Aharonov-Bohm in the Sky: A CMB Millikan Experiment with Cosmic Axiverse Strings

Anson Hook

University of Maryland

My goal: Find the UV theory of the Universe

My goal: Find the UV theory of the Universe

A) Find UV particles

My goal: Find the UV theory of the Universe

- A) Find UV particles
- B) Measure IR interactions
 - Make assumptions about intervening physics
 - 2. Learn something about UV modulo assumptions

My goal: Find the UV theory of the Universe

- A) Find UV particles
- B) Measure IR interactions
 - Make assumptions about intervening physics
 - 2. Learn something about UV modulo assumptions

GUTs

Topology is King

Most robust quantity in any theory is topological

Topology robust to new physics between the UV and the IR

Measure topological quantities!

Aharonov-Bohm Effect

Electron acquire phase as it moves around a magnetic flux

Independent of path and mass of the electron

Topological interactions

Standard Model

 $heta F ilde{F}$

Unphysical without monopoles

 $\theta W \tilde{W}$

B+L violation

 $\theta G \tilde{G}$

Strong CP problem

Topological interactions

Standard Model

BSM

 $heta F ilde{F}$

 $\theta W \tilde{W}$

 $\theta G \tilde{G}$

 $\frac{a}{f}F\tilde{F}$

't Hooft Anomaly

$$\frac{\mathcal{A}\alpha_{\rm em}}{4\pi} \frac{a}{f} F \widetilde{F}$$

Particle approach HARD

Anomaly - decay constant ambiguity

Decay constant RG runs: Wavefunction renormalization

Need something independent of f

Strings!

$$\frac{a}{f} \to \frac{a}{f} + 2\pi \left(\mathbb{Z}\right)$$

Aharonov-Bohm Effect

Photons acquire phase as it moves around an axion string

Strings

$$\frac{\mathcal{A}\alpha_{\rm em}}{4\pi} \frac{a}{f} F \widetilde{F}$$

Unique opportunity to learn directly about 't Hooft anomalies!

Motivation?

Strings

$$\frac{\mathcal{A}\alpha_{\rm em}}{4\pi} \frac{a}{f} F \widetilde{F}$$

String theory predicts many near massless axions with these couplings

Outline

- Millikan (What do we learn from anomalies)
- String Theory Review
- Basic Signature of a String
- (CMB) ways of looking for Strings

Anomalies

$$\frac{\alpha_{\rm em}}{4\pi} \left(\mathcal{A} \frac{a}{f} + \theta \right) F \tilde{F}$$

A is the 't Hooft anomaly of the axion

Axion is periodic but coupling is not

$$\frac{a}{f} = \frac{a}{f} + 2\pi \qquad \longrightarrow \qquad \theta = \theta + 2\pi \mathcal{A}$$

What does this periodicity teach us?

$$\theta = \theta + 2\pi A$$

Witten effect

$$q_e = \left(\frac{eg}{2\pi}\right)\frac{\theta e}{2\pi} = \frac{e}{e_{\min}}\frac{\theta e}{2\pi}$$

Not periodic!

Need many monopoles that are exchanged

$$\theta \to \theta + 2\pi A$$

$$q_{-2}(\theta) q_{-1}(\theta) q_{0}(\theta) q_{1}(\theta) q_{2}(\theta)$$

$$q_n(\theta + 2\pi \mathcal{A}) = q_{n+1}(\theta)$$

$$q_n(\theta + 2\pi \mathcal{A}) = q_{n+1}(\theta)$$

Periodicity gives difference in charge between various monopoles

$$\Delta q_e = \frac{e}{e_{\min}} \mathcal{A} e$$

Fundamental electric charge of monopoles

$$\Delta q_e = e_{\min} = \sqrt{\mathcal{A}} e$$

Without any assumptions

$$\mathcal{A} = \mathbb{Z} e_{\min}^2 = \sum_f N_f N_a Q_f^2$$

Fractional anomaly necessarily implies fractional electric charge is the minimal charge

Outline

- Millikan (What do we learn from anomalies)
- String Theory Review
- Basic Signature of a String
- (CMB) ways of looking for Strings

Kibble Mechanism

If the universe was hot enough that the symmetry was restored

Kibble Mechanism

If the universe was hot enough that the symmetry was restored **Strings!**

Each Hubble patch randomly determines its own value of a/f

Strings by chance

String evolution

String density
$$\rho_{\text{string}} = \xi(t) H^2 f^2 \log (f/H)$$

• Scaling solution : $\xi = {
m constant}$

• Scaling violation : $1 \lesssim \xi \lesssim 1000$

Outline

- Millikan (What do we learn from anomalies)
- String Theory Review
- Basic Signature of a String
- (CMB) ways of looking for Strings

Polarization Rotation

$$\frac{\mathcal{A}\alpha_{\rm em}}{4\pi} \frac{a}{f} F \widetilde{F}$$

Dispersion relation of photon

$$\omega^2 = k^2 \pm k \frac{\mathcal{A}\alpha_{\rm em}}{\pi f} \frac{da}{dt}$$

$$v_{\rm phase} \approx 1 \pm \frac{\mathcal{A}\alpha_{\rm em}}{2\pi f} \frac{da}{dt}$$

Polarization Rotation

$$v_{\mathrm{phase}} pprox 1 \pm \frac{\mathcal{A}\alpha_{\mathrm{em}}}{2\pi f} \frac{da}{dt}$$

Phase rotation of circularly polarized light is a polarization rotation of linearly polarized light

$$\Phi = \int v dt = \mathcal{A}\alpha_{\rm em} \frac{\Delta a}{2\pi f}$$

Topological - depends only on initial and final value of the axion

Apology

Φ

Phase rotation of linearly polarized light

 α

CMB standard

 α_{EM}

Photon coupling

 $\alpha = \mathcal{A} \alpha_{\rm EM}$

Suggestive equation?

String

Topological effect

Large polarization rotation from traveling around a string!

$$\Phi = \frac{\mathcal{A}\alpha_{\rm em}}{2\pi} \frac{\Delta a}{f} = \mathcal{A}\alpha_{\rm em}$$

String $\Phi_2 = 0$

Photons that go through a string loop acquire a rotation

Photons that do not go through a string loop do not acquire a rotation

$$\Phi_1 = \pm \mathcal{A}\alpha_{\rm em}$$

Outline

- Millikan (What do we learn from anomalies)
- String Theory Review
- Basic Signature of a String
- (CMB) ways of looking for Strings

${\sf CMB}$

CMB acts as a backlight which is rotated by strings

Power spectrum analysis

Look for discontinuous jumps in the rotation angle

Toy analytics

Two point function of the polarization rotation

Toy analytics

Two point function of the polarization rotation

- Take strings to be Hubble sized loops
- Pass through loop acquire a phase $\Phi = \pm \mathcal{A}\alpha_{\mathrm{em}}$
- Integrate over all orientations and directions

Toy analytics

Number of strings at a particular redshift

$$\langle \Phi(\hat{\gamma}) \Phi(\hat{\gamma'}) \rangle = (\mathcal{A}\alpha_{\rm em})^2 \int d\eta \int d^2\hat{s} \int d^2\hat{k} \left(\eta_0 - \eta\right)^2 f(\eta)$$

$$\times \Theta\left(\frac{\eta}{2} - d(\hat{s}, \hat{\gamma}, \hat{k}, \eta)\right) \Theta\left(\frac{\eta}{2} - d(\hat{s}, \hat{\gamma'}, \hat{k}, \eta)\right)$$

Both photons pass through string

Toy analytics

$$\langle \Phi(0,0)^2 \rangle \approx \xi \left(\mathcal{A}\alpha_{\rm em} \right)^2 \log \left(\frac{\eta_0}{\eta_{\rm CMB}} \right) \sim \left(\mathcal{A}\alpha_{\rm em} \right)^2 N_{\rm string}$$

Polarization is undergoing a random walk

Toy simulation

- Randomly throw down infinitely long straight strings
- Remove strings as time goes on to maintain correct number density
- Trace CMB photon paths

Toy simulation

Can see both long and short strings

-20

Simulation Comparison

Simulation Comparison

Rotation takes E into B modes

Use CMB to look for B modes correlated with E modes

Frequency Independent

Distinct feature in physical space

$$Q(\hat{\gamma}) \pm iU(\hat{\gamma}) = (\tilde{Q}(\hat{\gamma}) \pm i\tilde{U}(\hat{\gamma})) \exp(\pm 2i\Phi(\hat{\gamma}))$$

Polarization rotates Q and U into each other

$$p(\hat{\gamma}) = \sum_{lm} (E_{lm} + iB_{lm})_2 Y_{lm}(\hat{\gamma})$$

Typically Fourier transform into E and B modes

$$B_{lm} = 2 \sum_{LM} \sum_{l'm'} \Phi_{LM} E_{l'm'} \xi_{lml'm'}^{LM} H_{ll'}^{L}$$

Polarization rotates E and B into each other via Wigner-3j symbols

Build an estimator

$$[\hat{\Phi}_{LM}^{E^i B^j}]_{ll'} = \frac{2\pi \sum_{mm'} B_{lm}^i E_{l'm'}^{j*} \xi_{lml'm'}^{LM}}{(2l+1)(2l'+1)C_l^{EE} H_{ll'}^L}$$

$$\langle \hat{\Phi}_{LM} \hat{\Phi}_{L'M'} \rangle = \delta_{LL'} \delta_{MM'} (C_L^{\Phi} + \sigma_{\Phi,L}^2)$$
What we want

$$\langle \hat{\Phi}_{LM} \hat{\Phi}_{L'M'} \rangle = \delta_{LL'} \delta_{MM'} (C_L^{\Phi} + \sigma_{\Phi,L}^2)$$

Forecast sensitivity

$$\sigma_{C_L^{\Phi}} = \frac{\sigma_{\Phi,L}^2}{f_{\text{sky}}(2L+1)/2}$$

Constraints scale as ξA^2

Constraints scale as ξA^2

Power spectrum

Edge Detection

Coolest feature are the edges

- Position space search
- Important elements
 - Angular resolution $\xi \gg 1$
 - Accuracy

$$\mathcal{A} \ll 1$$

- BICEP/KEK/SPT/Polarbear
 - Angular resolution ~ arcmin
 - Accuracy ~ percent

Edge Detection

Coolest feature are the edges

Likely edges are most useful when there are only a few strings

Few strings => production before/during inflation

Rare chance at testing pre-inflationary physics

Quasar

Quasar images have relative polarization rotations

$$\Delta \Phi = \mathcal{A} \alpha_{\rm em}$$

Quasar

• 205 lensed quasars

- Angle between images can be as large as $\beta \sim 10''$
- Probability that a string is in between the two images

$$p \simeq \xi A_{\rm enc} H_0^2 \approx 10^{-3} \frac{\xi}{100} \frac{\beta}{10''}$$

Usual Constraints

Our results are completely independent of decay constant

Usual Constraints

Deficit Angle

$$0 < \theta < 2\pi - 8\pi G\mu$$

$$G\mu \lesssim 10^{-7}$$

CMB Temperature anisotropy

Constraint(ish)

Conclusion

Strings

$$\frac{\mathcal{A}\alpha_{\rm em}}{4\pi} \frac{a}{f} F \widetilde{F}$$

Match made in heaven

Topological way of causing polarization rotation

Super distinct features in the CMB

Power spectrum at the edge of sensitivity

Edges in the CMB

Quasars