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• “So far we have analyzed less than 6% of the data that the experiment will
eventually collect. Although these first results are telling us that there is an
intriguing difference with the Standard Model, we will learn much more in
the next couple of years.” – Chris Polly, Fermilab scientist, co-spokesperson
for the Fermilab muon g − 2 experiment.
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q = p′ − p, ν

p p′

Dirac equation implies:

ū(p′)γνu(p)
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(
F1(q
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2)[γν , γρ]qρ
4m

)
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a = F2(q
2 = 0) =

g − 2
2

(Euclidean space time)

• The quantity a is called the anomalous magnetic moments.

• Its value comes from quantum correction.
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• Theory Initiative Whiterpaper posted 10 June 2020:
arXiv:2006.04822 [Phys. Rept. 887 (2020) 1-166]
(132 authors, 82 institutions, 21 countries)Contributions from known particles: The Standard Model

aµ(SM) = aµ(QED) + aµ(Weak) + aµ(Hadronic)
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Uncertainty dominated by hadronic contributions
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Slide from Christoph Lehner’s talk at https://indico.cern.ch/event/1019685
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Operator:

⟨O(U, q, q̄)⟩ =
∫
[DU]

∏
q[Dqq][Dq̄q]e−S

latt
E O(U, q, q̄)∫

[DU]
∏
q[Dqq][Dq̄q]e−S

latt
E

=

∫
[DU]e−Slatt

glue
∏
q det

(
Dlatt
µ γµ + amq

)
Õ(U)∫

[DU]e−Slatt
glue

∏
q det

(
Dlatt
µ γµ + amq

)
Monta Carlo:

• The integration is performed for all the link variables: U. Dimension is
L3 × T × 4× 8.

• Sample points the following distribution:

e−S
latt
glue(U)

∏
q

det
(
Dlatt
µ (U)γµ + amq

)
• Therefore:

⟨O(U, q, q̄)⟩ =
1

Nconf

Nconf∑
k=1

Õ(U(k))
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• How many parameters?

g aml ams

isospin symmetric (mu = md = ml) and three flavor u, d, s theory.
• We are supposed to take a→ 0 limit, how?

g → 0

For different g, as long as it is small, the lattice calculation is describe
the same physics, just with different a.

a ≈ a0 exp
(
−

1

11− 2
3
Nf

8π2

g2

)
This is the the renormalization equation.

• Why do we need three inputs mπ, mK , mΩ ?
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• How many parameters?

g aml ams

isospin symmetric (mu = md = ml) and three flavor u, d, s theory.
• We are supposed to take a→ 0 limit, how?

g → 0

For different g, as long as it is small, the lattice calculation is describe
the same physics, just with different a.

a ≈ a0 exp
(
−

1

11− 2
3
Nf

8π2

g2

)
This is the the renormalization equation.

• Why do we need three inputs mπ, mK , mΩ ?

One of them, mΩ, is used determine the overall scale in the unit of GeV.
Or, we actually only need two parameters: mπ/mΩ and mK/mΩ.
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Correlation function:

C(t) = ⟨π−(x⃗ , t)
∑
y⃗

π+(y⃗ , 0)⟩
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∏
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∑
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(x⃗ ,t;y⃗ ,0)

γ5
(
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µ γµ + amd

)−1
(y⃗ ,0;x⃗ ,t)

γ5

]
∫
[DU]e−Slatt
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∏
q det

(
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)
∝ e−mπt

meff
π (t) = ln

(
C(t)

C(t + 1)

)

64I a−1 = 2.359GeV amπ = 0.059 RBC-UKQCD

x y
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Dispersive method - Overview

e+

e−

γ e+e− → hadrons(γ)

Jµ = V I=1,I3=0
µ + V I=0,I3=0

µ

τ → νhadrons(γ)

Jµ = V I=1,I3=±1
µ − AI=1,I3=±1

µ

ν

τ W

Knowledge of isospin-breaking corrections and separation of vector and axial-vector
components needed to use τ decay data. Can do this from LQCD+QED (Bruno,
Izubuchi, CL, Meyer, 1811.00508)!

Can have both energy-scan and ISR setup.
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Lattice Calculation of the Lowest-Order Hadronic Contribution
to the Muon Anomalous Magnetic Moment

T. Blum
RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 18 December 2002; published 30 July 2003)

We present a quenched lattice calculation of the lowest order [O��2�] hadronic contribution to the
anomalous magnetic moment of the muon which arises from the hadronic vacuum polarization. A
general method is presented for computing entirely in Euclidean space, obviating the need for the usual
dispersive treatment which relies on experimental data for e�e� annihilation to hadrons. While the
result is not yet of comparable precision to those state-of-the-art calculations, systematic improvement
of the quenched lattice computation to this level is straightforward and well within the reach of present
computers. Including the effects of dynamical quarks is conceptually trivial; the computer resources
required are not.

DOI: 10.1103/PhysRevLett.91.052001 PACS numbers: 12.38.Gc, 13.40.Em, 14.60.Ef, 14.65.Bt

The magnetic moment of the muon is defined by the
q2 ! 0 (static) limit of the vertex function which de-
scribes the interaction of the electrically charged muon
with the photon,

���p2; p1� � ��F1�q
2� �

i
4m�

��� 6q� 6q���F2�q
2�; (1)

where m� is the muon mass, q � p2 � p1 is the photon
momentum, and p1; p2 are the incoming and outgoing
momentum of the muon. Lorentz invariance and current
conservation have been used in obtaining Eq. (1). Form
factors F1�q2� and F2�q2� contain all information about
the muon’s interaction with the electromagnetic field. In
particular, F1�0� � 1 is the electric charge of the muon in
units of e, and g � 2F1�0� � 2F2�0� � 2� 2F2�0� is the
Landé g factor, proportional to the magnetic moment. The
anomaly, defined as half of the difference of g from its
tree level value, which the Dirac equation predicts to be 2
for an elementary spin 1=2 particle, is a� � F2�0�. Thus,
F2�0� � 0 at tree level, and corrections to F2�0�, and
therefore a�, start at O��� in QED, where � � e2=4�
is the fine structure constant. F1�0� � 1 to all orders due
to charge conservation.

The most precise measurement ever of the muon’s
anomalous magnetic moment was recently carried out at
Brookhaven National Laboratory [1]. In [2,3], the authors
quote three standard deviation discrepancies between the
standard model and experiment [1]. The theoretical and
experimental uncertainties are roughly the same and
were added in quadrature. The dominant theoretical un-
certainty resides in hadronic loop corrections arising
from the hadronic vacuum polarization [O��2�] (see
Fig. 1) and hadronic light-by-light scattering [O��3�],
and it is clearly of interest to reduce these errors.
Presently, the O��2� hadronic contribution is calculated
by using a dispersion relation and the experimental value
of the total cross section for e� e� annihilation to had-
rons to relate the imaginary part of the vacuum polariza-
tion to the real part. This calculation is very precise,

though a discrepancy with a calculation that uses � decay
data may indicate a theory error as large as 5% [2] and
reduces the disagreement with experiment to roughly 1.6
standard deviations. A purely theoretical, first principles,
calculation has been lacking and is desirable, and also has
several advantages over the conventional approach. For
instance, the separation of QED effects from hadronic
corrections is automatic, as is the treatment of isospin
corrections if different quark masses are used in the
simulation. Thus, it is possible that lattice calculations
may eventually help to settle the above-mentioned dis-
crepancy between e� e� annihilation and � decay.

The method described here is simple and direct. We
begin with Ref. [5] which describes the computation of
multiloop graphs in perturbation theory through the
expansion of the integrand in terms of hyperspherical
polynomials. The key is that the entire integral, including
external momenta, can be Wick rotated into Euclidean
space and the angular integrals done so that what is left is
an integral over the magnitude of the loop momentum. If
the graph can be set up in a certain way then, after the
external momenta are analytically continued on shell, the

FIG. 1. The lowest order hadronic contribution to the muon
anomalous magnetic moment [4]. The muon has outgoing
momentum p� q=2 after scattering from a photon with mo-
mentum q. The loop momentum is k. The blob represents the
nonperturbative hadronic vacuum polarization.
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Calculation of the Hadronic Vacuum Polarization Contribution
to the Muon Anomalous Magnetic Moment

T. Blum,1 P. A. Boyle,2 V. Gülpers,3 T. Izubuchi,4,5 L. Jin,1,5 C. Jung,4 A. Jüttner,3 C. Lehner,4,* A. Portelli,2 and J. T. Tsang2
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3School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

4Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
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(Received 25 January 2018; published 12 July 2018)

We present a first-principles lattice QCDþ QED calculation at physical pion mass of the leading-order
hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total
contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects
is aHVP LO

μ ¼ 715.4ð18.7Þ × 10−10. By supplementing lattice data for very short and long distances with
R-ratio data, we significantly improve the precision to aHVP LO

μ ¼ 692.5ð2.7Þ × 10−10. This is the currently
most precise determination of aHVP LO

μ .

DOI: 10.1103/PhysRevLett.121.022003

Introduction.—The anomalous magnetic moment of the
muon aμ is defined as the deviation of the Landé factor gμ
from Dirac’s relativistic quantum mechanics result,
aμ ¼ ½ðgμ − 2Þ=2&. It is one of themost precisely determined
quantities in particle physics and is currently known both
experimentally (BNL E821) [1] and from a standard model
theory calculation [2] to approximately1=2parts permillion.
Interestingly, the standard model result aSMμ deviates

from the experimental measurement aexptμ at the 3–4σ level,
depending on which determination of the leading-order
hadronic vacuum polarization aHVP LO

μ is used. One finds
[3–6]

aexptμ − aSMμ ¼ 25.0ð4.3Þð2.6Þð6.3Þ × 10−10 ½3; 4&;
31.8ð4.1Þð2.6Þð6.3Þ × 10−10 ½4; 5&;
26.8ð3.4Þð2.6Þð6.3Þ × 10−10 ½4; 6&; ð1Þ

where the quoted errors correspond to the uncertainty in
aHVP LO
μ , aSMμ − aHVP LO

μ , and aexptμ . This tension may hint at
new physics beyond the standard model of particle physics
such that a reduction of uncertainties in Eq. (1) is highly
desirable. New experiments at Fermilab (E989) [7] and
J-PARC (E34) [8] intend to decrease the experimental

uncertainty by a factor of 4. First results of the E989
experiment may be available before the end of 2018 [9]
such that a reduction in uncertainty of the aHVP LO

μ con-
tribution is of timely interest.
In the following, we perform a complete first-principles

calculation of aHVP LO
μ in lattice QCDþ QED at physical

pion mass with nondegenerate up and down quark masses
and present results for the up, down, strange, and charm
quark contributions. Our lattice calculation of the light-
quark QED correction to aHVP LO

μ is the first such calcu-
lation performed at physical pion mass. In addition, we
replace lattice data at very short and long distances by
experimental eþe− scattering data using the compilation of
Ref. [10], which allows us to produce the currently most
precise determination of aHVP LO

μ .
Computational method.—The general setup of our non-

perturbative lattice computation is described in Ref. [11].
We compute

aμ ¼ 4α2
Z

∞

0
dq2fðq2Þ½Πðq2Þ − Πðq2 ¼ 0Þ&; ð2Þ

where fðq2Þ is a known analytic function [11] and Πðq2Þ is
defined as

P
xe

iqxhJμðxÞJνð0Þi ¼ ðδμνq2 − qμqνÞΠðq2Þ
with sum over space-time coordinate x and JμðxÞ ¼
i
P

f Q fΨ̄fðxÞγμΨfðxÞ. The sum is over up, down, strange,
and charm quark flavors with QED charges Q up;charm ¼ 2=3
and Q down;strange ¼ −1=3. For convenience we do not
explicitly write the superscript HVP LO. We compute
Πðq2Þ using the kernel function of Refs. [12,13]

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 121, 022003 (2018)
Editors' Suggestion

0031-9007=18=121(2)=022003(6) 022003-1 Published by the American Physical Society

Pure lattice result and dispersive result with reduced ππ dependence (window method)
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Leading hadronic contribution to the muon 
magnetic moment from lattice QCD

Sz. Borsanyi1, Z. Fodor1,2,3,4,5 ✉, J. N. Guenther6,10, C. Hoelbling1, S. D. Katz4, L. Lellouch7, 
T. Lippert1,2, K. Miura7,8,9, L. Parato7, K. K. Szabo1,2, F. Stokes2, B. C. Toth1, Cs. Torok2 & 
L. Varnhorst1,10

The standard model of particle physics describes the vast majority of experiments 
and observations involving elementary particles. Any deviation from its predictions 
would be a sign of new, fundamental physics. One long-standing discrepancy 
concerns the anomalous magnetic moment of the muon, a measure of the magnetic 
field surrounding that particle. Standard-model predictions1 exhibit disagreement 
with measurements2 that is tightly scattered around 3.7 standard deviations. Today, 
theoretical and measurement errors are comparable; however, ongoing and planned 
experiments aim to reduce the measurement error by a factor of four. Theoretically, 
the dominant source of error is the leading-order hadronic vacuum polarization 
(LO-HVP) contribution. For the upcoming measurements, it is essential to evaluate 
the prediction for this contribution with independent methods and to reduce its 
uncertainties. The most precise, model-independent determinations so far rely on 
dispersive techniques, combined with measurements of the cross-section of 
electron–positron annihilation into hadrons3–6. To eliminate our reliance on these 
experiments, here we use ab initio quantum chromodynamics (QCD) and quantum 
electrodynamics simulations to compute the LO-HVP contribution. We reach 
sufficient precision to discriminate between the measurement of the anomalous 
magnetic moment of the muon and the predictions of dispersive methods. Our result 
favours the experimentally measured value over those obtained using the dispersion 
relation. Moreover, the methods used and developed in this work will enable further 
increased precision as more powerful computers become available.

The muon is an ephemeral sibling of the electron. It is 207 times more 
massive, but has the same electric charge and spin. Similarly to the 
electron, it behaves like a tiny magnet, characterized by a magnetic 
moment. This quantity is proportional to the spin and charge of the 
muon and inversely proportional to twice its mass. Dirac’s relativistic 
quantum mechanics predicts that the constant of proportionality, gμ, 
should be equal to 2. However, in a relativistic quantum field theory 
such as the standard model, this prediction receives small corrections 
due to quantum vacuum fluctuations. These corrections are called the 
anomalous magnetic moment and are quantified by (gμ − 2)/2. They 
were measured to a precision of 0.54 ppm at the Brookhaven National 
Laboratory in the early 2000s2, and have been calculated with a com-
parable precision (see ref. 7 for a recent review).

At this level of precision, all of the interactions of the standard model 
contribute. The leading contributions are electromagnetic and 
described by quantum electrodynamics (QED), but the one that dom-
inates the theoretical error is induced by the strong interaction and 

requires solving the highly nonlinear equations of QCD at low energies. 
This contribution is determined by the LO-HVP, which describes how 
the propagation of a virtual photon is modified by the presence of 
quark and gluon fluctuations in the vacuum. Here we compute this 
LO-HVP contribution to (gμ − 2)/2, denoted by ‐aμ

LO HVP, using ab initio 
simulations in QCD and QED.

QCD is a generalized version of QED. The Euclidean Lagrangian for this  
theory  is  e F F g G G ψ γ q A B m ψℒ= [1/(4 )] + [1/(2 )]tr( )+ ∑ [ (∂ + i + i )+ ]μν μν μν μν f f μ μ f μ μ f f

2 2  ,  
where γμ are the Dirac matrices, f runs over the ‘flavours’ of quarks, mf 
are the masses and the qf are the charges of quarks in units of the elec-
tron charge, e. Moreover, Fμν = ∂μAν − ∂νAμ and Gμν = ∂μBν − ∂νBμ + [Bμ, Bν] 
and g is the QCD coupling constant. In electrodynamics the gauge 
potential Aμ is a real-valued field, whereas in QCD Bμ is a 3 × 3 Hermitian 
matrix field. The different flavours of quarks are represented by  
independent fermionic fields, ψf. These fields have an additional  
‘colour’ index in QCD, which runs from 1 to 3. In this work, we include 
both QED and QCD, as well as four non-degenerate quark flavours  
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C(t) =
1

3

∑
x⃗

∑
j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩

aHVP LO
µ =

+∞∑
t=0

w(t)C(t)

• In Euclidean space-time, C(t) decreases
exponentially as t increases.
For t ∼ 1 fm, C(t) ∼ e−mρt .
For t →∞, C(t) ∼ e−2mπt .
Lattice statistical error: δC(t) ∼ e−mπt .

• For t ≲ 1 fm, w(t) ∼ t4.
For t →∞ (mµt ≫ 1), w(t) ∼ t2.

Diagrams – Isospin limit

2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2, ↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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r

Resulting two-point p(d) from p(r)=(1.5 + r)-5

Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-

x

x

x

(a) M

x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

8 / 34

Diagrams – Isospin limit

2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2, ↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
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quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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disconnected contribution (that likely is very small).
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aHVP LO
µ =

+∞∑
t=0

w(t)C(t) w(t) = wSD(t) + wW(t) + wLD(t)

How does this translate to the time-like region?

Supplementary Information – S1

SUPPLEMENTARY MATERIAL

In this section we expand on a selection of technical de-
tails and add results to facilitate cross-checks of di↵erent
calculations of aHVP LO

µ .

Continuum limit: The continuum limit of a selec-
tion of light-quark window contributions aW

µ is shown in
Fig. 8. We note that the results on the coarse lattice di↵er
from the continuum limit only at the level of a few per-
cent. We attribute this mild continuum limit to the fa-
vorable properties of the domain-wall discretization used
in this work. This is in contrast to a rather steep contin-
uum extrapolation that occurs using staggered quarks as
seen, e.g., in Ref. [42].

The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a⇤)2 = 0.05 with ⇤ = 400 MeV and suggests that
remaining discretization errors may be small. Since we
find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
fm to 0.5 fm and t1 ranging from 0.3 fm to 2.6 fm, we
suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
In future work, this will be subject to further scrutiny by
adding a data-point at an additional lattice spacing.

Energy re-weighting: The top panel of Fig. 9 shows
the weighted correlator wtC(t) for the full aµ as well as
short-distance and long-distance projections aSD

µ and aLD
µ

for t0 = 0.4 fm and t1 = 1.5 fm. The bottom panel of
Fig. 9 shows the corresponding contributions to aµ sep-
arated by energy scale

p
s. We notice that, as expected,

aSD
µ has reduced contributions from low-energy scales and

aLD
µ has reduced contributions from high-energy scales.

In the limit of projection to su�ciently long distances, we
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FIG. 9. Window of R-ratio data in Euclidean position space
(top) and the e↵ect of the window in terms of re-weighting
energy regions (bottom).

may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.
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from the continuum limit only at the level of a few per-
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in this work. This is in contrast to a rather steep contin-
uum extrapolation that occurs using staggered quarks as
seen, e.g., in Ref. [42].

The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a⇤)2 = 0.05 with ⇤ = 400 MeV and suggests that
remaining discretization errors may be small. Since we
find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
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suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
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may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.

Most of ππ peak is captured by window from t0 = 0.4 fm to t1 = 1.5 fm,
so replacing this region with lattice data reduces the dependence on
BaBar versus KLOE data sets.
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The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a⇤)2 = 0.05 with ⇤ = 400 MeV and suggests that
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find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
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suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
In future work, this will be subject to further scrutiny by
adding a data-point at an additional lattice spacing.

Energy re-weighting: The top panel of Fig. 9 shows
the weighted correlator wtC(t) for the full aµ as well as
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may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.
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may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.

Most of ππ peak is captured by window from t0 = 0.4 fm to t1 = 1.5 fm,
so replacing this region with lattice data reduces the dependence on
BaBar versus KLOE data sets.
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C(t) =
1

3

∑
x⃗

∑
j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩

=
1

Ny

∑
y

1

3

∑
x⃗

∑
j=0,1,2

⟨Jj(x⃗ , t)Jj(y)⟩

• All modes averaging (AMA): Use
approximate quark propagator to calculate
the correlation function to increase Ny and
then selectively calculate the correlation
function accruately to correct the bias.

• Low modes averaging (LMA): Only use low
modes to calculate quark propagator to
further increase Ny . Then, use the above
AMA method to calculate the bias.

Diagrams – Isospin limit

2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2, ↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
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tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2, ↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to
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photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.
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HVP: long distance part from lattice calculation 19 / 53
• Main idea is that: one does not have to calculate the long distance

part of the correlation function directly.

C(t) =
1

3

∑
x⃗

∑
j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩

=
∑
n

V

3

∑
j=0,1,2

⟨0|Jj(0)|n⟩⟨n|Jj(0)|0⟩e−Ent

• The summation over n is limited to zero momentum states and states
are normalized to “1”.

• At large t, only lowest few states contribute. We only need the matrix
elements ⟨n|Jj(0)|0⟩ and the corresponding energy En.

• Need to study the spectrum of the ππ system!

• Can reduce the statistical error beyond the gauge noise limit!
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More states =⇒ better reconstruction, can replace C(t) at shorter distances

Aaron S. Meyer Section: Bounding Method and the Muon HVP 17/ 25

RBC-UKQCD by Aaron Meyer and Christoph Lehner
Preliminary
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Diagrams – Isospin limit 2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the �� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2, ↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e�ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e�ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the �� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e�ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Diagrams – QED corrections

and fit d�.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d� and E� and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E� and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.
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Figure 1: QED corrections
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Figure 2: SIB corrections
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HVP: BMW 2021 - light connected window 24 / 53

• Staggered fermion has a special lattice artifacts: taste breaking effects.

• Curves show different treatments of correcting the taste breaking effects.
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• Staggered fermion has a special lattice artifacts: taste breaking effects.

• Curves show different treatments of correcting the taste breaking effects.
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• Staggered fermion has a special lattice artifacts: taste breaking effects.

• Curves show different treatments of correcting the taste breaking effects.
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HVP: Compare BMW 2021 and RBC-UKQCD 2018 28 / 53

• The left table shows result from RBC-UKQCD 2018. The right figure
shows the result from BMW 2021.

• This discrepancy needs further study and more cross checks.



HVP: Computational cost for RBC-UKQCD calculation 29 / 53

• Cost 0.25 billion BG/Q core hours (∼ 3 million V100 card hours).

• Next RBC-UKQCD paper (in a few months) will focus on the window contrib.

– Four times the statistics (half the statistical error).

– Include a third lattice spacing 1/a ≈ 2.8 GeV.
∼ 4 million V100 card hours used so far.
∼ 10 million V100 card hours used to generate these configurations.

– The new results from the three different lattice spacings will have similar
statistical error.

• Then, next work will use the spectrum study to reduce the long distance noise.



HVP: Some comments 30 / 53
• Lattice calculation is completely based on the first principle.

The only inputs are: αQED, mµ, m±π , m0K , m±K , mηc , mΩ.

• The bottleneck is the leading contribution from the light quark connectd
diagram.

• Continuum extrapolation is very hard with taste breaking effects of the
Staggered fermion.
Cross check with independent lattice calculations by other collaborations using
different fermion formulations is needed.

• Cross checks on the subleading diagrams, finite volume effects, (which can be
defined and calculated individually) are also needed.



Outline 31 / 53
1. Introduction

2. Lattice QCD

3. Hadronic Vacuum Polarization contribution

4. Hadronic Light-by-Light contribution

5. Summary



HLbL: Analytical approach WP2020 32 / 53

Contribution PdRV(09) [471] N/JN(09) [472, 573] J(17) [27] Our estimate

π0, η, η�-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
π,K-loops/boxes −19(19) −19(13) −20(5) −16.4(2)

S -wave ππ rescattering −7(7) −7(2) −5.98(1.20) −8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars − − − �
− 1(3)tensors − − 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance − 21(3) 20(4) 15(10)

c-loop 2.3 − 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 15: Comparison of two frequently used compilations for HLbL in units of 10−11 from 2009 and a recent update with our estimate. Legend:
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N/JN = Nyffeler / Jegerlehner, Nyffeler; J = Jegerlehner.

in Table 15.42 While the central values are all quite close to each other (the largest discrepancy is with the Glasgow
consensus, which, however, includes a large part of the short-distance contribution in the pseudoscalar poles) and all
compatible within errors, the largest improvement is in the uncertainty, which has been reduced by a factor 6 to 3.

The lower part of the table contains the remaining contributions, which still suffer from significant uncertainties,
further separated into the contribution from light quarks as well as the c-loop. For these a comparison among different
evaluations is more difficult, because model dependence is still affecting all contributions (with the exception of the
short-distance contribution evaluated here). It is in this second part of the table that future progress will have to
happen.

We have described above how we obtained our final error estimate. Just for comparison, in PdRV [471] all errors
have been added in quadrature, in N/JN [472, 573] all errors have been added linearly, and in J [27] the errors have been
added in quadrature and then multiplied by a factor 2 to account for possible model uncertainties so far unaccounted
for.

We also briefly comment on the numbers in the recent review by Danilkin, Redmer, and Vanderhaeghen [626]. The
main difference is their estimate of the pseudoscalar-pole contribution, 84(4) × 10−11, lower than our value by about
2.5σ, which is incompatible with what we know about this contribution as explained in Sec. 4.4. The smaller value for
the PS-poles is compensated by the quark-loop contribution, 20(4) × 10−11, which is a bit larger than our estimate of
the short-distance contribution, leading to a central value, 87(13) × 10−11, very close to ours. The errors in Ref. [626]
are added linearly, but in particular the uncertainties for the axial-vectors and the short-distance contribution are much
smaller than ours, which is the main reason for their rather small total uncertainty.

The comparison discussed here clearly shows that there has been significant progress since the time of the Glasgow
consensus. The development of a more systematic approach to the calculation of the HLbL contribution has led to
improved estimates of several of the underlying contributions. The shifts in the central values are relatively moderate,
never larger than two sigmas with respect to older estimates, but the overall shift is quite significant and in the negative
direction, thus increasing the discrepancy with the measured value. Even more important than the shift in the central
value is our ability to make better uncertainty estimates. In some cases these have been drastically reduced with
respect to the time of the Glasgow consensus, but in some others a better theoretical understanding of the formalism
has led to a more cautious attitude. The upshot is that even taking a conservative approach we could bring the total
uncertainty down to about 20% of the central value and the prospects for an even further reduction in the coming
years, towards the 10% goal, are very good as will be sketched in the next subsection.

42To make a meaningful comparison, since the largest contribution among the scalars is due to the σ/ f0(500), which is treated as a ππ rescattering
effect here, we have considered the contribution of the scalars of earlier evaluations in the line labeled “S -wave ππ rescattering.” This is indeed
justified for the scalar contribution −6.8(2.0) × 10−11 in the ENJL model from Ref. [484], as confirmed in Ref. [666]. The σ/ f0(500) is also
responsible for 50–80% of the value −6.0(1.2) × 10−11 from Ref. [27], depending on the mixing.

138

• Values in the table is in unit of 10−11.

• The total HLbL contribution is on the order of
10× 10−10.

• Uncertainty of the analytically approach mostly
come from the short distance part.

q = p′ − p, ν

p p′



HLbL: RBC-UKQCD 2020 33 / 53

• First lattice result for the hadronic light-by-light scattering contribution to the
muon g − 2 with all errors systematically controlled.

• Lattice calculation directly at the physical pion mass and no Chiral
extrapolation is needed.



HLbL: diagrams 34 / 53

q = p′ − p, ν

p p′
xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ→

• Gluons and sea quark loops (not directly connected to photons) are
included automatically to all orders!

• There are additional four different permutations of photons not shown.

• The photons can be connected to different quark loops. These are
referred to as the disconnected diagrams. They will be discussed later.

• First results are obtained by T. Blum et al. 2015 (PRL 114, 012001).



Exact photon and the moment method 35 / 53

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

• Two point sources at x, y :
randomly sample x and y .

• Importance sampling:
focus on small |x − y |.

• Complete sampling for |x − y | ≤ 5a
upto discrete symmetry.

aµ
mµ
ūs ′ (⃗0)

Σ

2
us (⃗0) =

∑
r=x−y

∑
z

∑
xop

1

2
(x⃗op − x⃗ref)× ūs ′ (⃗0)iF⃗C (⃗0; x, y , z, xop)us (⃗0)

µ⃗ =
∑
x⃗op

1

2
(x⃗op − x⃗ref)× J⃗(x⃗op)

Reorder summation
|x − y | ≤ min(|y − z |, |x − z |)

• Muon is plane wave, xref = (x + y)/2.

• Sum over time component for xop.

• Only sum over r = x − y .
T. Blum et al 2016. (PRD 93, 1, 014503)
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• One diagram (the biggest diagram below) do not vanish even in the SU(3) limit.

• We extend the method and computed this leading disconnected diagram as well.

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κy, σ x, ρ

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnkz′, κ′
y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

• Permutations of the three internal photons are not shown.

• Gluons exchange between and within the quark loops are not drawn.

• We need to make sure that the loops are connected by gluons by “vacuum” subtraction.
So the diagrams are 1-particle irreducible.
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Phys. Rev. D 93, 074505
(2016)

48I: 483× 96, 5.5fm box 64I: 643× 128, 5.5fm box

24D: 243× 64, 4.8fm box 32D: 323× 64, 6.4fm box 48D: 483× 64, 9.6fm box

32Dfine: 323× 64, 4.8fm box
T. Blum et al 2020. (PRL 124, 13, 132002)
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aµ
mµ
ūs ′ (⃗0)

Σ

2
us (⃗0) =

∑
r=x−y

∑
z

∑
xop

1

2
(x⃗op − x⃗ref)× ūs ′ (⃗0)iF⃗C (⃗0; x, y , z, xop)us (⃗0)
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Partial sum is plotted above. Full sum is the right most data point.
T. Blum et al 2020. (PRL 124, 13, 132002)
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aµ
mµ
ūs ′ (⃗0)

Σ

2
us (⃗0) =

∑
r=x−y

∑
z

∑
xop

1

2
(x⃗op − x⃗ref)× ūs ′ (⃗0)iF⃗C (⃗0; x, y , z, xop)us (⃗0)
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Partial sum is plotted above. Full sum is the right most data point.
T. Blum et al 2020. (PRL 124, 13, 132002)
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aµ(L, a
I, aD) = aµ

(
1− b2
(mµL)2

− c I
1(a
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1 (a
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T. Blum et al 2020. (PRL 124, 13, 132002)
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con discon tot

aµ 24.16(2.30) -16.45(2.13) 7.87(3.06)
sys hybrid O(a2) 0.20(0.45) 0 0.20(0.45)

sys O(1/L3) 2.34(0.41) 1.72(0.32) 0.83(0.56)
sys O(a4) 0.88(0.31) 0.71(0.28) 0.95(0.92)

sys O(a2 log(a2)) 0.23(0.08) 0.25(0.09) 0.02(0.11)
sys O(a2/L) 4.43(1.38) 3.49(1.37) 1.08(1.57)

sys strange con 0.30 0 0.30
sys sub-discon 0 0.50 0.50

sys all 5.11(1.32) 3.99(1.29) 1.77(1.13)

• Same method is used for esimating the systematic error of individual and total
contribution.

• Systematic error has some cancellation between the connected and disconnected
diagrams. T. Blum et al 2020. (PRL 124, 13, 132002)
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• We test our setup by computingmuon leptonic light by light contribution to muon g−2.

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ
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40

50

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

a
µ
×
1
0
1
0

1/(mµL)
2

analytic
a = 0

mµa = 0.1000
mµa = 0.1333
mµa = 0.1500
mµa = 0.2000

F2(a, L)=F2

(
1− c1

(mµL)2
+

c1
′

(mµL)4

)
(1− c2 a

2+ c2
′ a4) → F2= 46.6(2)× 10−10 (19)

• Pure QED computation. Muon leptonic light by light contribution to muon g − 2.
Phys.Rev. D93 (2016) 1, 014503. arXiv:1510.07100.

• Analytic results: 0.371× (α/π)3= 46.5× 10−10.

• O(1/L2) finite volume effect, because the photons are emitted from a conserved loop.
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• aµ = 7.87(3.06)stat(1.77)sys × 10−10.
T. Blum et al 2020. (PRL 124, 13, 132002)

• Consistent with analytical approach (hadronic model & dispersion
relations):
9.2(1.9)× 10−10 (White paper 2020).

• Leaves little room for the HLbL contribution to explain the difference
between the Standard Model and the BNL/Fermilab experiment.

• Better accuracy is desired to compare with the final Fermilab muon
g − 2 experimental result.

• Working on the infinite volume QED approach.



Calculation costs about 1 billion BG/Q core hours (∼ 13 million V100 card hours)
with 5 consecutive ALCC allocations.



HLbL: Mainz 2021 45 / 53

• The method is overall similar as is used in the RBC/UKQCD calculation. It is
developed to a very large degree independently, but with some healthy
public/private communications.

• Mainz pioneered in using the infinite volume QED method in HLbL. The QED
weighting function can be saved to disk and reuse.

• Use the subtraction method for the QED weighting funcion invented by
RBC-UKQCD based on the QED∞: T. Blum et al 2017. PRD 96, 3, 034515

• Use 4D rotational symmetry in combining the hadronic 4-point function with
the QED weighting function.
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For the connected and disconnected diagrams’ contributions individually:

For the total contribution:

• Pion masses are heavier than physical value and Chiral extrapolation is used.
Result depends on the form of Chiral extrapolation.

• Long distance contribution obtained by fitting an ansatz: f (|y |) = |y |3Ae−B|y |.
Result depends on the form of the ansatz.
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WP2020
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1. Introduction

2. Lattice QCD

3. Hadronic Vacuum Polarization contribution

4. Hadronic Light-by-Light contribution

5. Summary



Summary 52 / 53
• The errors of lattice QCD calculations comes from:

1. finite statistics → statistical error

2. non-zero lattice spacing → discretization error

3. finite lattice size → finite volume error

4. non-physical pion mass → chiral extrapolation
Many lattice calculations are now performed with physical pion
mass, eliminating this source of the systematic errors.

• Lattice QCD calculation is playing important role in determining the
hadronic contribution to muon g − 2 and many other physical
observables.

• More accurate lattice results are expected when Fermilab releases their
final result.
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Thank You!
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