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Axion Like Particles (ALPs)
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ALP-Fermion parameter spaces (circa late 2019)
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(Hint : )Hzeeman = − γ ⃗B ⃗S
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Solving the EOMs

b⃗a−ψ = gaψψ 2ρa cos(mat) ⋅ ⃗va−ψ

·S⊥ = iγBzS⊥ − iγ (B⊥ +
b⊥

γ ) Sz − ΓS⊥

If  is constantBz

S⊥(ω = ma) =
b⊥ + γB⊥(ω = ma)

(γBz − ma) + iΓ
Sz

Fourier. From now on I’m 
going to ignore subtleties  

regarding  cos(mat) ≠ eimat( )



The Result

S⊥ =
b⊥ + γB⊥

iΓ + (γBz − ma)
Sz + δSeff



The Result

S⊥ =
b⊥ + γB⊥

iΓ + (γBz − ma)
Sz + δSeff

The transverse 
spin

The transverse spin:

Everything is encoded in the spin projections in the 
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Our experiments can only probe ultralight ALPs. Until now we focused 
mostly on things that are <neV, but in principle, can go as high as meVs.
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The Result

S⊥ =
b⊥ + γB⊥

iΓ + (γBz − ma)
Sz + δSeff

The transverse 
spin

Spin in the z 
directionSignal

Transverse 
magnetic fields

ALP massResonance 
Frequency

Decoherence Rate

Decoherence Rate:

The decoherence rate determines the width of the atomic response to 
ALPs. Varies by 10 orders of magnitude depending on the system at 
hand (in most systems here it is Hz-kHzs). A small decoherence rate 
can be problematic due to slow response time. 

Technical Noise
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13 Spin-Based (Co)magnetometry 

Alk-Nob Spin Exchange

Alk Nob

Alk Nob

Nob
Alk

(Rapidly)

Magnetic field from 
(quantum) point-like

interactions

Binduced on Alk ∝ SNobNob

Binduced on Nob ∝ SAlkAlk
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14 Outline

ALPs create a magnetic-like field 
that can be measured by spin-
based magnetometers.



“Compensation Point” 
Comagnetometer
[2020 JHEP: IMB, Hochberg, Kuflik, Volansky]
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(ignoring backreaction of Alkali on Noble)
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17 Compensation Point Comagnetometer

The Compensation Point

At the compensation point, any 
magnetic noise (at low frequencies) 
has no effect on the alkali spins!

Additionally, the two species are 
“(near) in resonance”, allowing for a 
fast response of the system to 
sudden changes. 
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Existing Data
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Results (e)

[Y. Hochberg, E. Kuflik, T. Volansky, IMB 1907.03767. W. A. Terrano, et al.::1508.02463, LUX Collaboration:1704.02297, M. M. M 
Bertolami, et al. :1406.7712, W. A. Terrano,  et al.: 1902.04246, G. Vasilakis, Dissertation: 2011, J. M. Brown, Dissertation: 2011, T. W. Kornack 
Dissertation: 2005]. 
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The smoothness of the bound is 
not real! Recent work by Lee et 

al with access to raw data 
computed the full result!



Lessons Learned

21 Compensation Point Comagnetometer



Lessons Learned

• There’s a huge potential for searching for ALP-nucleon 
interactions with existing techniques.

21 Compensation Point Comagnetometer



Lessons Learned

• There’s a huge potential for searching for ALP-nucleon 
interactions with existing techniques.

• Electrons are very hard to work with due to their (i) wide 
bandwidth and (ii) large response to background magnetic 
fields.

21 Compensation Point Comagnetometer



Lessons Learned

• There’s a huge potential for searching for ALP-nucleon 
interactions with existing techniques.

• Electrons are very hard to work with due to their (i) wide 
bandwidth and (ii) large response to background magnetic 
fields.

• We need our own experiment!

21 Compensation Point Comagnetometer
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Noble and Alkali Spin Detectors for 
Ultralight Coherent darK matter

NASDUCK 
[2022, Science Adv. IMB, Ronen, Shaham, Katz, Volansky, Katz 
(NASDUCK)],[2023, Nature Comm. IMB, Shaham,  Hochberg, 
Kuflik, Volansky, Katz (NASDUCK)] and [in progress: NASDUCK 
(incl. IBM)]



Existing and Upcoming Experiments

23 NASDUCK

NASDUCK Floquet

Noble Alkali
[2022, Science Adv. IMB, Ronen, 

Shaham, Katz, Volansky, Katz]

Alkali

NASDUCK SERF

[2023, Nature Comm. IMB, Shaham, 

Hochberg, Kuflik, Volansky, Katz]

NASDUCK

Modulated

Xe129 Xe131 (Prototype 
data exists, 
redone pre-
publication)

Noble

NASDUCK Subtracted(?)

[In progress: NASDUCK (incl. IMB)]
Alkali

- =
(+in theory stage: NASDUCK HF Compensation)
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SAlk(ω = ma) =
γAlkSz,AlkB⊥,Alk

(γAlkBz,Alk − ma) + iΓAlk
=

γAlkλMNobSz,Alk

((γAlkBz,Alk − ma) + iΓAlk)
b⊥,ALP−Nob

((γNobBz,Nob − ma) + iΓNob)

For , signal sensitivity is lost like ma ≫ ΓAlk, γAlkBz,Alk, γNobBz,Nob 1/m2
a

Signal Response of Self-Compensating Comag
To leading order in relevancy*

Tuning  gives an enhancement of !γAlkBz,Alk ≈ ma ± ΓAlk
ma

ΓAlk
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[2023, Nature Comm. IMB, Shaham, Hochberg, Kuflik, Volansky, Katz]
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The Briefest of Explanations on “SERF”

The enhancement in sensitivity is , so the smaller , the better*!
ma

ΓAlk
ΓAlk

The alkali metals we use have nuclear spins, and therefore hyperfine levels (A and B, 
rotating with frequencies ).ωa, ωb

Ph
as

e 
of

 a
 sp

in

plots from: [PRA, 1977, Happer and Tam], though [PRL 2002 Alfred, Lyman, Kornack, Romalis] developed the SERF magnetometer

Spin exchange 
induces relaxation

Rapid spin exchange 
(from low B fields and 
high densities) causes no 
relaxation, Spin Exchange 
Relaxation Free (SERF)
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NASDUCK Floquet
[2022, Science Adv. IMB, Ronen, Shaham, Katz, Volansky, Katz]
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signal =
const ⋅ b⊥,ALP−Nob

((γAlkBz,Alk − ma) + iΓAlk) ((γNobBz,Nob − ma) + iΓNob)

The noble gas for large B fields (large frequencies) is off resonant!

Noble responseAlkali response

γAlkBz,Alk

γNobBz,Nob
=

γAlkBz,ext + c1

γNobBz,ext + c2

The Problem at High Frequencies

γAlkBz,ext

γNobBz,ext
=

γAlk

γNob
≫ 1

B=large
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Floquet Fields (Math Slide)

Bz = Bz,0 + BF cos(ωFt)

For , we get that around the floquet frequency ωF = γAlkBz,Alk,0 − γNobBz,Nob,0

So that for  , we can now have both the species in resonance!ma = γNobBz,Nob,0

SAlk(t) =
γAlkSz,AlkB⊥,Alk(ω = ma) ⋅ eimat

(γAlkBz,Alk − ma) + iΓAlk

SAlk(ω = ma + ωF) = η(1,1)
F

γAlkSz,AlkB⊥,Alk(ω = ma)
(γNobBz,Nob,0 − ma) + iΓAlk

∑
n1,n2

η(n1,n2)
F

γAlkSz,AlkB⊥,Alk(ω = ma) ⋅ eimat+n2ωFt

(γAlkBz,Alk,0 − ma − n1ωF) + iΓAlk
→
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Floquet Fields (Illustration Slide)
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Floquet Fields (Illustration Slide)

Bz = Bz,0 + BF cos(ωFt)
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NASDUCK Floquet Results

Projected reach for a slightly 
more advanced system( )
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NASDUCK Floquet Results Commentary

Sensitivity was limited by noise of probe 
beam (i.e. OOM larger than magnetic noise)

An improvement by an order 
of magnitude is fairly easy*



Current Summary

• Established Magnetometry 
Techniques for DM Research


• Novel Magnetometry 
Techniques

34 Outline

Part 1: ALPs create a magnetic-
like field that can be measured by 
spin-based magnetometers.

Part 2: NASDUCK opened up new 
poss ib i l ities us ing ex isting  
magnetometry techniques!
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• Look for other “Anomalous Fields”:


• Other DM models/Long Range Forces


• High Frequency Gravity Waves [IMB et al. in progress]


• Cosmic Neutrinos (seems too hard)

• Metrology (look for “things that surely exist”)

• QI

35 One-Slide Interlude
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Ongoing Experiments with new techniques*

Xe129 Xe131

“Cocomag”Rb

D a t a e x i s t s , 
waiting to be 
analyzed, this 
p o s s i b l y h a s 
relevance to QI*. 

Longitudinal Measurements

The theory paper is out, 
and an experiment has 
already been performed 
based on it as well*.

Noble

NASDUCK “Subtracted”

At the design stages, optimizing 
methodologies.  

Alkali

- =
Dual Alkali Subtraction
Ongoing calibrations in 
preparation to data-taking

Novel Magnetometry Techniques
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37 Novel Magnetometry Techniques

To leading order in details*

S⊥,1 = c1B⊥ + c2b⊥,ALP−Nob + δS⊥ S⊥,2 = c3B⊥ + δS⊥

ΔS ≡ S⊥,1 −
c1

c3
S⊥,2

SNR(ΔS) =
c2

1 + (c1/c3)2
⋅

b⊥,ALP−Nob

δS⊥
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38 Novel Magnetometry Techniques

[2023, PRD. IMB, Budker, Flambaum, Samsonov, Sushkov, Tretiak] 

Since coupling constants are scalars, scalar DM (not axions) 
can mimic variation in fundamental constants.

If  or  oscillate, this means  oscillates, and can be measured with a magnetometere me B

Bpermanent−magnet ∝ μBnparticles ∼
e

me
nparticles

First experiment is ongoing by Sushkov et al.

We can measure  rather than Bz B⊥
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Can Longitudinal Magnetometry be used for ALPs?

39 Novel Magnetometry Techniques

Naive answer:

NO!
Sz(t → ∞) ∝ 1 −

b2
⊥,ALPΓ

((ma − ωres)2 + Γ2)ΓL

Second order in the couplings!
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Should we try to measure ALPs?

40 Novel Magnetometry Techniques [Ciaran O’Hare’s GitHub, see references within]

At 10 Teslas, an electron-spin based sensor would be sensitive to  axionsmeV
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41 Novel Magnetometry Techniques

At zero temperature, under  (and no axions): ⃗B = Bz ̂z

⟨ ⃗S(t)⟩ =
Nspins ̂z

2

This does not exist when measuring ! No Spin Shot Noise*Sz

Since , measuring it would induce quantum noise,[Sx, H] ≠ 0

⟨S2
x ⟩ ∼ Nspins ∼

⟨Sz⟩

Nspins
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Spin Shot Noise as an Observable

42 Novel Magnetometry Techniques

PSD(sig) ∼
b⊥,ALP

max(10−6ma, Γ2)(ΓL) Nspins

If axions exist, , so measuring  would induce a quantum noise: [Sz, H] ≠ 0 ⟨Sz⟩

Axion width/detector bandwidth

(usually inversely linear in that)

The longitudinal relaxation rate,

 can be much smaller than .Γ

Number of spins, usually 
one wants this to be big, 

but here it’s not clear



(Some) Additional Points of Note

• Due to the lack of resonance at the measured signal frequency, 
one can add a secondary spin/EM amplifier.


• Due to the quantum nature, measuring EMF ( ) 
can greatly enhance signal (and noise).


• Due to finite  stability, a gradiometer is necessary*.


• The “naive observable” isn’t as bad as it seems (given a floquet)


• Many challenges for actual implementation but also many 
possibilities!

∝ dB/dt ∼ Γ1B

Bz
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• The use of spin-based sensors to 
search for DM has bloomed and 
expanded in the last few years.

• Existing technologies can already 
enhance the current capabilities, but… 

•With creativity, one can think of new 
ideas, with many promising directions!



DUCK-matter

NASDUCK-matter

Noble and Alkali Spin Detectors for Ultralight Coherent darK-matter

(Degree in beakness school)

Thanks for listening!

3σ

4σ

5σ!


