Aspects of Nonlinear Effect on Black Hole Superradiance

Hajime Fukuda (UC Berkeley)

In collaboration with K. Nakayama (U. Tokyo)

arXiv:1910.06308, JHEP01(2020)128

Outline

- Introduction
- Nonlinear effect on the superradiance
- Examples

Introduction

Black hole superradiance

What is BH superradiance?

Saul, Teukolsky 72; Bekenstein 73

- Thermodynamic process to lose energy/charges by emitting particles for the BH with charges
 - Not the Hawking radiation, the entropy-decreasing process

BH superradiance - example

$$Kerr BH: dM = \frac{\kappa}{8\pi} dA + \Omega dJ$$

$$\text{Kerr BH: } dM = \frac{\kappa}{8\pi} dA + \Omega \ dJ \qquad \begin{cases} \Omega = a/(r_+^2 + a^2) \\ r_+ = GM + \sqrt{(GM)^2 - a^2} \\ \tilde{a} = a/GM, 0 \leq \tilde{a} \leq 1 \\ J = aM \end{cases}$$

Q. Can be the particle with
$$\frac{\Delta J}{\Delta M} = \frac{m}{\omega}$$
 emitted?

A.
$$\Delta A = \frac{8\pi(\omega - m\Omega)}{\omega \kappa} \Delta M$$
: Allowed if $\omega < m\Omega$ (For $\tilde{a} \sim 1$, $GM_{BH}\omega \lesssim m$)

For
$$m=1$$
, $\omega \sim 10^{-10} (M_{\odot}/M_{BH}) eV$
 \rightarrow relevant to light d.o.f

BH superradiance rate

The SR rate for Boson is estimated as a scattering process

- This process is linear in time not so fast
 - Slower than BH accretion

BH superradiant instability

The particle may form a bound state with BH

If it is a Boson,

Exponentially enhanced mode (= Im ω > 0) exists in the bound state spectrum if Bosonic Im ω is maximized when $\alpha \sim 0.5$ and otherwise exponentially small

Kerr BH loses its angular momentum and rot. E in constant time if a Boson w/ $M\omega \sim 1$ exists

Nonlinear Effect

How dense is the cloud?

BH angular momentum: $J = G\tilde{a}M^2$

Cloud volume: $V \sim \pi (\alpha \mu)^{-3}$

Cloud energy density: $\rho \sim J\mu/\mathcal{V}$

In terms of the field amplitude ($\rho \sim \mu^2 \phi_0^2$),

$$\phi_0^2 \sim 8\tilde{a}\alpha^5 M_{Pl}^2$$

The field amplitude is $\sim 0.1 \, M_{Pl}!$

Large field amplitude

- Field amplitude close to Mpi itself <u>does not</u> mean the theory is invalid
 - Recall the inflation theory
- It rather mean the potential may be distorted
 - Recall the inflation theory again!
- We treated a free theory, so the discussion on the non-linear effect on BH superradiance is important

Nonlinearity on superradiance

- The possible consequences of the nonlinearity are
 - 1. The spectrum may be distorted
 - 2. The particle w/ high p may be produced
 - 3. Some another particle may be produced
- The spectrum change: the effective mass change
 - If it changes by $\mathcal{O}(1)$, the other two are already serious

Why is the particle production important?

Because the SR instability is an exponential process

$$\frac{dM_{cloud}}{dt} \sim \omega_I M_{cloud} - \frac{dM_{p.p.}}{dt}$$

Two balances →
exponential growth stop and
BH stops to lose E/J

in constant time any more!

Accretion, superradiance and nonlinearity

$$\dot{M}_{cloud} \sim \omega_I M_{cloud} - \dot{M}_{p.p.}$$

$$\dot{M}_{cloud} \rightarrow 0$$
 and $M_{cloud} \rightarrow M_{cloud}^{\infty} = \text{const.}$

$$\dot{M}_{BH} \sim -\omega_I M_{cloud}^{\infty} + \dot{M}_{acc}$$

- BH energy/angular momenta decrease linearly in time by $\omega_I M_{cloud}^{\infty} = \dot{M}_{p.p.}$
 - $\Delta M_{BH} \sim \exp(-\omega_I t) \rightarrow \Delta M_{BH} \sim -\dot{M}_{p.p.} t$

Examples

Axion (like particles)

• $V = -\mu^2 f^2 \cos a / f \rightarrow \text{mass: } \mu$ • For $10^9 M_{\odot} > M_{BH} > M_{\odot}$, $10^{-11} > \mu/\text{eV} > 10^{-20}$

- Definitely, a < f
- What if $a \sim f$?

Instability stops, but BH J may still escape linearly!

Result

Blue: $\mu = 10^{-20} \text{ eV}$ Orange: $\mu = 10^{-15} \text{ eV}$ Green: $\mu = 10^{-10} \text{ eV}$

 M_{BH} is set so that $GM_{BH}\mu=0.5$

The band corresponds to the efficiency of the particle production

The dotted line is the accretion time scale estimated from the Eddington limit

Standard model photon and the primodial BH

SM photon in the early Universe has a plasma mass

- Photon may form SR cloud around the primordial BH
- When the mass changes, the photon is released
 - constrained from CMB distortion
 Pani, Loeb 13
- However, large photon amplitude results the Schwinger pair production

Result

Blue: COBE, Orange: PIXIE

Dotted: previous estimation

Solid: our estimation

The regions above the line is constrained

Summary

- In superradiance cloud, the field amplitude becomes as large as the Planck scale and the nonlinearity plays an important role
- Depending on models, superradiance effects are less efficient than expected before