Dyonic Bound States

Anson Hook

University of Maryland

w/ Clayton Ristow 2409.07549

Monopoles

Obviously a good idea

$$
\partial_{\mu}F^{\mu\nu} = J_E^{\nu} \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = J_M^{\nu}
$$

Maxwell Equation Symmetric

Quantization of Charge

Monopoles

Obviously a good idea

$$
\partial_{\mu}F^{\mu\nu} = J_E^{\nu} \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = J_M^{\nu}
$$

Maxwell Equation Symmetric

Monopoles

Two additional interesting facts

- **1. Monopoles break symmetries in a way that is UV dependent and unsuppressed by the UV scale**
- **2. Witten Effect**
	- Monopoles come with dyons

Callan-Rubakov Effect

Callan-Rubakov Effect

Boundary conditions must break chiral symmetry or Baryon/Lepton number!

Boundary conditions must break chiral symmetry or Baryon/Lepton number!

Witten Effect

Monopoles carry charge *θ*/2*π*

In EFT after all charged particles are integrated out

$$
\delta \mathcal{L} = \frac{e^2 \theta}{16\pi^2} F\tilde{F} = \frac{e^2 \theta}{4\pi^2} E \cdot B = \frac{e^2 \theta}{4\pi^2} \nabla A_0 \cdot B
$$

$$
-\frac{e^2 \theta}{4\pi^2} A_0 \nabla \cdot B = -\frac{e^2 \theta}{4\pi^2} \frac{2\pi}{\theta} \delta^3(r) A_0 = -\frac{e\theta}{2\pi} \delta^3(r) A_0
$$

e

2*π*

4*π*²

4*π*²

Dyons

$$
\theta = \theta + 2\pi
$$

Because θ is 2π periodic, monopole must be **accompanied by a tower of dyons**

't Hooft Polyakov Monopole

$$
\begin{array}{c|c}\n & SU(2) \\
\hline\n\Phi & Adj\n\end{array}
$$

 \mathbf{u} **Explicit monopole solution whenever** $\Pi_2(G/H) \neq 0$

$$
\Phi_a = v \hat{r}_a Q(r)
$$

$$
A_i^a = -\epsilon_{iab} \hat{r}_b \frac{A(r)}{e r}
$$

$$
A_0^a = 0
$$

Solve for functions $A(r)$, $Q(r)$ **numerically**

$$
A_0^a = 0
$$
 the h

$$
Dyons
$$

 $Q_E = -2$ $Q_E = -1$ $Q_E = 0$ $Q_E = 1$ $Q_E = 2$

Aa $\begin{array}{c} a \\ 0 \end{array} = \dot{\lambda}$ λ \hat{r}_a ̂

Quantize the charge rotator degree of freedom *λ* **to get dyons**

Since only charged states are the W bosons, dyons often called bound states of W boson and Monopole

$$
\Delta M \sim \alpha \, m_W \ll m_W
$$

If interpreted as bound states, $\mathcal{O}(m_W^2)$ **binding energy**

Bound States

Are there other bound states?

- **1. Specify UV theory to obtain boundary conditions**
	- Depending on the bound states you're interested in, this may not be needed
- **2. Solve Dirac Equation ala Hydrogen Atom**
	- Important caveat, need to take into account the anomaly!
	- I will only consider s-wave solutions

Outline

- **• Witten Effect with light fermions**
- **• A plethora of bound states**
- **• The massless limit**
- **• Conclusion**

What is the ground state?

To find the ground state monopole solution Just solve Dirac equation (kinda) and Maxwell's equation

- **1. Reduce to the s-wave**
- **2. Derive boundary conditions**
- **3. Turn into 2D problem on half plane**
- **4. Bosonize**
- **5. Numerically solve**

Witten Effect with Light Fermions $\overline{2}$ TEIL FITECT MITH F Witten Effect with Light Fermions *U*(*i*) = exp(*i*) = and the exp(*i*), defined as \overline{C}

Step 1 - Reduce to the s-wave Step 1 - Reduce to the s-wave **Step 1 - Reduce to the s-wave**

$$
\Phi_a = v \hat{r}_a Q(r)
$$
\nBreak SU(2)xSU(2) to SU(2)_D

\n
$$
A_i^a = -\epsilon_{iab} \hat{r}_b \frac{A(r)}{e r}
$$
\n
$$
e^{-i\vec{J} \cdot \vec{\theta}} = e^{-i(\vec{L} + \vec{S}) \cdot \theta} e^{i\vec{\tau} \cdot (-\theta)} = e^{-i(\vec{L} + \vec{\sigma}/2 + \vec{\tau}/2) \cdot \theta}
$$

 Γ Decompose reminon mio two types spin o states \mathbf{r} **Decompose fermion into two types spin 0 states**

$$
\psi_{J=0} = g(r,t)\psi_{J=0;L=0} + p(r,t)\psi_{J=0;L=1}
$$

$$
= \frac{g(r,t) + p(r,t)(\hat{r} \cdot \vec{\sigma})}{\sqrt{8\pi r^2}} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \text{Spin}
$$

Witten Effect with Light Fermions Lagrangian invariant. We can therefore interpret *J*

Step 2 - Boundary Conditions

$$
\psi_{J=0} = g(r,t)\psi_{J=0;L=0} + p(r,t)\psi_{J=0;L=1}
$$

$$
= \frac{g(r,t) + p(r,t)(\hat{r} \cdot \vec{\sigma})}{\sqrt{8\pi r^2}} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \text{Spin}
$$

Near monopole, symmetry restored and angular momentum **of the L=1 state reappears v**ear mo para with doublet gauge index viewers and Lorentz spin index \mathbf{u} and \mathbf{u} and \mathbf{u} we derive the spin index \mathbf{u} $p(r, t) = 0$

> baryons and right handed leptons **Note that this mixes left handed**

Witten Effect with Light Fermions ~ = 0. One can find the most general form of the *J*

Step 2 - Boundary Conditions

$$
\psi_{J=0} = g(r,t)\psi_{J=0;L=0} + p(r,t)\psi_{J=0;L=1}
$$

$$
= \frac{g(r,t) + p(r,t)(\hat{r} \cdot \vec{\sigma})}{\sqrt{8\pi r^2}} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \text{Spin}
$$

Fix gauge near monopole

 $A_0^a = 0$ $\frac{a}{0} = 0$

 \dot{a} = \dot{a}

 $p' = -\frac{p}{q}$

r

1

r

 $p \propto$

✓ ¯⇠¯*µ*@*µ*⇠ ¹

 \equiv

¯*µ*@*^µ* =

*^j*⁰ ⌘ *† g* ∝ *r p* ∝

i †

g

r

 $g' =$

Dirac Equation

Step 3 - Simplify to 2D theory on half plane

²) **2D fermions** *^ξ^l* ⁼

$$
\xi_b = \frac{1}{\sqrt{2}} \begin{pmatrix} g_1 - p_1 \\ g_2^* + p_2^* \end{pmatrix} \quad \xi_l = \frac{1}{\sqrt{2}} \begin{pmatrix} g_2 - p_2 \\ g_1^* + p_1^* \end{pmatrix}
$$

$$
\mathcal{L}_{\text{Fermion}} = \sum_{i=b,\ell} \int_0^\infty dr \, i \overline{\xi}_i \overline{\gamma}^\mu \partial_\mu \xi_i + \frac{e}{2} \lambda \overline{\xi}_i \overline{\gamma}^1 \xi_i - m \overline{\xi}_i \xi_i
$$

$$
\mathcal{L}_{\text{Gauge}} = \int_0^\infty dr 2\pi r^2 \lambda^2 + \frac{\overline{\theta}e}{2\pi} \lambda^2
$$

Step 4a - Why Bosonize?

- **1. Computers don't like Grassman numbers**
- **2. Dirac equation doesn't depend on the phase of the fermion mass**
	- Misses the anomaly!
	- Critical for the Witten effect

Step 4b - Bosonize

Quantum Duality! Only of the radial and time coordinates though

Critical Aspect : 1-loop quantum anomaly is now tree level classical physics

Tree level physics uses bosons and sees the anomaly Ready for computers!

Step 4b - Bosonize dimensional fermions and bosons [13, 14]. Very schemat-

Fermions are exponential of scalars

Fermions are exponential of scalars
$$
\psi_{2D} = \begin{pmatrix} b(r-t) \\ l^c(r+t) \end{pmatrix} \sim \begin{pmatrix} e^{i\phi(r-t)} \\ e^{i\phi(r+t)} \end{pmatrix}
$$

 A s a result of this simplification, our four-dimension, our four-dimensional \mathcal{A}

$$
\xi_i(r,t) = Z^{1/2}(r) : \begin{pmatrix} e^{i\sqrt{\pi}(\phi(r,t) - \int_0^r dx \dot{\phi}(x,t))} \\ e^{i\alpha} e^{-i\sqrt{\pi}(\phi(r,t) + \int_0^r dx \dot{\phi}(x,t))} \end{pmatrix} :
$$

1tial *of integral of scalar h r*
8× arrived by the same correlators as fermions \overline{a} 8⇡ (@*L*) Normal ordered exponential of integral of scalar have. we chose real positive masses for the fermions, $\frac{1}{2}$ = 0, however if the masses had phases, $\frac{1}{2}$ **Normal ordered exponential of integral of scalar have exactly the same correlators as fermions**

Step 4b - Bosonize

Lagrangian

$$
\mathcal{L} = \frac{1}{8\pi} \sum_{i=B,L} (\partial \phi_i)^2 + \frac{\pi m^2}{16} \cos(\phi_i + \theta_m) - \frac{g^2}{8\pi r^2} (\frac{\phi_B + \phi_L}{4\pi} - \frac{\theta}{2\pi})^2
$$

Boundary Conditions

 $\phi_B(0) = \phi_I(0)$ $\partial \phi_B(0) = - \partial \phi_I(0)$

Step 4b - Bosonize

Lagrangian

$$
\mathcal{L} = \frac{1}{8\pi} \sum_{i=B,L} (\partial \phi_i)^2 + \frac{\pi m^2}{16} \cos \phi_i - \frac{g^2}{8\pi r^2} (\frac{\phi_B + \phi_L}{4\pi} - \frac{\theta}{2\pi})^2
$$

Boundary Conditions

 $\phi_B(0) = \phi_I(0)$ $\partial \phi_B(0) = - \partial \phi_I(0)$

Step 5 - Numerical Solution

$$
\rho = -\frac{1}{8\pi^2 r^2} \partial_r \phi = \frac{\theta \alpha}{2\pi^5 m^2 r^5} \neq e^{-mr}
$$

Non-Exponential Polynomial fall off is required by anomaly equation

$$
\partial_{\mu}J^{\mu}_{5} \sim \alpha F\tilde{F} + m\overline{\psi}\gamma_{5}\psi
$$

$$
\text{Im}(bb^c) \sim \text{Im}(\ell \ell^c) \sim \frac{\alpha \theta}{mr^4}
$$

Massless limit

Witten effect : Total electric charge is always *gθ*/2*π*

 $\mathbf{Massless limit}:\theta$ is **unphysical**

Massless limit

Witten effect : Total electric charge is always *gθ*/2*π*

 $\mathbf{Massless limit}:\theta\ \mathbf{is}$ **unphysical**

Observer sits a fixed distance away from monopole

 $r_{\text{obs}} \gg 1/m$ **Total electric charge is** $g\theta/2\pi$

 $r_{\text{obs}} \ll 1/m$ **Total electric charge is 0**

Resolution is order of limits issue as well as what is called a monopole

Outline

• Witten Effect with light fermions

- **• A plethora of bound states**
- **• The massless limit**
- **• Conclusion**

UV Theories

$$
\begin{array}{c|c|c} & SU(2) & SU(N_f) \\ \hline \Phi & \operatorname{Adj.} \\ \psi & \Box & \Box \end{array}
$$

Mass term breaks Flavor symmetry

$$
\delta \mathcal{L} = -m \psi_a^i \psi_b^j \epsilon^{ab} \epsilon_{ij}
$$

$$
\delta \mathcal{L} = -y \psi_a^i \Phi_b^a \psi_c^j \epsilon^{ab} \delta_{ij}
$$

$$
{}^{ib}\epsilon_{ij} \qquad \qquad SU(N_f)/Sp(N_f)
$$

 \int $SU(N_f)/SO(N_f)$

UV Theories

Difference Visually

SO(2) Flavor Symmetry *Sp*(2) Flavor Symmetry

 $\overline{}$

UV Theories

Bosonized Theories only slightly different remaining problem, we utilize the well-known fact that \mathbf{r} is equivalent to a 2D fermion is equi bosonized theories only sughtly different

$$
4\pi \mathcal{L} = \frac{1}{2} \sum_{i} \left(\partial \phi_i\right)^2 + \left(\frac{\pi m(r)}{2}\right)^2 \sum_{i} \cos\left(\phi_i\right) - \frac{\alpha}{2\pi r^2} \left(\sum_{i} \frac{1}{2} \phi_i - \theta\right)^2
$$

Identical far from the
\n**SO** monopole where you just see
\nthe identical IR
\n
$$
m(r) = e^{K_0(\pi^2 e^{-\gamma} mr/4)/2} m
$$
\nwhere you just see

\n
$$
m(r) = m
$$

 $\partial_r \phi_i(0) = 0$

 $\partial_{\alpha} A(\Omega) = \Omega$ Forces quantization of U(1) $\partial_{r} \phi_{b,i}(0) = - \partial_{r} \phi_{c,i}(0)$ $\partial_r \phi_i(0) = 0$ and functions and fermions $\phi_i(0) = 1$ at $\phi_i(0)$ the origin, while an anti-soliton solution is 0 at infinity and 2⇡ at the origin. An incoming $\phi_{b,i}(0) = \phi_{e,i}(0)$ Forces quantization of $\mathrm{U}(1)$ subgroups of $Sp(N_f)$

 $\mathcal{O}(\mathcal{O}_\mathcal{A})$ the original picture. While $\mathcal{O}(\mathcal{O}_\mathcal{A})$

Getting our feet wet : $N_f = 1$ ⇣⇡*m* ⌘2 (1 cos()) ↵

Find all stationary solutions to EOM rind an stationary solutions to EOIVI

$$
\partial_r^2 \phi = \frac{\pi^2 m^2}{4} \sin \phi + \frac{\alpha}{4\pi r^2} (\phi - \theta) \qquad \partial_r \phi(0) = 0
$$

$$
\phi(0) = \theta \qquad \qquad \phi(\infty) = 2\pi q \qquad \qquad \text{Finite Energy}
$$

Every minimum energy solution is

Laboled by a single integer q *EM* α single integer q *EM| >* 1, the energy will be

Getting our feet wet : $N_f = 1$ ⇣⇡*m* ⌘2 (1 cos()) ↵

rind an stationary solutions to EOIVI **Find all stationary solutions to EOM**

$$
\partial_r^2 \phi = \frac{\pi^2 m^2}{4} \sin \phi + \frac{\alpha}{4\pi r^2} (\phi - \theta) \qquad \partial_r \phi(0) = 0
$$

$$
\phi(0) = \theta \qquad \qquad \phi(\infty) = 2\pi q \qquad \qquad \text{Finite Energy}
$$

 $Q_{\text{max}} = a - \frac{\theta}{2\pi} = -\frac{\theta}{2\pi} \sqrt{2\pi}$ Deally finding Dyon colutional $\mathcal{L}_{EM} - q - \sigma/2\pi - \sigma_{eff}/2\pi$ Really is $Q_{EM} = q - \theta/2\pi = -\theta_{eff}/2\pi$ Really finding Dyon solutions!

Really finding Dyon solutions!

Find all solutions to EOM

 $\phi(\infty) = 2\pi q$

A solution is ALWAYS monopole ground state $+$ q solitons at infinity If $|Q_{EM}| > 1$, this is actually always the minimum energy configuration

In the small α limit, can analytically find the energy

$$
E(q, \alpha = 0, m) = \sin^2(\frac{\pi}{2}Q_{\text{EM}}) m
$$

Only two possibly stable solutions q=0,1

θ

θ

α

 $Sp(N_f=2)$ $\sum_{k=1}^{\infty}$ / $\sum_{k=1}^{\infty}$ / $\sum_{k=1}^{\infty}$

$$
L = \frac{1}{4\pi} \int_0^\infty dr \frac{1}{2} \left(\partial_\mu \phi_\ell \partial^\mu \phi_\ell + \partial_\mu \phi_b \partial^\mu \phi_b \right) - \left(\frac{\pi m_\ell(r)}{2} \right)^2 (1 - \cos(\phi_\ell))
$$

$$
- \left(\frac{\pi m_b(r)}{2} \right)^2 (1 - \cos(\phi_b)) - \frac{\alpha}{8\pi r^2} (\phi_\ell + \phi_b - 2\theta)^2
$$

SO(2) Flavor Symmetry *Sp*(2) Flavor Symmetry **Flavor symmetry is Sp(2) if masses equal**

$$
\begin{array}{c|c}\n&SU(2) \rightarrow U(1)_{EM} & U(1)_{B-L} \\
\hline\n\begin{pmatrix} b \\ \ell^c \end{pmatrix} & \square \rightarrow \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} & 1 \\
\begin{pmatrix} \ell \\ b^c \end{pmatrix} & \square \rightarrow \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} & -1 \\
\end{array}
$$

 $Sp(N_f = 2)$

Find all solutions

$$
\phi_b(0) = \phi_c(0) = \theta
$$
 Finite at origin

 $\phi_b(\infty) = 2\pi n_b$ $\phi_{\ell}(\infty) = 2\pi n_{\ell}$ Finite energy

All solutions labeled by two integers

$$
Q_{B-L} = n_b - n_e \qquad Q_{\text{EM}} = \frac{n_b + n_e}{2} - \frac{\theta}{2\pi} = \frac{q}{2} - \frac{\theta}{2\pi}
$$

$Sp(N_f = 2)$

All solutions

 $n_b = n_e$ are dyons $n_b \neq n_e$ are other bound states

$Sp(N_f = 2)$: Some solutions

 $\mathcal{D}_{0,0}$ $Q_e(r) \approx -Q_b^{\text{tot}}(1-(m_b r)^{-\alpha/4\pi})$

- Witten effect vanishes in the massless limit but extremely slowly
- dependence is driven *θ* by heavier particle
- B-L neutral dyon/ monopole must excite heavier baryon even if lepton massless

$Sp(N_f = 2)$: Ground State

What is the lowest energy magnetically charged state?

$Sp(N_f = 2)$: Some solutions

$Sp(N_f = 2)$: Ground State

What is the lowest energy magnetically charged state?

$Sp(N_f = 2)$: Ground State analytic computations for the energy. The energy α plots can be roughly understood by considering α $G_n(N_{\epsilon}-2)$, C_{n_1} G_{n_2} , G_{n_3} $\frac{1}{\sqrt{2}}$ function of $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ and coupling using both our numerical and coupling using $\frac{1}{\sqrt{2}}$

α = 0 **limit** $\alpha = 0$ *limit* $\alpha - \sigma$ in the two states of the two states are two stat α is the energy. These plots can be roughly understood by considering α $\alpha - 0$ 1111111

$$
E_{0,0}(\theta, \alpha = 0, m_b = m_{\ell}) = 2m \sin^2(\theta/4)
$$

$$
E_{1,-1}(\theta, \alpha = 0, m_b = m_{\ell}) = m
$$

Monopole is always more stable until dyon is more stable $\sum_{i=1}^n a_i$ **INIONOPOIE IS AIWAYS MOTE STADIE UNTIL QYON IS MOTE**
ctable *B*001*,* some extra electric energy whereas it does not give a much to $\frac{1}{2}$, since $\frac{1}{2}$ **Monopole is always more stable until dyon is more stable**

EM effects eventually stabilize near $\theta = \pi$ as
the hours detailed bestween θ ¹, the label shows the bound state has smaller total charge **D11**,1 is the bound state has smaller total charge EM effects eventually stabilize near $\theta = \pi$ as

$Sp(N_f = 2)$: Stable States

How many stable states at any given time?

$Sp(N_f = 2)$: Stable States

Larger Mass Splitting destabilizes monopole/dyon

 $\boldsymbol{\theta}$

Monopole : below blue Dyon : above green Monopole + fermion : inside red

Stability

$Sp/SO(N_f \geq 4)$

Too complicated to study in general

Equal mass

Number of stable states at $\theta = 0$ θ_c when monopole becomes unstable

$Sp/SO(N_f \geq 4)$ $Sn / Q(N_f > 4)$

Separate into $N_f/2$ identical $N_f = 2$ scalars the *N^f* fields in the *q* = 0 state, and thus ¹ = ² = *...* = *N^f* . Since all the fields are S anarate into $N_f/2$ identical $N_f - 2$ scalare identical, the Hamiltonian reduces to *N^f /*2 copies of the *N^f* = 2 Hamiltonian, with slightly

$$
H = \frac{N_f}{2} \frac{1}{4\pi} \int_0^\infty dr \frac{{\phi'_b}^2}{2} + \frac{{\phi'_\ell}^2}{2} + \left(\frac{\pi m(r)}{2}\right)^2 (2 - \cos(\phi_b)) - \cos(\phi_\ell))
$$

+
$$
\frac{\alpha N_f/2}{8\pi r^2} \left(\phi_\ell + \phi_b - \frac{4\theta}{N_f}\right)^2
$$

Reduces to the same $N_f = 2$ **system we studied before** *E*_{*S*} E_{*M*}*I***_f** *E***_{***F***_{***Ff***_{F**} 2, 2*n*_{*f*} 2*}}* **with slightly different parameters** 8⇡*r*² **a** + **b** \uparrow + *N^f* **with slightly different parameters**

$$
\alpha_{\text{eff}} = \alpha N_f / 2
$$
\n
$$
E_0^{N_f}(\alpha, \theta) = \frac{N_f}{2} E_0^{N_f = 2} (\alpha N_f / 2, 2\theta / N_f)
$$

$Sp/SO(N_f \geq 4)$ *dr*⁰ *b* \mathcal{L} $\frac{2}{2}$ </sub> \blacksquare ² ⁺ $N_f \geq 4$ (2 cos(*b*)) cos(`))

Dyonic bound states are just lots of copies of Witten effect solutions \mathbf{r} yon $\boldsymbol{\mathsf{p} }$ and state *N^f* $\frac{1}{2}$ inct late of conjects ⁰ can be directly related to *^EN^f* =2

$$
\alpha_{\text{eff}} = \alpha N_f / 2
$$

$$
E_0^{N_f}(\alpha, \theta) = \frac{N_f}{2} E_0^{N_f = 2} (\alpha N_f / 2, 2\theta / N_f)
$$

Sp(N_f) also has the $N_f \mathcal{D}_{1,\pm}$ \rightarrow bound states, but they are $unstable$ around $\theta = 0$ *SO*(*N^f*) theory, this will naturally be the *D*¹ states. We use a relation analogous to those **unstable around** $\theta = 0$

 $Sp(N_f \geq 4)$

Mapped to numerically solved situation

$SO(N_f \geq 4)$

Mapped to numerically solved situation

$Sp/SO(N_f \geq 4)$

Number of stable states : SO

 $\alpha N_f/2 \ll 1$

Number of stable states : Sp

$$
N \approx \frac{\sin^{-1}(2/\pi) N_f}{\pi} \qquad N_f \gg 1
$$

Outline

• Witten Effect with light fermions • A plethora of bound states

- **• The massless limit**
- **• Conclusion**

Callan Rubakov with $N_f \geq 4$

Callan Rubakov with $N_f \geq 4$

Semiton

Charge ± 2 , no flavor symmetries

I knew my final states (standard quantized fermions), how did this new possible final state come into the story?

Semiton

Ala massless particles and Witten effect, lets take massive fermions then take massless limit **as** !
!
! **LETTILIOIIS**

SU(2) ! *U*(1)*EM U*(1)*B^L SU*(2) ! *U*(1)*EM U*(1)*B^L* We will be interested in the dyonic bound state $\mathscr{D}_{\pm2,0}$

 $\mathcal{D}_{\pm 2,0}$

We can solve this the same way as before, but there is a simpler picture

$$
n_{b,i} - n_{e,i} = 0 \qquad \qquad \sum_{i} \frac{n_{b,i} + n_{e,i}}{2} - \frac{\theta}{2\pi} = \pm 1
$$

Many gauge equivalent solutions

$$
n_{b,i} = n_{e,i} = 0 \qquad \theta = \pm 2\pi
$$

 $\mathcal{D}_{\pm 2,0}$

Solution is clearly symmetric $\phi_{b,i} = \phi_{e,i} = \phi$

 $\mathcal{D}_{\pm 2,0}$

$E \approx N_f m \sin^2(\theta)$ *π Nf*) \approx *mπ*² *Nf* **Large Binding energy** $E \approx N_f m \sin^2(\frac{\pi}{M}) \approx \frac{m}{M} \ll 2m$ **Radii** *r* ∼ 1/*m*

Quantum numbers Charge ± 2 , no flavor symmetries

Massless Limit - Monopole

Observer sits at finite radius r_{Ω} **Monopole + polarized fermion vacuum of** size $r \sim 1/m$

Decrease fermion mass until $r_{\Omega} \approx 1/m$

Charge sweeps over observer and enclosed charge transitions to 0

Definition of monopole changes from size *r* ∼ 1/*m* **to** r ∼ $1/m_W$

Massless Limit - Dyon

Observer sits at finite radius r_{Ω} **Asymptotic s-wave states are quantized fermions** $\chi = (-1, \Box)$ $\chi^{\dagger} = (1, \overline{\Box})$ $\psi = (1, \Box)$ $\psi^{\dagger} = (-1, \overline{\Box})$ **Decrease fermion mass until** $r_{\Omega} \approx 1/m$

 \mathcal{D}_2 transitions into an asymptotic state + monopole core

New asymptotic state has quantum numbers of semiton!

Massless Limit - Dyon

Caveat

Explains existence of semitons

If cross sections to produce go to zero in the massless limit then it may not matter that they exist

Conclusion

Monopoles are fun

There are often a whole plethora of bound states

These are stabilized by boundary terms at monopole and their existence depends on UV symmetries, not IR properties

Binding energy O(m) Bound state radii $\sim 1/m$

In the massless limit, due to order of limit, bound states become new asymptotic states