Quantum Magnetometry
In Search of Dark Matter

S—

0
»— 9® —«

ltay M. Bloch

UC Berkeley & LBNL

_



Outline

e [ntroduction:
e Axions and ALPs
e Spin-Based (Co)magnetometers

e Established Magnetometry Techniques for DM
Research

e Novel Magnetometry Techniques

e Summary

2 Introduction



3 Introduction



QCD Axion

e A solution to the strong CP problem, 0,-p — al/f,.

[Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]

3 Introduction



QCD Axion

e A solution to the strong CP problem, 0,-p — al/f,.

[Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]

® Pseudo-scalars, pNGBs. Has derivative couplings, e.g.:
0,ayysy*ylf,.

Introduction



QCD Axion

e A solution to the strong CP problem, 0,-p — al/f,.

[Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]

® Pseudo-scalars, pNGBs. Has derivative couplings, e.g.:
0,ayysy*ylf,.

o M, X AéCD/fa

3 Introduction



QCD Axion

e A solution to the strong CP problem, 0,-p — al/f,.

[Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]

® Pseudo-scalars, pNGBs. Has derivative couplings, e.g.:
0,ayysy*ylf,.

o M, X AéCD/fa

® Can be a CDM component (Il assume all)

3 Introduction



3

QCD Axion

Axion Like Particles (ALPs)
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ALP-Fermion parameter spaces (circa late 2019)
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ALP-Spin interaction
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Hopy = = 8ayyPa - Sy = = buy * Sy,

ba—l// = gal//l// \/ 21061 COS(mat) . Va—l// [astro-ph/9501042]

This is an effect linearin g, *!

But how to measure it?

(Hint : H — —yBY)

ceeman
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Bloch Equations

%k  Toleading order in important stuff

Creating macroscopic polarization
(generates a non-trivial steady state solution)

Torque Decaying excitations
(generates jcran.sverse from (causes stabilization)
longitudinal)
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Solving the EOMs

Doy = ayy\/ 2P, COS(M,L) - Va_w

b
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Fourier. From now on I’'m
If B, is constant l going to ignore subtleties
regarding cos(m,_t) # e

b, +yB (w=m,) S
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Spin-Based (Co)Magnetometry
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The Result

The transverse
spin

\ b, +yB,

S i =—————S§ + 65
L+ (yB, — m,) : et

The transverse spin:
Everything is encoded in the spin projections in the
directions perpendicular to the pumping term.
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Signal

Signal:
The thing we want to measure that an ALP generates



The Result

Transverse

maghnetic fields
The transverse Signal g

spin . /‘
\ b, +yB,

S i =—————S§ + 65
L+ (yB, — m,) : et

Transverse magnetic fields:
Can either be noise, or (as we will see) the effect of one atom species

on the other. Note that it is proportional to y.
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Spin in the z direction
Main demand: Don’t be tiny
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Transverse

The transverse Sheiel magnetic fields Spin in the z

spin /‘ direction
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Technical Noise

Technical Noise:

In addition to the magnetic field noise, whatever system is used for

readout introduces noise that does not “care” whether the spins are
on or off resonant.



The Result

Transverse

The transverse Sheiel magnetic fields Spin in the z

spin / direction
N
\ b, +yB, /
S =—————5, + 0S¢
i+ (yB,—m,) -
\

ALP mass
Technical Noise

ALP Masses
Our experiments can only probe ultralight ALPs. Until now we focused
mostly on things that are <neV, but in principle, can go as high as meVs.



The Result

Transverse

The transverse Sheiel magnetic fields Spin in the z

spin / direction
N
\ b, +yB, /
S =—————5, + 0S¢
i+ (yB,—m,) -
1 \

Resonance ALP mass
Frequency Technical Noise

Resonance Frequency
Determined mostly by external magnetic fields (which we can control

with coils). Note that it is proportional to y.



The Result

Transverse
_ magnetic fields Spin in the z
The transverse Signal g P

spin / direction
N
\ b, +yB, /
S =————5, + 0S¢
i+ (yB,—m,) -
1 \

Resonance ALP mass
Frequency Technical Noise

Decoherence Rate

Decoherence Rate:
The decoherence rate determines the width of the atomic response to

ALPs. Varies by 10 orders of magnitude depending on the system at
hand (in most systems here it is Hz-kHzs). A small decoherence rate
can be problematic due to slow response time.
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(Co)magnetometer

Ingredients List

Glass Cell
Alkali Vapor
Noble Gas

Lasers

JUdWaJinseaw uolezlie|od

Misc:
Oven

Magnetic Shields
Magnetic Coils
Optical Components



Alk-Nob Spin Exchange

Magnetic field from
(quantum) point-like
\ Interactions

(Ra p|d Iy) Binduced on Alk & SNob

é ) k 5 é Binduced on Nob & SAlk
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Current Summary

Introduction:

e Axions and ALPs

ALPs create a magnetic-like field
that can be measured by spin-
based magnetometers.

e Spin-Based (Co)magnetometers

e Established Magnhetometry Techniques for DM

Outline

Research




“Compensation Point”
Comagnetometer

[2020 JHEP: IMB, Hochberg, Kuflik, Volansky]
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Response to Magnetic Noise

signal + YapeS; aicB1 A

(YaBz Ak — M) + 1L A

Sal®w =m,) =

BJ_,Alk — BJ_,noise + 2/ﬁuwNobSJ_,Nob/ SNob,z — BJ_,noise + #SJ_,Nob

(ignoring backreaction of Alkali on Noble)

aS Alk /J/};ii ' ; /Z,ﬁ;f 1 4 2}/N0biMN0b
(yNosz,Nob R ma) + iFNo

For I'yop ® O,m, =0, B, N, IS
Saik = 0

YD e T Yy ‘
aBJ_,noise (/Af/’z,#xf my,) + 1l ppx

adjustable such that dg,

,hoise
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The Compensation Point

At the compensation point, any
magnetic noise (at low frequencies)
has no effect on the alkali spins!

Additionally, the two species are
“(near) in resonance”, allowing for a
fast response of the system to
sudden changes.
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Existing Data

Dataset 11

Dataset III(NS)’ \ j
. Dataset III(EW)
: Dataset I :

0 T T R T R R
10°® 10> 10* 102 102 01 1 10 10?2 10°

w [sec™!]

[Gergoios Vasilakis Dissertation 2011], [Justin M. Brown Dissertation 2011], [Thomas W. Kornack Dissertation 2005]
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Results (e)
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Lessons Learned

® There’s a huge potential for searching for ALP-nucleon
interactions with existing techniques.

® Electrons are very hard to work with due to their (i) wide

bandwidth and (ii) large response to background magnetic
fields.

® \We need our own experiment!

21 Compensation Point Comagnetometer
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Noble and Alkali Spin Detectors for
Ultralight Coherent darK matter
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NASDUCK

[2022, Science Adv. IMB, Ronen, Shaham, Katz, Volansky, Katz
(NASDUCK)],[2023, Nature Comm. IMB, Shaham, Hochberg,
Kuflik, Volansky, Katz (NASDUCK)] and [in progress: NASDUCK
(incl. IBM)]



Existing and Upcoming Experiments

NASDUCK Floquet
[2022, Science Adv. IMB, Ronen,
Shaham, Katz, Volansky, Katz]

NASDUCK
Modulated

Xel29  Xe131 \Prototype
data exists,

redone pre-
publication)

23 NASDUCK (+in theory stage:

NASDUCK SERF

[2023, Nature Comm. IMB, Shaham,
Hochberg, Kuflik, Volansky, Katz]
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[In progress: NASDUCK (incl. IMB)]

NASDUCK HF Compensation)



23

Existing and Upcoming Experiments

NASDUCK SERF NASDUCK Floquet
[2023, Nature Comm. IMB, Shaham, [2022, Science Adv. IMB, Ronen,
Hochberg, Kuflik, Volansky, Katz] Shaham, Katz, Volansky, Katz]
NASDUCK Subtracted(?)

[In progress: NASDUCK (incl. IMB)]
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*k To leading order in relevancy

yAlkSz,AlkBJ_,Alk
Sa(w =m,) = —
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Signal Response of Self-Compensating Comag

*k To leading order in relevancy

7AlkSz,AlkBJ_,Alk
Sa(w =m,) = —

(YakB, Ak — M) + i1 o

(arBoak — M) + T an) (NobBrNob — M) + ilnob )

Form, > 1y, YauB, atks YNon Bz Now SiBNAl sensitivity is lost like 1/m?

mal

1—‘Alk

Tuning YaB, an ® m, £ I' 5y gives an enhancement of

24 NASDUCK
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[2023, Nature Comm. IMB, Shaham, Hochberg, Kuflik, Volansky, Katz]
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The alkali metals we use have nuclear spins, and therefore hyperfine levels (A and B,
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The Briefest of Explanations on “SERF”

h,

The enhancement in sensitivity is , so the smaller I' 4y, the better*!

I)Uk

The alkali metals we use have nuclear spins, and therefore hyperfine levels (A and B,
rotating with frequencies w_, ;).

sing

Spin exchange
induces relaxation
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The Briefest of Explanations on “SERF”

h,

The enhancement in sensitivity is , so the smaller I' 4y, the better*!

1—‘Alk

The alkali metals we use have nuclear spins, and therefore hyperfine levels (A and B,
rotating with frequencies w_, ;).

- sing
= "t\ \
7)) \
& /\[\ /\ /\ [\ m /\[ Spin exchange
s TV / 7 — - P &
; | \/ \4\/ \/?\/ \/ X[: \/ \/ ’ induces relaxation
e 8, a | 8 A 8|4
o Wy “a LYy “ v % 1 "y
He Rapid spin exchange
/M\K //M'\“x. (from low B fields and
i N biiefh clense
N ATTSE s igh densities) causes no
| BN relaxation, Spin Exchange
\\ &9\)5/ Relaxation Free (SERF)
NASDUCK
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NASDUCK Floquet

[2022, Science Adv. IMB, Ronen, Shaham, Katz, Volansky, Katz]
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const - b App_Nob
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(ZamBrak — M) + iCan) (nobBrNob — M) + iT'ngp)

29 NASDUCK



29

The Problem at High Frequencies

signal =

NASDUCK

const - b App_Nob

((rawBraik — My) + 1L ax)

(O’NobBZ,Nob B ma) + iFNob)

Alkali response

Noble response
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signal =

}’Alsz,Alk

yNobB z,Nob

NASDUCK

The Problem at High Frequencies

const - b App_Nob

((rawBraik — My) + 1L ax)

(O’NobBZ,Nob B ma) + iFNob)

Alkali response

B=large
yAlkB zZ,ext + C1

—

yNobB zZ.ext + &)

Noble response

YaicB ext Y
2.eX Ak s 1

yNobB z.ext /Nob




The Problem at High Frequencies

const - b App_Nob

signal = . .
(ZarBraik — M) + iCan) [ NobBrNob — M) + iT'ngp)
Alkali response Noble response
B=large
YaikB2 Alk YakBy ext T € Y alkD7 ext Y Alk
— » — > 1
yNosz,Nob yNobB z.ext + &) }/Nosz,ext /Nob

The noble gas for large B fields (large frequencies) is off resonant!

29 NASDUCK
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Floquet Fields (Math Slide)

B, = B, + Bp cos(wpt)

— im,t
yAlkSz,AlkBJ_,Alk(a) =m,)-e

(YaiBz Ak — M) + i1 Ak

San(®) =
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Floquet Fields (Math Slide)

B, = B, + Bp cos(wpt)

imat‘l'nza)Ft

_ m,t _ .
YaikSzakB1 anl@w = my) - ™ \ Z n(nl,@) Yaudz AkBLanl@ =m,) - e

(YaBzak — my) + il A (YA Bz Ak 0 — My — M@p) + i1 g

San(®) =

n,n,
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Floquet Fields (Math Slide)

B, = B, + Bp cos(wpt)

imat‘l'nza)Ft

— imt . .
YardzABL an(@ = m,) - e™ \ Z 7](”1,”2) Yaudz AkBLanl@ =m,) - e

Sa(t) = . ;
(YaBzax — mMg) + 11 o1 (YaBz a0 — My — m@p) + il g

n,n,

For wp = ¥ aiB, Alk.0 = YNobBzNobor W get that around the floquet frequency
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Floquet Fields (Math Slide)

B, = B, + Bp cos(wpt)

imat‘l'nza)Ft

— imt . .
YardzABL an(@ = m,) - e™ \ Z 7](”1,”2) Yaudz AkBLanl@ =m,) - e

Sa(t) = . ;
(YaBzax — mMg) + 11 o1 (YaBz a0 — My — m@p) + il g

ny,Nny

For wp = ¥ aiB, Alk.0 = YNobBzNobor W get that around the floquet frequency

YAz A B anl® = m,)

1.1 : ,

Sa(w = m, + wp) = ’7}’ ) :
(YNobBzNob,o — M) + il A

NASDUCK



30

Floquet Fields (Math Slide)

B, = B, + Bp cos(wpt)

imat‘l'nza)Ft

_ m,t _ .
YaikSzakB1 anl@w = my) - ™ \ Z n(nl,@) Yaudz AkBLanl@ =m,) - e

Sa(®) = ; ;
(YaBzak — my) + il A (YA Bz Ak 0 — My — M@p) + i1 g

n,n,

For wp = ¥ aiB, Alk.0 = YNobBzNobor W get that around the floquet frequency

YAz A B anl® = m,)

1.1 : ,

Sa(w = m, + wp) = ’7;«’ ) :
(YNobBzNob,o — M) + il A

So that for m, = ynobB,.Nob,or WE Can now have both the species in resonance!
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Floquet Fields (lllustration Slide)

Plots are not to scale
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Floquet Fields (lllustration Slide)

Plots are not to scale
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Floquet Fields (lllustration Slide)

Plots are not to scale
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NASDUCK Floquet Results Commentary

Sensitivity was limited by noise of probe
beam (i.e. OOM larger than magnetic noise)

}

An improvement by an order
of magnitude is fairly easy*™
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Current Summary

Part 1: ALPs create a magnetic-
like field that can be measured by
spin-based magnetometers.

° EStabl.iShed I\/Iagnetometry Part 2: NASDUCK opened up new
Technlques for DM Research possibilities using existing

magnetometry techniques!

e Novel Magnetometry
Techniques

Outline



Sidenote: what else can be done with these detectors
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Sidenote: what else can be done with these detectors

® |Look for other “Anomalous Fields”:

® High Frequency Gravity Waves [IMB et al. in progress]

® Cosmic Neutrinos (seems too hard)
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® Metrology (look for “things that surely exist”)
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Sidenote: what else can be done with these detectors

® |Look for other “Anomalous Fields”:

® High Frequency Gravity Waves [IMB et al. in progress]
® Cosmic Neutrinos (seems too hard)

® Metrology (look for “things that surely exist”)

e (Ql
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Ongoing Experiments with new techniques®

“Cocomag”
NANANANANS .
AAAAAAS Data exists,

waiting to be

analyzed, this

possibly has
relevance to Ql*.

Dual Alkali Subtraction

Ongoing calibrations in
preparation to data-taking

36 Novel Magnetometry Techniques

Longitudinal Measurements

The theory paper is out,
and an experiment has
already been performed

based on it as well*. . l
R

< S5 - >

NASDUCK “Subtracted”
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At the design stages, optimizing
methodologies.



Ongoing Experiments with new techniques®

NASDUCK “Subtracted” Longitudinal Measurements

The theory paper is out,
and an experiment has

R o
A e already been performed
e — based onitaswell*. | |
9‘\ e 0%
5 ® v N W
« > - =

At the design stages, optimizing
methodologies.
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NASDUCK Subtraction

sk To leading order in details
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NASDUCK Subtraction

sk To leading order in details

40"
p3-e

7

S, 1=¢B, + by arp_Nop T 05, 5,, =B, +05,

¢
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NASDUCK Subtraction

sk To leading order in details

40"
p3-e

7

S, 1=¢B, + by arp_Nop T 05, 5,, =B, +05,

¢

_ gl
AS — SJ_,l - _SJ_,Z
C3
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NASDUCK Subtraction

sk To leading order in details

40"
p3-e

7

S, 1=¢B, + by arp_Nop T 05, 5,, =B, +05,

¢

_ gl
AS — SJ_,l - _SJ_,2
C3

C2 . b 1, ALP—Nob
\/ L+ (c/cy)? 9oL

SNR(AS) =
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Scalar Longitudinal Magnetometry

[2023, PRD. IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak]

Since coupling constants are scalars, scalar DM (not axions)
can mimic variation in fundamental constants.

e
Bpermanent—magnet X luBnparticles ~ - nparticles
e
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Scalar Longitudinal Magnetometry

[2023, PRD. IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak]

Since coupling constants are scalars, scalar DM (not axions)
can mimic variation in fundamental constants.

e
Bpermanent—magnet X luBnparticles ~ - nparticles
e

If e or m, oscillate, this means B oscillates, and can be measured with a magnetometer

We can measure B, rather than B |
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Scalar Longitudinal Magnetometry

[2023, PRD. IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak]

Since coupling constants are scalars, scalar DM (not axions)
can mimic variation in fundamental constants.

e
Bpermanent—magnet X luBnparticles ~ - nparticles
e

If e or m, oscillate, this means B oscillates, and can be measured with a magnetometer

We can measure B, rather than B |

First experiment is ongoing by Sushkov et al.
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Can Longitudinal Magnetometry be used for ALPs?
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Can Longitudinal Magnetometry be used for ALPs?

Naive answer:

NO!

39 Novel Magnetometry Techniques



Can Longitudinal Magnetometry be used for ALPs?

Naive answer:

NO!

2
b J_,ALPF

((ma o a)res)z + I 2)FL

S5.(t > 00) x 11—

Second order in the couplings!
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Should we try to measure ALPs?
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[Ciaran O’Hare’s GitHub, see references within]
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At 10 Teslas, an electron-spin based sensor would be sensitive to meV axions
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Spin Shot Noise
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Spin Shot Noise

At zero temperature, under B = B_Z (and no axions):

N,

spinsZ

(8(1)) = 5
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Spin Shot Noise

At zero temperature, under B = B_Z (and no axions):

N,

spinsZ

(8(1)) = 5

Since [S,, H] # 0, measuring it would induce quantum noise,

) ~ [N~

N, Spins
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Spin Shot Noise

At zero temperature, under B = B_Z (and no axions):

N,

spinsZ

2

(S(1)) =

Since [S,, H] # 0, measuring it would induce quantum noise,

) ~ [N~

N, Spins

This does not exist when measuring 5_! No Spin Shot Noise*
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Spin Shot Noise as an Observable

If axions exist, [S,, H] # 0, so measuring (S,) would induce a quantum noise:
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Spin Shot Noise as an Observable

If axions exist, [S,, H] # 0, so measuring (S,) would induce a quantum noise:

b 1,ALP

\/maX(10‘6ma, [)d') Nspins

\/ PSD(sig) ~
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Spin Shot Noise as an Observable

If axions exist, [S,, H] # 0, so measuring (S,) would induce a quantum noise:

b 1,ALP

\/maX(10‘6ma, [)d') Nspins

/

Axion width/detector bandwidth
(usually inversely linear in that)

\/ PSD(sig) ~
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Spin Shot Noise as an Observable

If axions exist, [S,, H] # 0, so measuring (S,) would induce a quantum noise:

b 1,ALP

\/maX(10‘6ma, [)d'p) Nspins

s \

, , , The longitudinal relaxation rate,
Axion width/detector bandwidth
. : : can be much smaller than I
(usually inversely linear in that)

\/ PSD(sig) ~
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Spin Shot Noise as an Observable

If axions exist, [S,, H] # 0, so measuring (S,) would induce a quantum noise:

Number of spins, usually
one wants this to be big,
but here it’s not clear

b 1,ALP

\/maX(10‘6ma, [)d'p) Nspins

s \

, , , The longitudinal relaxation rate,
Axion width/detector bandwidth
. : : can be much smaller than I
(usually inversely linear in that)

\/ PSD(sig) ~
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(Some) Additional Points of Note

® Due to the lack of resonance at the measured signal frequency,
one can add a secondary spin/EM amplifier.

e Due to the quantum nature, measuring EMF ( < dB/dt ~ 1" B)
can greatly enhance signal (and noise).

e Due to finite B, stability, a gradiometer is necessary*.

® The “naive observable” isn’t as bad as it seems (given a floquet)

® Many challenges for actual implementation but also many
possibilities!
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Conclusions

 The use of spin-based sensors to
search for DM has bloomed and
expanded in the last few years.
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Conclusions

 The use of spin-based sensors to
search for DM has bloomed and
expanded in the last few years.

e EXisting technologies can already
enhance the current capabillities, but...

e With creativity, one can think of new
ideas, with many promising directions!
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Noble and Alkali Spin Detectors for Ultralight Coherent darK-matter

Ul

DUCK-matter &

(Degree in beakness school)

v Thanks for listening!

NASDUCK-matter




