

ei�(r+t)

◆
(3)

with a similar expression for the other doublet with a dif-
ferent scalar. In this basis of scalar fields, the mass terms
are o↵-diagonal so as a final simplification, a canonical
transformation is made on the scalar fields to diagonal-
ize the mass terms. After integrating out the U(1) gauge
boson, the two bosons �B and �L have the action

S =

Z

r>0
dr dt

1

8⇡
(@�B)

2 +
1

8⇡
(@�L)

2 +
⇡m2

B

16
cos�B

+
⇡m2

L

16
cos�L �

g2

8⇡r2

✓
�B
4⇡

+
�L
4⇡

�
✓

2⇡

◆2

. (4)

Far from the monopole, this sine-Gordon theory has soli-
tons and anti-solitons for both �B and �L. This bosonic
theory is related to the original fermionic theory as a �B
(anti) soliton is a (anti) baryon while a �L (anti) soli-
ton is an (anti) lepton. The mass terms are normalized
such that the energy of a soliton at rest is equal to that
of a fermion at rest1. Meanwhile, we study the minimal
positively charged monopole, as opposed to the excited
dyon states, by restricting 0 < ✓ < ⇡, which will result
in �B,L going to 0 as r ! 1. All of the physical e↵ects
of negatively charged monopoles can be easily obtained
from their positively charged counterparts.

As emphasized before, boundary conditions are critical
in analyzing the ground state. Translating the p(0, t) = 0
boundary conditions into the bosonized language Callan
obtained

�B(0) = �L(0) @r�B(0) = �@r�L(0). (5)

The first of these boundary conditions combined with
the asymptotic behavior of �B,L is what forces the con-
served B � L charge to be an integer. Amusingly, the
second boundary condition is unnecessary as all of our
minimum energy solutions obey @r�B(0) = @r�L(0) = 0.
The boundary conditions actually are charge violating
boundary conditions and represent the possibility of ex-
citing the dyon degree of freedom. Since we are in the
infinitely small monopole limit, it takes infinite energy
to excite the monopole and charge conservation is dy-

1 While we are really interested in the mL = 0 limit, we will also
be discussing mL > 0 but small and taking the limit as it goes to
zero. Taking a positive mass avoids the annoying issue of charge
fractionalization in this theory [15, 16].

FIG. 1: A picture of the baryon (red), lepton (blue), and total

(green) di↵erential charge densities as a function of log radius

when ✓ = ⇡/2 and ↵ = 1. In solid (dashed) lines, we have the

charge density when mL = mB/100 (mL = 0). The baryon

and lepton vacuums each carry charge equal to g✓/4⇡. The

baryonic charge of g✓/4⇡ is located roughly at distances r ⇠
1/mB . The lepton proceeds to screen the charge deposited

by the baryon by depositing negative charge at distances r ⇠
1/mB , albeit in an extremely ine�cient manner. At distances

r ⇠ 1/mL the lepton then deposits a charge to bring its total

charge to g✓/4⇡.

namically imposed by the electromagnetic term in Eq. 4,
see Ref. [17] for additional discussion. Due to this fact,
when numerically solving Eq. 4, it was important to in-
clude lattice points very close to the origin so that the
electromagnetic term was large enough to dynamically
enforce charge neutrality at the origin.
The electric charge density can be obtained using

4⇡r2⇢(r) = �
1

4⇡
@r(�B + �L). (6)

Given that � asymptotes to 0, the charge of any config-
uration can be read from

QB =
�B(0)

4⇡
QL =

�L(0)

4⇡
, (7)

where QB and QL are the charges carried by the baryon
and lepton respectively.

III. RESULTS

We find the fermion ground state by solving the equa-
tions of motion, which can be found from Eq. 4 to be

�
@2t � @2r

�
�B,L = �

g2(�B + �L � 2✓)

16⇡2r2

�
⇡2m2

B,L

4
sin�B,L. (8)

The boundary conditions in Eq. 5 combined with finite
energy enforce �B(0) = �L(0) = ✓ fixing each fermion

Fermions are exponential of scalars
Where ✏01 = 1 and is the antisymmetric tensor in two dimensions. This equivalence is achieved

by making the substitution

⇠i(r, t) = Z1/2(r) :

 
ei
p
⇡(�(r,t)�

R r
0 dx�̇(x,t))

ei↵e�i
p
⇡(�(r,t)+

R r
0 dx�̇(x,t))

!
: (A.28)

Z(r) is an overall normalization factor that is unimportant outside of the computations in

appendix B.1 and ↵ is some overall phase. ↵, as well as the boundary conditions on the scalar

fields, can be determined by applying Eqs. A.21 and A.23 to Eqs. A.27 and A.28. Because

we chose real positive masses for the fermions, ↵ = 0, however if the masses had phases, ↵

would be non-zero. For the SO(Nf ) theories the scalar fields obey the boundary condition

@r�i(r = 0) = 0 . (A.29)

For the Sp(Nf ) theories we are left with the boundary conditions

�`,i(r = 0)� �b,i(r = 0) = 0 mod 2
p
⇡ @r�`,i(r = 0) + @r�b,i(r = 0) = 0 (A.30)

Before using these scalar theories to compute the bound states, it will be necessary and useful

to make the following three simplifications to the Lagrangian,

1. We rescale our field � ! �/2
p
⇡ which makes the theory much simpler to analyze by

removing the various
p
⇡ factors from the bosonization process

2. We integrate out the electric field by solving the equations of motion for the electric

field �̇0. This is done easily by integrating the third to last term in Eq. A.32 by parts

to find

�̇0 =
e

4⇡r2

 
X

i

�i

4⇡
�

✓

2⇡

!
. (A.31)

Note that this has a very physical interpretation that the electric charge enclosed in a

radius r, QEM (r), is given by the term in parenthesis in Eq. A.31.

3. Finally, we notice that far from the monopole core, the theory reduces to a set of

decoupled scalars satisfying the sine-Gordon equations. The sine-Gordon equation is

known to have soliton solutions and it is these solutions that correspond to fermion

states as was proven by Mandelstam [38]. We fix the scales µi by demanding that the

solitons far from the monopole have energy mi. More will be said about the soliton

solution in App. A.2.1.

After all of these simplifications, the Lagrangian for the theories becomes

L =
1

4⇡

Z 1

0
dr
X

i

 
1

2
@µ�i@

µ�i �

✓
⇡mi(r)

2

◆2

(1� : cos(�i(r, t)) :)

!
�

↵

8⇡r2

 
X

i

�i � 2✓

!2

(A.32)
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Normal ordered exponential of integral of scalar have 
exactly the same correlators as fermions
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Lagrangian

Step 4b - Bosonize

ℒ = 1
8π ∑

i=B,L
(∂ϕi)2 + πm2

16 cos(ϕi + θm) − g2

8πr2 ( ϕB + ϕL

4π
− θ

2π
)2

Boundary Conditions

ϕB(0) = ϕL(0) ∂ϕB(0) = − ∂ϕL(0)
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Lagrangian

Step 4b - Bosonize

ℒ = 1
8π ∑

i=B,L
(∂ϕi)2 + πm2

16 cos ϕi − g2

8πr2 ( ϕB + ϕL

4π
− θ

2π
)2

Boundary Conditions

ϕB(0) = ϕL(0) ∂ϕB(0) = − ∂ϕL(0)
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Step 5 - Numerical Solution
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inverse mass
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-4 -2 0 2 4
0

1

2

3

4

5

Log10(mr)

Φ

∂2
rϕ = π2m2

4 sin ϕ + α
2πr2 (ϕ − θ)

Locked by gradient 
and EM term

Exponential fall from 
mass + gradient

Polynomial 
Asymptote ϕ ≈ 2αθ

π3m2r2
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Non-Exponential Polynomial fall off is required 
by anomaly equation

∂μJμ
5 ∼ αFF̃ + mψγ5ψ

ρ = − 1
8π2r2 ∂rϕ = θα

2π5m2r5 ≠ e−mr

Im(bbc) ∼ Im(ℓℓc) ∼ αθ
mr4
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Massless limit

Witten effect : Total electric 
charge is always gθ/2π

Massless limit :  is 
unphysical

θ
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Massless limit

Witten effect : Total electric 
charge is always gθ/2π

Massless limit :  is 
unphysical

θ

Observer sits a fixed distance away from monopole

robs ≫ 1/m Total electric charge is gθ/2π

robs ≪ 1/m Total electric charge is 0
Resolution is order of limits issue as well as what is 

called a monopole
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UV Theories

Mass term breaks Flavor symmetry

SU(2) SU(Nf )

� Adj.

 ⇤ ⇤

SO(2) Flavor Symmetry Sp(2) Flavor Symmetry

SU(2) ! U(1)EM U(1)B�L✓
b

b
c

◆
⇤ !

✓
1
2
�1

2

◆
1

�1✓
`

`
c

◆
⇤ !

✓
1
2
�1

2

◆
�1

1

SU(2) ! U(1)EM U(1)B�L✓
b

`
c

◆
⇤ !

✓
1
2
�1

2

◆
1

1✓
`

b
c

◆
⇤ !

✓
1
2
�1

2

◆
�1

�1

Table 1. How the baryons and leptons are embeded into two di↵erent UV completions labeled by

the flavor symmetries present when the baryon and lepton masses are equal. Note that in the SO(2)

theory, B � L is not a good symmetry while in Sp(2) it is a good symmetry

1

δℒ = − m ψ i
a ψ j

b ϵabϵij

δℒ = − y ψ i
a Φa

b ψ j
c ϵabδij

SU(Nf)/Sp(Nf)

SU(Nf)/SO(Nf)



UV Theories

Difference Visually

SO(2) Flavor Symmetry Sp(2) Flavor Symmetry

SU(2) ! U(1)EM U(1)B�L✓
b
bc

◆
⇤ !

✓
1
2
�

1
2

◆
1
�1✓

`
`c

◆
⇤ !

✓
1
2
�

1
2

◆
�1
1

SU(2) ! U(1)EM U(1)B�L✓
b
`c

◆
⇤ !

✓
1
2
�

1
2

◆
1
1✓

`
bc

◆
⇤ !

✓
1
2
�

1
2

◆
�1
�1

Table 1. How the baryons and leptons are embeded into two di↵erent UV completions labeled by
the flavor symmetries present when the baryon and lepton masses are equal. Note that in the SO(2)
theory, B � L is not a good symmetry while in Sp(2) it is a good symmetry

which gives the time-independent equations of motion

@2
r�b =

✓
⇡mb(r)

2

◆2

sin(�b) +
↵

4⇡r2
(�b + �` � 2✓) (4.2)

@2
r�` =

✓
⇡m`(r)

2

◆2

sin(�`) +
↵

4⇡r2
(�b + �` � 2✓) .

For the Sp(2) theory m`,b(r) = m`,b and for the SO(2) theory

mi(r) = mie
� 1

2K0(⇡2
e
��

mir/4) ⇡ mi

(
1 if mir � 1
⇡

2

p
mir

2 if mir ⌧ 1
(4.3)

Note that both theories are symmetric under the exchange of the labels b  ! `, so we can

always take mb � m`. The boundary conditions at r = 0 are

SO(2): @r�` = @r�b = 0 (4.4)

Sp(2): @r�` = �@r�b �` = �b. (4.5)

Since the scalars �` and �b are 4⇡ periodic, these boundary conditions involve a bit of gauge

fixing. Finite energy forces the boundary conditions �b,`(r =1) = 2⇡nb,` and �b(0)+�`(0) =

2✓. States that satisfy these boundary conditions carry electromagnetic and B � L charges

Qtot

EM =
nb + n`

2
�

✓

2⇡
(4.6)

Qtot

B�L =nb � n` �
�b(0)� �`(0)

2⇡
.

The total leptonic and baryonic charge in each field can be related to the total electric charge

Qtot

EM
(in units of e) and the total B � L charge Qtot

B�L

Qtot

b = Qtot

EM +
Qtot

B�L

2
Qtot

` = Qtot

EM �
Qtot

B�L

2
. (4.7)

– 10 –



UV Theories

Bosonized Theories only slightly different

we will still call it the SO(Nf ) theory to indicate that the mass terms are of the form shown

in Eq. 2.1.

To simplify our numerical analysis, we will follow in the footsteps of Ref. [3, 17] with

details given in Apps. A and B. Firstly, we first restrict ourselves to the J = 0 state as

all higher momentum states have higher energy due to non-zero angular momentum. This

process reduces our 4-dimensional starting point to physics on a half line. To study the

remaining problem, we utilize the well-known fact that a 2D fermion is equivalent to a 2D

boson. Integrating out the photon, the end result is a theory with the Lagrangian

4⇡L =
1

2

X

i

(@�i)
2 +

✓
⇡m(r)

2

◆2X

i

cos (�i)�
↵

2⇡r2

 
X

i

1

2
�i � ✓

!2

. (2.2)

The mass term has the limit m2(1) = m2, where m = yv is the mass of the fermion and has

the analytic form m2(r) = eK0(⇡2
e
��

mr/4)m2. Additionally, all phases have been rotated into

✓.

Bosonization maps solitons of �i to the fermion  i =

 
 1
i

 2
i

!
of the original picture. While

we will largely not be concerning ourselves with questions of dynamics, it is still useful to

dictate the matching of solitons and fermions. A soliton solution is 2⇡ at infinity and 0 at

the origin, while an anti-soliton solution is 0 at infinity and 2⇡ at the origin. An incoming

�i soliton is an incoming  1
i
left-handed particle, while an incoming �i anti-soliton is a  1,†

i

right-handed anti-particle. An outgoing �i soliton is an outgoing  2,†
i

right-handed particle,

while an outgoing �i anti-soliton is a  2
i
left-handed anti-particle.

The final ingredients are the boundary conditions which, when combined with the map-

ping described in the previous paragraph, determine the flavor symmetry of the problem.

The boundary conditions are

@r�i(r = 0) = 0. (2.3)

We are now at a state where we can study any bound state in the theory by simply solving

Eq. 2.2 subject to the boundary conditions shown in Eq. 2.3.

One important point to note about this theory is that ✓ is ⇡ periodic. At the level of

the fermionic path integral, one can make a field redefinition  1 ! � 1. The Lagrangian

remains unchanged other than the anomaly, which sends ✓ ! ✓+⇡. Since a field redefinition

cannot change the physics, the two path integrals are equivalent and the physics at ✓ and

✓ + ⇡ are equivalent. At the bosonized level, ✓ being ⇡ periodic can be similarly seen by the

transformation ✓ ! ✓ � ⇡ combined with �b or �l ! �l � 2⇡. The facts that this SO theory

does not have a B�L symmetry and ✓ = ✓+ ⇡ will be important for the dyonic spectrum of

the theory.

Sp(Nf ) Flavor Symmetries : The second mass term we consider is of the form

�L = �m a

i  
b

j✏ab✏
ij . (2.4)

– 4 –

SO Sp

m(r) = mm(r) = eK0(π2e−γmr/4)/2m

Identical far from the 
monopole where you just see 

the identical IR

∂rϕi(0) = 0
∂rϕb,i(0) = − ∂rϕℓ,i(0)

ϕb,i(0) = ϕℓ,i(0)
Forces quantization of U(1) 

subgroups of Sp(Nf)



Getting our feet wet : Nf = 1

Find all stationary solutions to EOM

Finite Energy

∂rϕ(0) = 0

ϕ(0) = θ ϕ(∞) = 2πq

Figure 1. An example of the two potentially stable dyonic bound states in our Nf = 1 toy model for

↵ = 0.1 and ✓ = ⇡/2. These states are plotted in terms of Q(r) = �(r)��(0)
2⇡ , the total charge enclosed

in a radius r of the monopole core.

for a solution where all of the bosonized scalar profiles are identical, a solution that exists and

is important for both SO(Nf ) and Sp(Nf ) flavor symmetries, albeit with slightly di↵erent ↵

and ✓ in the Nf = 1 theory than in the original theory. Regardless, the Lagrangian for the

Nf = 1 theory can be expressed as

L =
1

4⇡

Z 1

0
dr

1

2
@µ�@

µ��

⇣⇡m
2

⌘2
(1� cos(�))�

↵

8⇡r2
(�� ✓)2 (3.1)

with boundary conditions @r� = 0 at r = 0. The time-independent equation of motion is

@2
r� =

⇡2m2

4
sin�+

↵

4⇡r2
(�� ✓). (3.2)

The bound states we are after are defined to be solutions to this equation of motion of

minimal energy. Demanding that our solutions have finite energy requires �(r = 0) = ✓

and �(r = 1) = 2⇡q, where q is an integer. That means there is an infinite tower of

potential bound states, which we denote Dq, one for each choice of q, with total electric

charge Qtot

EM
= q � ✓/2⇡. It is easy to see that for states with |Qtot

EM
| > 1, the energy will be

minimized by putting some number of solitons at r = 1, which can hardly be considered a

bound state. Thus, in our Nf = 1 theory, there are only two potentially stable bound-state

dyons for 0 < ✓ < 2⇡: D0 and D1. An example of these states is shown in Fig. 1 in terms of

the total charge (Q(r) = �(r)��(0)
2⇡ ) enclosed in a radius r.

We can find useful analytic approximations to this solution in the mr ⌧ 1 and mr � 1

limits. For mr ⌧ 1, the mass term in Eq. 3.2 can be neglected and we naturally have the

trivial solution � = ✓. However, as we will see, for theories with Nf > 1, � is occasionally

forced to take values other than this trivial one in the mr ⌧ 1 regime, so it will be important

– 6 –

Every minimum energy solution is 
labeled by a single integer q
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Figure 1. An example of the two potentially stable dyonic bound states in our Nf = 1 toy model for

↵ = 0.1 and ✓ = ⇡/2. These states are plotted in terms of Q(r) = �(r)��(0)
2⇡ , the total charge enclosed

in a radius r of the monopole core.

for a solution where all of the bosonized scalar profiles are identical, a solution that exists and

is important for both SO(Nf ) and Sp(Nf ) flavor symmetries, albeit with slightly di↵erent ↵

and ✓ in the Nf = 1 theory than in the original theory. Regardless, the Lagrangian for the

Nf = 1 theory can be expressed as

L =
1
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Z 1
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dr

1

2
@µ�@
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⌘2
(1� cos(�))�

↵
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(�� ✓)2 (3.1)

with boundary conditions @r� = 0 at r = 0. The time-independent equation of motion is

@2
r� =

⇡2m2

4
sin�+

↵

4⇡r2
(�� ✓). (3.2)

The bound states we are after are defined to be solutions to this equation of motion of

minimal energy. Demanding that our solutions have finite energy requires �(r = 0) = ✓

and �(r = 1) = 2⇡q, where q is an integer. That means there is an infinite tower of

potential bound states, which we denote Dq, one for each choice of q, with total electric

charge Qtot

EM
= q � ✓/2⇡. It is easy to see that for states with |Qtot

EM
| > 1, the energy will be

minimized by putting some number of solitons at r = 1, which can hardly be considered a

bound state. Thus, in our Nf = 1 theory, there are only two potentially stable bound-state

dyons for 0 < ✓ < 2⇡: D0 and D1. An example of these states is shown in Fig. 1 in terms of

the total charge (Q(r) = �(r)��(0)
2⇡ ) enclosed in a radius r.

We can find useful analytic approximations to this solution in the mr ⌧ 1 and mr � 1

limits. For mr ⌧ 1, the mass term in Eq. 3.2 can be neglected and we naturally have the

trivial solution � = ✓. However, as we will see, for theories with Nf > 1, � is occasionally

forced to take values other than this trivial one in the mr ⌧ 1 regime, so it will be important

– 6 –

Finite Energy

∂rϕ(0) = 0

ϕ(0) = θ ϕ(∞) = 2πq

QEM = q − θ/2π = − θeff /2π Really finding Dyon solutions!

Find all stationary solutions to EOM
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Find all solutions to EOM

ϕ(∞) = 2πq

A solution is ALWAYS monopole 
ground state + q solitons at infinity

If , this is actually always the 
minimum energy configuration

|QEM | > 1

In the small  limit, can analytically 
find the energy

α

E(q, α = 0,m) = sin2( π
2 QEM) m
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Only two possibly stable solutions q=0,1
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Figure 1. An example of the two potentially stable dyonic bound states in our Nf = 1 toy model for

↵ = 0.1 and ✓ = ⇡/2. These states are plotted in terms of Q(r) = �(r)��(0)
2⇡ , the total charge enclosed

in a radius r of the monopole core.

for a solution where all of the bosonized scalar profiles are identical, a solution that exists and

is important for both SO(Nf ) and Sp(Nf ) flavor symmetries, albeit with slightly di↵erent ↵

and ✓ in the Nf = 1 theory than in the original theory. Regardless, the Lagrangian for the

Nf = 1 theory can be expressed as

L =
1

4⇡

Z 1

0
dr

1

2
@µ�@

µ��

⇣⇡m
2

⌘2
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with boundary conditions @r� = 0 at r = 0. The time-independent equation of motion is

@2
r� =

⇡2m2

4
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↵

4⇡r2
(�� ✓). (3.2)

The bound states we are after are defined to be solutions to this equation of motion of

minimal energy. Demanding that our solutions have finite energy requires �(r = 0) = ✓

and �(r = 1) = 2⇡q, where q is an integer. That means there is an infinite tower of

potential bound states, which we denote Dq, one for each choice of q, with total electric

charge Qtot

EM
= q � ✓/2⇡. It is easy to see that for states with |Qtot

EM
| > 1, the energy will be

minimized by putting some number of solitons at r = 1, which can hardly be considered a

bound state. Thus, in our Nf = 1 theory, there are only two potentially stable bound-state

dyons for 0 < ✓ < 2⇡: D0 and D1. An example of these states is shown in Fig. 1 in terms of

the total charge (Q(r) = �(r)��(0)
2⇡ ) enclosed in a radius r.

We can find useful analytic approximations to this solution in the mr ⌧ 1 and mr � 1

limits. For mr ⌧ 1, the mass term in Eq. 3.2 can be neglected and we naturally have the

trivial solution � = ✓. However, as we will see, for theories with Nf > 1, � is occasionally

forced to take values other than this trivial one in the mr ⌧ 1 regime, so it will be important
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Figure 2. (Left) ✓ dependence of the energy of the fermion vacua, E0(✓,↵ = 0.6,m)/m, and (Right)
the binding energy E0(✓,↵ = 0.6,m)/m � E1(✓,↵ � 0.6,m)/m as a function of ✓, both calculated
numerically (solid blue lines) and compared against the analytic approximation (dashed red lines)
given in Eq. 3.9. As can be seen in both plots, due to electromagnetic corrections the energy is
eventually larger than m, indicating that at some point the solution becomes unstable to decay via
fermion emission. At an even higher value of ✓, the solution becomes classically unstable.

to consider other solutions. Say, for example, that � must satisfy �(r = r0) = �0. Then we
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In the last step, we have taken the ↵ ⌧ 1 limit. The physical interpretation of this solution is

that � minimizes the electromagnetic energy by (ine�ciently) screening the charge inserted

by the boundary condition. This power law can be extremely slow in the small ↵ limit. We

may also consider the mr � 1 limit, where the gradient term can be neglected in Eq. 3.2 and

the mass term can be balanced against the electromagnetic term to find
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if q = 1.
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In summary, when r ⌧ 1/m, the solution is constant as the gradient and electromagnetic

energies hold � constant. When r � 1/m, the electromagnetic and mass terms balance each

other, leading to a 1/r2 fall o↵. r ⇠ 1/m is the transition region where, at least in the ↵ ⌧ 1

limit, � falls exponentially until it reaches the r � 1/m solution.

Finally, we are interested in studying the energetics of the solution and the eventual

phase transition that occurs as ✓ is varied. Let us first find an approximation for the extra

energy of the Dq bound state, Eq(✓,↵,m), normalized such that E0(✓ = 0,↵,m) = 0. To

start, consider the Hamiltonian for the theory, given below
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the binding energy E0(✓,↵ = 0.6,m)/m � E1(✓,↵ � 0.6,m)/m as a function of ✓, both calculated
numerically (solid blue lines) and compared against the analytic approximation (dashed red lines)
given in Eq. 3.9. As can be seen in both plots, due to electromagnetic corrections the energy is
eventually larger than m, indicating that at some point the solution becomes unstable to decay via
fermion emission. At an even higher value of ✓, the solution becomes classically unstable.
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Figure 3. The value of ✓ above which a D0 bound state becomes quantum mechanically unstable to
decay into a D1 bound state and a fermion as a function of ↵. The numerical result for ✓c is given
by the solid line while the analytic approximation in Eq. 3.11 is given by the dashed line. Symmetry
considerations can be used to find the analogous lines for any of the other Dq dyons.

The next feature to note in Fig. 2 is that there is another critical ✓PT at which the

solution is not just unstable due to quantum tunneling e↵ects, but is classically unstable.

The existence of ✓PT can be most easily seen at ✓ = 2⇡. It is clear that any solution is

classically unstable due to ↵ e↵ects, and the only solution is a soliton at infinity.

Finally, we comment on the number of stable solutions as a function of ✓. For 0 < ✓ <

2⇡ � ✓PT , there is just the monopole solution and asymptotic fermions. For 2⇡ � ✓PT <

✓ < 2⇡ � ✓c, there are two dyonic bound states D0 and D1, though D1 is unstable to decay

into D0 quantum mechanically. For 2⇡ � ✓c < ✓ < ✓c, both D0 and D1 are present and the

higher-energy state can be viewed as the lower-energy state with a bound-state fermion whose

binding energy is of order the mass. At ✓ > ✓c, D0 becomes quantum mechanically unstable

before finally ceasing to exist as a classical solution when ✓ > ✓PT .

4 Nf = 2

In this section, we study the SO and Sp theories for Nf = 2. In the IR, both theories consist

of 4 left-handed Weyl fermions `, b, `c and bc with mass terms m```c +mbbbc. In the equal

mass limit, the IR theory appears to contain an SU(2) flavor symmetry with only U(1)B�L

surviving when the masses are unequal. However, from the UV perspective, the theories are

very di↵erent, as can be seen in Tab. 1. Most significantly, U(1)B�L is only a good symmetry

for the Sp(2) theory and is explicitly broken in the SO(2) theory.

After bosonization, the Lagrangian for both theories is

L =
1

4⇡

Z 1

0
dr

1

2
(@µ�`@

µ�` + @µ�b@
µ�b)�

✓
⇡m`(r)

2

◆2

(1� cos(�`)) (4.1)

�

✓
⇡mb(r)

2

◆2

(1� cos(�b))�
↵

8⇡r2
(�` + �b � 2✓)2 ,
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SO(2) Flavor Symmetry Sp(2) Flavor Symmetry

SU(2) ! U(1)EM U(1)B�L✓
b
bc

◆
⇤ !

✓
1
2
�

1
2

◆
1
�1✓

`
`c

◆
⇤ !

✓
1
2
�

1
2

◆
�1
1

SU(2) ! U(1)EM U(1)B�L✓
b
`c

◆
⇤ !

✓
1
2
�

1
2

◆
1
1✓

`
bc

◆
⇤ !

✓
1
2
�

1
2

◆
�1
�1

Table 1. How the baryons and leptons are embeded into two di↵erent UV completions labeled by
the flavor symmetries present when the baryon and lepton masses are equal. Note that in the SO(2)
theory, B � L is not a good symmetry while in Sp(2) it is a good symmetry

which gives the time-independent equations of motion

@2
r�b =

✓
⇡mb(r)

2

◆2

sin(�b) +
↵

4⇡r2
(�b + �` � 2✓) (4.2)

@2
r�` =

✓
⇡m`(r)

2

◆2

sin(�`) +
↵

4⇡r2
(�b + �` � 2✓) .

For the Sp(2) theory m`,b(r) = m`,b and for the SO(2) theory

mi(r) = mie
� 1

2K0(⇡2
e
��

mir/4) ⇡ mi

(
1 if mir � 1
⇡

2

p
mir

2 if mir ⌧ 1
(4.3)

Note that both theories are symmetric under the exchange of the labels b  ! `, so we can

always take mb � m`. The boundary conditions at r = 0 are

SO(2): @r�` = @r�b = 0 (4.4)

Sp(2): @r�` = �@r�b �` = �b. (4.5)

Since the scalars �` and �b are 4⇡ periodic, these boundary conditions involve a bit of gauge

fixing. Finite energy forces the boundary conditions �b,`(r =1) = 2⇡nb,` and �b(0)+�`(0) =

2✓. States that satisfy these boundary conditions carry electromagnetic and B � L charges

Qtot

EM =
nb + n`

2
�

✓

2⇡
(4.6)

Qtot

B�L =nb � n` �
�b(0)� �`(0)

2⇡
.

The total leptonic and baryonic charge in each field can be related to the total electric charge

Qtot

EM
(in units of e) and the total B � L charge Qtot

B�L

Qtot

b = Qtot

EM +
Qtot

B�L

2
Qtot

` = Qtot

EM �
Qtot

B�L

2
. (4.7)
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Sp(Nf = 2)

Figure 3. The value of ✓ above which a D0 bound state becomes quantum mechanically unstable to
decay into a D1 bound state and a fermion as a function of ↵. The numerical result for ✓c is given
by the solid line while the analytic approximation in Eq. 3.11 is given by the dashed line. Symmetry
considerations can be used to find the analogous lines for any of the other Dq dyons.
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solution is not just unstable due to quantum tunneling e↵ects, but is classically unstable.

The existence of ✓PT can be most easily seen at ✓ = 2⇡. It is clear that any solution is

classically unstable due to ↵ e↵ects, and the only solution is a soliton at infinity.

Finally, we comment on the number of stable solutions as a function of ✓. For 0 < ✓ <

2⇡ � ✓PT , there is just the monopole solution and asymptotic fermions. For 2⇡ � ✓PT <

✓ < 2⇡ � ✓c, there are two dyonic bound states D0 and D1, though D1 is unstable to decay

into D0 quantum mechanically. For 2⇡ � ✓c < ✓ < ✓c, both D0 and D1 are present and the

higher-energy state can be viewed as the lower-energy state with a bound-state fermion whose

binding energy is of order the mass. At ✓ > ✓c, D0 becomes quantum mechanically unstable

before finally ceasing to exist as a classical solution when ✓ > ✓PT .
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In this section, we study the SO and Sp theories for Nf = 2. In the IR, both theories consist

of 4 left-handed Weyl fermions `, b, `c and bc with mass terms m```c +mbbbc. In the equal

mass limit, the IR theory appears to contain an SU(2) flavor symmetry with only U(1)B�L

surviving when the masses are unequal. However, from the UV perspective, the theories are

very di↵erent, as can be seen in Tab. 1. Most significantly, U(1)B�L is only a good symmetry

for the Sp(2) theory and is explicitly broken in the SO(2) theory.

After bosonization, the Lagrangian for both theories is
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Sp(Nf = 2)

Find all solutions

ϕb(0) = ϕℓ(0) = θ

ϕb(∞) = 2πnb

Finite at origin

ϕℓ(∞) = 2πnℓ
Finite energy

All solutions labeled by two integers

QB−L = nb − nℓ QEM = nb + nℓ
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Sp(Nf = 2)

All solutions

Figure 4. A map of the various magnetically and electrically charged states in the Sp(2) and
SO(2) theories. The arrows indicate the particles emitted by one state to decay into another. Note in
SO(2), the states can decay by either emitting a (anti)lepton or (anti)baryon but if m` < mb, it will
energetically prefer to decay via a lepton.

energies

Dq,nB�L(✓) = Dq�2n,nB�L(✓ � 2⇡n). (4.11)

This implies that the energies of these states are the same in the two theories

Eq,nB�L(✓) = Eq�2n,nB�L(✓ � 2n⇡). (4.12)

This equivalence of states in di↵erent theories is most easily visualized from the diagrams in

Fig. 4 where one can see that by shifting ✓ a certain amount, the states match up with states

of either higher or lower electric charge.

4.1 Dyonic bound state solutions

Fig. 5 shows a few examples of the dyonic bound-state solutions in the SO and Sp theories. In

the equal-mass case (top left), the SO and Sp theories are essentially identical as everything

is equally distributed between the lepton and baryon. The only di↵erence is due to the mass

term having r dependence in the case of the SO theory. Once the masses are unequal, there

are some striking contrasts between the two theories due to the importance of their respective

boundary conditions. As discussed before, Sp(2) states have a fixed amount of charge in each

field, while the SO(2) states are free to give di↵erent charges to each field, resulting in them

having more freedom to minimize their energy.

Once mb � m`, the SO(2) states prefer to allocate very little charge to the baryon field

(solid orange lines) since doing so costs O(mb) energy, as opposed to allocating it to the

lepton(solid blue lines) which costs O(m`) energy. The Sp(2) states, on the other hand, are

forced to split the charge according to Eq. 4.7, and thus the state has no choice but to acquire
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Sp(Nf = 2) : Ground State

What is the lowest energy magnetically charged state?
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Figure 7. A plot of the regions of parameter space where the di↵erent Sp(2) bound states are the
ground state. The top two plots show the ground state as a function of ✓ and mb/m` for di↵erent
values of ↵, while the bottom plot shows the ground state for equal masses as a function of ✓ and ↵.
The blue dashed lines represent the analytic approximation, while the the solid black lines represent
the numerical result.

Finally, we can ask which of these bound states are stable. One quick way to eliminate

many states from the list of stable candidates is to note that if |Qtot

`
| � 1 or |Qtot

b
| � 1, then

the fermion number in at least one of the fields is � 1 and the energy is minimized by placing

fermions at spatial infinity, indicating that we are not considering a bound state. As we are

interested in dyonic bound states, this limits us to considering only states with electric charge

|Qtot

EM
| < 1 and for Sp(2) |Qtot

B�L
|  1. As such, we are considering at most 3 states in SO(2)

and 4 states in Sp(2), as can be seen from Fig. 4. If the di↵erence between the energies of any

two of these states is greater than the energy of a soliton, then the more energetic dyon can

decay into the lower energy dyon through the emission of a soliton, as shown in Fig. 4. This

decay must conserve electric charge and, for the Sp(2) theory, B � L charge. The di↵erent

charge conservation considerations and the di↵erent relations between the energies for the two

theories in Eqs. 4.10 and 4.12 cause the landscape of stable dyonic states to be very di↵erent

between the two theories.

Figs. 8 and 9 show these regions of stability for the various relevant states in the two

theories. These plots show some very interesting features. While for Sp(2) the only stable
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EM effects!
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Figure 7. A plot of the regions of parameter space where the di↵erent Sp(2) bound states are the
ground state. The top two plots show the ground state as a function of ✓ and mb/m` for di↵erent
values of ↵, while the bottom plot shows the ground state for equal masses as a function of ✓ and ↵.
The blue dashed lines represent the analytic approximation, while the the solid black lines represent
the numerical result.

Finally, we can ask which of these bound states are stable. One quick way to eliminate

many states from the list of stable candidates is to note that if |Qtot

`
| � 1 or |Qtot

b
| � 1, then

the fermion number in at least one of the fields is � 1 and the energy is minimized by placing

fermions at spatial infinity, indicating that we are not considering a bound state. As we are

interested in dyonic bound states, this limits us to considering only states with electric charge

|Qtot
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| < 1 and for Sp(2) |Qtot
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|  1. As such, we are considering at most 3 states in SO(2)

and 4 states in Sp(2), as can be seen from Fig. 4. If the di↵erence between the energies of any

two of these states is greater than the energy of a soliton, then the more energetic dyon can

decay into the lower energy dyon through the emission of a soliton, as shown in Fig. 4. This

decay must conserve electric charge and, for the Sp(2) theory, B � L charge. The di↵erent

charge conservation considerations and the di↵erent relations between the energies for the two

theories in Eqs. 4.10 and 4.12 cause the landscape of stable dyonic states to be very di↵erent

between the two theories.

Figs. 8 and 9 show these regions of stability for the various relevant states in the two

theories. These plots show some very interesting features. While for Sp(2) the only stable
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 limitα = 0

analytic approximation using many of the same techniques as in Sec. 3. We find

Eq,nB�L(✓,↵,mb,m`) ⇡mb sin
2
⇣⇡
2
Qtot

b

⌘
+m` sin

2
⇣⇡
2
(Qtot

` �Qtot

`,screen)
⌘

(4.15)

+m`

↵

2
(Qtot

EM )2 + Emid(✓,↵,mb,m`).

There are two main new considerations. First, due to the aforementioned screening, the

lepton deposits a little extra charge at r = m�1
`

in addition to its total charge. Second,

there is some additional mechanical and electromagnetic energy in the intermediate region

m�1
b

< r < m�1
`

(denoted Emid), which was not present in our Nf = 1 example. Emid can

be computed in this region using Eq. 4.13. Inserting this solution into the Hamiltonian and

ignoring the mass term in the intermediate region, we find

Emid =

Z
m

�1
`

m
�1
b

dr
⇡Q0

`

2(r)

2
+

↵

8r2
(Q`(r) +Qtot

b )2 (4.16)

=
⇡

2

�2 + ↵/4⇡

1 + 2�
(Qtot

b )2
 
mb �m`

✓
m`

mb

◆2�
!

⇡
↵

2

✓
Qtot

b

2

◆2

(mb �m`),

where in the last line of each we have taken the ↵/4⇡ ⌧ 1 limit. The analytic approximation

given in Eq. 4.15 with Eq. 4.14- 4.16 is plotted alongside the numerical result in Fig. 6,

showing good agreement.

4.2 Ground State and Stability

We are now in the position to ask about the stability of these bound states. First, we can

ask which state is the ground state at a particular point in parameter space by finding the

state of lowest energy. For the SO(2) theory, it is easy to see from Eq. 4.10 that the ground

state is always the state of minimal electric charge, as one might have naively expected.

The situation is not so simple for Sp(2), as can be seen in Fig. 7 where we show the

ground state as a function of mass di↵erence and coupling using both our numerical and

analytic computations for the energy. These plots can be roughly understood by considering

the energy of the D1,�1 state and the D0,0 state when ✓ . ⇡. From Eq. 4.15, we can see that

in the ↵ ! 0 limit, the energies of the two states are

E0,0(✓,↵ = 0,mb = m`) = 2m sin2(✓/4) E1,�1(✓,↵ = 0,mb = m`) = m. (4.17)

In this limit, D0,0 will clearly always be the ground state for ✓ < ⇡. Turning on ↵ gives

D0,0 some extra electric energy whereas it does not give as much to D1,�1, since D1,�1 is

approximately electronically neutral around ✓ = ⇡. So as we increase ↵ we expect to see

more and more area in parameter space where D1,�1 is the ground state, which is exactly

what we see in Fig. 7. Meanwhile, the flip between D1,±1 at ✓ = ⇡ is easily seen by minimizing

the charge held by the heavier baryon as opposed to the lighter lepton.
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state is always the state of minimal electric charge, as one might have naively expected.

The situation is not so simple for Sp(2), as can be seen in Fig. 7 where we show the

ground state as a function of mass di↵erence and coupling using both our numerical and

analytic computations for the energy. These plots can be roughly understood by considering

the energy of the D1,�1 state and the D0,0 state when ✓ . ⇡. From Eq. 4.15, we can see that

in the ↵ ! 0 limit, the energies of the two states are

E0,0(✓,↵ = 0,mb = m`) = 2m sin2(✓/4) E1,�1(✓,↵ = 0,mb = m`) = m. (4.17)

In this limit, D0,0 will clearly always be the ground state for ✓ < ⇡. Turning on ↵ gives

D0,0 some extra electric energy whereas it does not give as much to D1,�1, since D1,�1 is

approximately electronically neutral around ✓ = ⇡. So as we increase ↵ we expect to see

more and more area in parameter space where D1,�1 is the ground state, which is exactly

what we see in Fig. 7. Meanwhile, the flip between D1,±1 at ✓ = ⇡ is easily seen by minimizing

the charge held by the heavier baryon as opposed to the lighter lepton.
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Sp(Nf = 2) : Stable States

How many stable states at any given time?

Figure 8. A plot of the various stable bound states as a function of ✓ and ↵ for the two theories
with mb = m`, with the Sp(2) theory on the left and the SO(2) theory on the right. In both plots, the
darkness of the gray shading represents the number of stable states with the lightest shading being 1
stable state (the ground state), and the darkest being 4 stable states. The di↵erent colors represent
the stability regions of di↵erent states of the SO (Sp) theory with blue corresponding to D0 (D0,0),
red corresponding to D1 (D1,±1), and green indicating D2 (D2,0). For the SO(2) plot, the orange and
purple correspond to the D�1 and D3 states, respectively. The colored shading around each line points
in the direction where the state is stable. The dashed lines on the Sp(2) plot indicate the results from
the analytic approximation for the energies. The solid lines are the numerical results.

state at ✓ = 0 is the monopole state D0,0, for SO(2) there can be potentially 3 stable dyonic

bound states, D±1 and D0, for su�ciently small coupling ↵ and mass ratio mb/m`. The

di↵erence between these two theories can be understood by considering the B�L symmetry.

As discussed before, the boundary conditions in the Sp(2) theory fix the amount of charge

that must be held by each field. In particular, for D1,�1 at ✓ = 0, all of the electric charge

e/2 is carried by the lepton. But a lepton state with charge e/2 has a minimum energy

configuration of a soliton at infinity, and so there is no bound state. The same argument

cannot be made in the SO(2) theory, where no such symmetry forces the entirety of the

charge into one field. The two fields split the charge between themselves. They share the

energetic burden and have total energy less than a soliton at infinity.

5 Nf � 4

We now move on to consider SO(Nf ) and Sp(Nf ) theories for Nf > 2. Both theories consist

of Nf/2 copies of the Nf = 2 theory and so we label the fields �`,i and �b,i for families

i = 1, 2, ..., Nf/2. Symmetry considerations such as the ones in Eq. 4.8 show that the states

in the SO(Nf ) theory are indexed only by q, while the Sp(Nf ) bound states are indexed by

q and nB�L,i, for the ith B � L-type charges of each family. We denote bound states in the

SO(Nf ) theory as Dq and in the Sp(Nf ) theory as Dq,~nB�L
, where ~nB�L 2 ZNf/2 is a Nf/2

sized vector of integers. The Qtot

B�L,i
charge and an electric charge in each family Qtot

EM,i
for
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Sp(Nf = 2) : Stable States

Larger Mass Splitting destabilizes monopole/dyon

Monopole  : below blue

Stability

Dyon : above green
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inside red

Figure 9. A plot of the various stable bound states as a function of ✓ and mb/m` for ↵ = 1 and 0.1,
with the Sp(2) theory on the left and the SO(2) theory on the right. The color scheme is the same
as that in Fig. 8, only now with the red and orange lines di↵erentiating between the stability of the
D1,�1 and D1,1 states, respectively.

any bound state is

Qtot

B�L,i = Qtot

b,i �Qtot

`,i (5.1)

Qtot

EM,i =
Qtot

b,i
+Qtot

`,i

2
.

Note that neither theory has a condition that fixes the individual electric charge, Qtot

EM,i
, in

each family. The dyons are free to split up the electric charge between the families in any

way to minimize the energy. Due to the large number of fields to keep track of, mapping

out the entire landscape of stable states as we did for Nf = 2 is much more complicated. As

such, we will focus on two particular quantities: ✓c, the critical angle at which the D0 (D0,~0)

monopole state becomes unstable, and Nst, the number of stable states at ✓ = 0. We will do

this for both theories in the limit of equal masses and briefly discuss the limit where we have

two classes of fermions with either a heavy mass M or a light mass m.
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Sp/SO(Nf  4)≥
Separate into Nf/2 identical Nf = 2 scalars

5.1 Equal Mass Fermions

Let us start by considering the case where all fermions have equal mass. We are first interested

in finding ✓c, the angle at which the D0 (D0,~0) state becomes unstable. To start, we will need

to find the energy of the D0 (D0,~0) state, which we will call E
Nf

0 , and the energy of the most

favorable state for it to decay into, E
Nf
out

. ✓c can then be defined as

E
Nf

0 (↵, ✓c)� E
Nf
out

(↵, ✓c)�m = 0. (5.2)

In the minimum energy configuration, the total electric charge is evenly distributed between

the Nf fields in the q = 0 state, and thus �1 = �2 = ... = �Nf . Since all the fields are

identical, the Hamiltonian reduces to Nf/2 copies of the Nf = 2 Hamiltonian, with slightly

modified values for ✓ and ↵

H =
Nf

2

1

4⇡

Z 1

0
dr

�0
b

2

2
+

�0
`

2

2
+

✓
⇡m(r)

2

◆2

(2� cos(�b))� cos(�`))

+
↵Nf/2

8⇡r2

✓
�` + �b �

4✓

Nf

◆2

. (5.3)

E
Nf

0 can be directly related to E
Nf=2
0 in an Nf = 2 theory with e↵ective coupling ↵eff =

↵Nf/2 and e↵ective ✓eff = 2✓/Nf through

E
Nf

0 (↵, ✓) =
Nf

2
E

Nf=2
0 (↵Nf/2, 2✓/Nf ). (5.4)

This is true in both SO(Nf ) and Sp(Nf ) theories where we have suppressed the ~nB�L = ~0

index for Sp(Nf ).

Next, we find the most favorable state for the D0 and D0,~0 states to decay into. For the

SO(Nf ) theory, this will naturally be the D1 states. We use a relation analogous to those

in Eq. 4.9 to relate the energy of the D1 dyon to that of D0 in a theory with ✓ ! ✓ � ⇡ as

follows :

E
Nf

1 (↵, ✓) = E
Nf

0 (↵, ✓ � ⇡) =
Nf

2
E

Nf=2
0 (↵Nf/2, 2(✓ � ⇡)/Nf ). (5.5)

Eq. 5.2, Eq. 5.4 and Eq. 5.5 can be used in conjunction with the numerical energies we

computed for Nf = 2 to find ✓c, which is shown in Fig. 10. We also perform a fit to a power

law for Nf � 1, ↵Nf/2 ⌧ 1 from which we find ✓c ⇡ 1.9Nf .

The situation in the Sp(Nf ) theory is a bit more complicated. To see why, consider the

D1,(1,0,...,0) state. This carries electric charge Qtot

EM
= 1/2 � ✓/2⇡, and B � L type charges

Qtot

B�L,1 = 1, and Qtot

B�L,i>1 = 0. The i > 1 families minimize energy by sharing equal electric

charge; however, because of the asymmetry between the i = 1 family and the others, there is

no reason to suppose that the charge in the i = 1 is equal to the charge in the other families.
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5.1 Equal Mass Fermions
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to find the energy of the D0 (D0,~0) state, which we will call E
Nf

0 , and the energy of the most
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E
Nf
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Nf
out

(↵, ✓c)�m = 0. (5.2)

In the minimum energy configuration, the total electric charge is evenly distributed between

the Nf fields in the q = 0 state, and thus �1 = �2 = ... = �Nf . Since all the fields are

identical, the Hamiltonian reduces to Nf/2 copies of the Nf = 2 Hamiltonian, with slightly

modified values for ✓ and ↵

H =
Nf

2

1

4⇡

Z 1

0
dr

�0
b

2

2
+

�0
`

2

2
+

✓
⇡m(r)

2

◆2

(2� cos(�b))� cos(�`))

+
↵Nf/2

8⇡r2

✓
�` + �b �
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Nf

◆2

. (5.3)

E
Nf

0 can be directly related to E
Nf=2
0 in an Nf = 2 theory with e↵ective coupling ↵eff =

↵Nf/2 and e↵ective ✓eff = 2✓/Nf through

E
Nf

0 (↵, ✓) =
Nf

2
E

Nf=2
0 (↵Nf/2, 2✓/Nf ). (5.4)

This is true in both SO(Nf ) and Sp(Nf ) theories where we have suppressed the ~nB�L = ~0

index for Sp(Nf ).

Next, we find the most favorable state for the D0 and D0,~0 states to decay into. For the

SO(Nf ) theory, this will naturally be the D1 states. We use a relation analogous to those

in Eq. 4.9 to relate the energy of the D1 dyon to that of D0 in a theory with ✓ ! ✓ � ⇡ as

follows :

E
Nf

1 (↵, ✓) = E
Nf

0 (↵, ✓ � ⇡) =
Nf

2
E

Nf=2
0 (↵Nf/2, 2(✓ � ⇡)/Nf ). (5.5)

Eq. 5.2, Eq. 5.4 and Eq. 5.5 can be used in conjunction with the numerical energies we

computed for Nf = 2 to find ✓c, which is shown in Fig. 10. We also perform a fit to a power

law for Nf � 1, ↵Nf/2 ⌧ 1 from which we find ✓c ⇡ 1.9Nf .

The situation in the Sp(Nf ) theory is a bit more complicated. To see why, consider the

D1,(1,0,...,0) state. This carries electric charge Qtot

EM
= 1/2 � ✓/2⇡, and B � L type charges

Qtot

B�L,1 = 1, and Qtot

B�L,i>1 = 0. The i > 1 families minimize energy by sharing equal electric

charge; however, because of the asymmetry between the i = 1 family and the others, there is

no reason to suppose that the charge in the i = 1 is equal to the charge in the other families.
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Sp/SO(Nf  4)≥

Dyonic bound states are just lots of copies of 
Witten effect solutions

αeff = αNf /2 θeff = 2θ/Nf

5.1 Equal Mass Fermions

Let us start by considering the case where all fermions have equal mass. We are first interested

in finding ✓c, the angle at which the D0 (D0,~0) state becomes unstable. To start, we will need

to find the energy of the D0 (D0,~0) state, which we will call E
Nf

0 , and the energy of the most

favorable state for it to decay into, E
Nf
out

. ✓c can then be defined as

E
Nf

0 (↵, ✓c)� E
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out

(↵, ✓c)�m = 0. (5.2)

In the minimum energy configuration, the total electric charge is evenly distributed between

the Nf fields in the q = 0 state, and thus �1 = �2 = ... = �Nf . Since all the fields are
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↵Nf/2 and e↵ective ✓eff = 2✓/Nf through
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0 (↵, ✓) =
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2
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0 (↵Nf/2, 2✓/Nf ). (5.4)

This is true in both SO(Nf ) and Sp(Nf ) theories where we have suppressed the ~nB�L = ~0

index for Sp(Nf ).

Next, we find the most favorable state for the D0 and D0,~0 states to decay into. For the

SO(Nf ) theory, this will naturally be the D1 states. We use a relation analogous to those

in Eq. 4.9 to relate the energy of the D1 dyon to that of D0 in a theory with ✓ ! ✓ � ⇡ as

follows :

E
Nf

1 (↵, ✓) = E
Nf

0 (↵, ✓ � ⇡) =
Nf

2
E

Nf=2
0 (↵Nf/2, 2(✓ � ⇡)/Nf ). (5.5)

Eq. 5.2, Eq. 5.4 and Eq. 5.5 can be used in conjunction with the numerical energies we

computed for Nf = 2 to find ✓c, which is shown in Fig. 10. We also perform a fit to a power

law for Nf � 1, ↵Nf/2 ⌧ 1 from which we find ✓c ⇡ 1.9Nf .

The situation in the Sp(Nf ) theory is a bit more complicated. To see why, consider the

D1,(1,0,...,0) state. This carries electric charge Qtot

EM
= 1/2 � ✓/2⇡, and B � L type charges

Qtot

B�L,1 = 1, and Qtot

B�L,i>1 = 0. The i > 1 families minimize energy by sharing equal electric

charge; however, because of the asymmetry between the i = 1 family and the others, there is

no reason to suppose that the charge in the i = 1 is equal to the charge in the other families.
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Sp(Nf  4)≥

Mapped to numerically solved situation
αNf /2

5 10 50 100

5
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Nf

θc

θc=NfSin-1(2/π)

Sp(Nf ), αNf /2≪1

Figure 10. The top two plots show 2✓c/Nf as a function of ↵Nf/2 for the two theories. We show
the results for Nf = 4, 8, 16, and 32 with the darkest solid green line indicating Nf = 32 and the
lightest solid green line indicating Nf = 4, with the green getting darker as Nf gets larger (the dotted
line indicates Nf = 2). The bottom two plots show ✓c as a function of Nf in the limit ↵Nf ⌧ 1, with
the solid line being the numerical result. For the SO(Nf ) theory, the linear fit ✓c ⇡ 1.9Nf is shown
by the dotted line, while for the Sp(Nf ) theory the dotted line is instead the analytic approximation
✓c ⇡ sin�1(2/⇡)Nf .

Eqs. 4.9 and 4.11. By the definition of ✓c and suppressing the ~nB�L index,

D0(✓) is stable if |✓| < ✓c. (5.10)

We can take ✓ = �⇡q for some integer q (an even integer for Sp(Nf ) and use Eq. 4.9 or

Eq. 4.11 to rewrite this as the statement

SO(Nf ) : Dq(0) is stable if |q| <
✓c
⇡

(5.11)

Sp(Nf ) : Dq(0) is stable if |q/2| <
✓c
2⇡

. (5.12)
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SO(Nf  4)≥

Mapped to numerically solved situation
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Nf
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SO(Nf ), αNf /2≪1

Figure 10. The top two plots show 2✓c/Nf as a function of ↵Nf/2 for the two theories. We show
the results for Nf = 4, 8, 16, and 32 with the darkest solid green line indicating Nf = 32 and the
lightest solid green line indicating Nf = 4, with the green getting darker as Nf gets larger (the dotted
line indicates Nf = 2). The bottom two plots show ✓c as a function of Nf in the limit ↵Nf ⌧ 1, with
the solid line being the numerical result. For the SO(Nf ) theory, the linear fit ✓c ⇡ 1.9Nf is shown
by the dotted line, while for the Sp(Nf ) theory the dotted line is instead the analytic approximation
✓c ⇡ sin�1(2/⇡)Nf .

Eqs. 4.9 and 4.11. By the definition of ✓c and suppressing the ~nB�L index,

D0(✓) is stable if |✓| < ✓c. (5.10)

We can take ✓ = �⇡q for some integer q (an even integer for Sp(Nf ) and use Eq. 4.9 or

Eq. 4.11 to rewrite this as the statement

SO(Nf ) : Dq(0) is stable if |q| <
✓c
⇡

(5.11)

Sp(Nf ) : Dq(0) is stable if |q/2| <
✓c
2⇡

. (5.12)

– 21 –

θc ≈ 1.9Nf



Sp/SO(Nf  4)≥

Number of stable states : SO

N ≈
3.8Nf

π Nf ≫ 1 αNf /2 ≪ 1

Number of stable states : Sp

N ≈
sin−1(2/π) Nf

π
Nf ≫ 1 αNf /2 ≪ 1
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Callan Rubakov with Nf ≥ 4SU(2) SU(Nf )

� Adj.

 ⇤ ⇤
SU(2) SU(Nf )

� Adj.

 =

 
 

�

!
⇤ ⇤

SO(2) Flavor Symmetry Sp(2) Flavor Symmetry

SU(2) ! U(1)EM U(1)B�L✓
b

b
c

◆
⇤ !

✓
1
2
�1

2

◆
1

�1✓
`

`
c

◆
⇤ !

✓
1
2
�1
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◆
�1

1

SU(2) ! U(1)EM U(1)B�L✓
b

`
c

◆
⇤ !

✓
1
2
�1

2

◆
1

1✓
`

b
c

◆
⇤ !

✓
1
2
�1

2

◆
�1

�1

Table 1. How the baryons and leptons are embeded into two di↵erent UV completions labeled by

the flavor symmetries present when the baryon and lepton masses are equal. Note that in the SO(2)

theory, B � L is not a good symmetry while in Sp(2) it is a good symmetry

1

Monopole and two sets of Nf 
massless fermions

Monopole

pp
No s-wave final state that 
preserves all symmetries!
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Table 1. How the baryons and leptons are embeded into two di↵erent UV completions labeled by

the flavor symmetries present when the baryon and lepton masses are equal. Note that in the SO(2)

theory, B � L is not a good symmetry while in Sp(2) it is a good symmetry

1

Monopole and two sets of Nf 
massless fermions

Monopole

pp
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Fractional state - semiton



Semiton

Charge 2, no flavor symmetries±

I knew my final states (standard quantized fermions), 
how did this new possible final state come into the story?
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Semiton

Ala massless particles and Witten effect, lets take 
massive fermions then take massless limit
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Table 1. How the baryons and leptons are embeded into two di↵erent UV completions labeled by

the flavor symmetries present when the baryon and lepton masses are equal. Note that in the SO(2)

theory, B � L is not a good symmetry while in Sp(2) it is a good symmetry

1

We will be interested in the dyonic bound state 5±2,0

θ = 0



5±2,0

We can solve this the same way as before, but there is a 
simpler picture

nb,i − nℓ,i = 0 ∑
i

nb,i + nℓ,i
2 − θ

2π
= ± 1

Many gauge equivalent solutions

nb,i = nℓ,i = 0 θ = ∓ 2π



5±2,0

Solution is clearly symmetric ϕb,i = ϕℓ,i = ϕ

L = Nf
1

4π ( (∂rϕ)2

2 + ( πm
2 )2cos ϕ) +

αNf /2
2πr2 (ϕ − 2

Nf
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 Witten effects 

with 

Nf

θ = ± 4π
Nf

-3 -2 -1 0 1 2 3
-0.1

0.0

0.1

0.2

0.3

0.4

Log10(mr)

ϕ
4π

NF



5±2,0

-3 -2 -1 0 1 2 3
-0.1

0.0

0.1

0.2

0.3

0.4

Log10(mr)

ϕ

4π

NF

E ≈ Nf m sin2( π
Nf

) ≈ mπ2

Nf
≪ 2mLarge Binding energy

Radii r ∼ 1/m

Quantum numbers Charge 2, no flavor symmetries±



Massless Limit - Monopole

Observer sits at finite radius rO

Monopole + polarized fermion vacuum of 
size r ∼ 1/m

Decrease fermion mass until rO ≈ 1/m
Charge sweeps over observer and enclosed charge 

transitions to 0

Definition of monopole changes from size  
to 

r ∼ 1/m
r ∼ 1/mW



Massless Limit - Dyon

Observer sits at finite radius rO

Asymptotic s-wave states are quantized fermions
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Decrease fermion mass until rO ≈ 1/m

 transitions into an asymptotic state + monopole core52

New asymptotic state has quantum numbers of 
semiton!



Massless Limit - Dyon

Caveat

If cross sections to produce go to zero in the massless limit 
then it may not matter that they exist

Explains existence of semitons



Conclusion

Monopoles are fun

These are stabilized by boundary terms at 
monopole and their existence depends on UV 

symmetries, not IR properties

Binding energy O(m) 
Bound state radii ~ 1/m

There are often a whole plethora of bound states

In the massless limit, due to order of limit, bound states become 
new asymptotic states


