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Recap: what is an Anomaly?
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● A classical symmetry, violated at the quantum level

● Corresponds to non-invariance of the path integral measure

● Example: the abelian anomaly for an axial current

Axial rotation:
Noether procedure

Classically conserved

What happens quantum mechanically?    Look at path integral.



Abelian Anomaly
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● Path integral measure not invariant under chiral rotation

Fujikawa method

● Chiral current not conserved quantum mechanically

Anomalous Ward identity



Abelian Anomaly - Connection to Triangle Diagram
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● From the effective action for A 

● Where

● The loop has a well known regularization ambiguity. Regularizing such that the vector 

current is conserved, we get 

Consistently with the path 

integral measure derivation



Gauge Anomalies - the Big No-No
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● Gauging a symmetry             coupling to a current

● If                              gauge invariance is broken

● (If A is massless) we cannot establish equivalence of Lorentz and Unitary gauge 

Cannot quantize Lorentz invariant theory

Solution in SM:   
Anomaly cancellation!

Charges of all SM fermions conspire to 
cancel all triangle diagrams



Anomaly Cancelation : a Toy Example 

● SU(2)L x U(1)R gauge theory with N=2n generations of Weyl fermions 

● Fermions couple chirally           potential U(1)R
3 and SU(2)LxU(1)R anomalies

D’Hoker and Farhi 84’

● The Lagrangian is 



Anomaly Cancelation : a Toy Example 
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● Fermions couple chirally           potential U(1)R
3 and SU(2)L

2xU(1)R anomalies

D’Hoker and Farhi 84’

● Anomalies cancel if 

Mixed anomaly:

U(1)3 anomaly:



Toy Example: Higgsing the Theory 
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D’Hoker and Farhi 84’

● What happens if we Higgs the theory? 

● Introduce Higgs              with a VEV that breaks SU(2)Lx U(1)R     U(1)V

● Choose Higgs quartic, gauge couplings and Yukawas such that 

● Integrate the radial mode and the Nth generation of fermions

EFT for  A, Z, W  with N-1 “massless” fermions and 

Is this EFT consistent? How can we quantize in a Lorentz invariant way?



Anomaly Cancelation in the EFT 
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D’Hoker and Farhi 84’

● Is the EFT consistent?     Missing Nth generation of fermions

● D’Hoker and Farhi:

○ Integrating out radial mode leaves an EFT for the Goldstone matrix U

○ Integrating out the Nth generation generates gauged WZW (or GW) terms

○ The gauged WZW cancel the anomaly from the N-1 light fermions

● Effective action:

Fixed by the nonlinear realization of SU(2)xU(1)

is the Goldstone matrix

Goldstone and Wilczek 81’



Anomaly Cancelation in the EFT D’Hoker and Farhi 84’

● WZW term:

This term is anomalous under the non-perturbative SU(2) anomaly. This exactly cancels 

the contribution of the light N-1 fermions. 



Anomaly Cancelation in the EFT 
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D’Hoker and Farhi 84’

● Improved Goldstone-Wilczek term                                       where

Cancels the U(1)R
3 and SU(2)L

2xU(1)R anomalies

Local counterterm that does not cancel the SU(2)L
2xU(1)R anomaly but only shifts it only to the 

U(1)R. Analogous to the regulator ambiguity of the chiral anomaly - we can choose to preserve 
SU(2)L or U(1)R , but not both.

Goldstone and Wilczek 81’



Anomaly Cancelation in the EFT D’Hoker and Farhi 84’

Main point: The U(1)3 and U(1)xSU(2)2 anomalies of the GW current are exactly equal to 
those of the integrated out Nth fermion generation, and the anomalies are canceled.

From the local counterterm that makes the mixed anomaly violate U(1)R but not SU(2)L

From the Goldstone dependent terms that cancel the anomalies



Quick Summary 

● Gauge anomalies are bad (... or were bad in 1984)

● Gauge anomalies in an EFT

○ Start in the UV with an anomaly free theory

○ Higgs the theory and integrate out one heavy generation of fermions

○ The EFT in anomaly free

○ The anomaly from the light fermions is canceled by the GW current 

Is this a  gauge independent statement?



Another Look at EFT Anomaly Cancelation 
● Back to the improved GW current:

● Go to unitary gauge:  U is eaten, left only with the local counterterm

But this counterterm only shifts the mixed anomaly to the U(1)...

What cancels the anomalies?



The Plot Thickens 

● Well known paper by Preskill 91’:

Gauge Anomalies in an Effective Field Theory

○ There is no problem with quantizing an anomalous gauge theory, as long as 

the gauge bosons are massive (the theory is in the Higgs phase or 

“spontaneously broken”).

○ D’Hoker and Farhi’s anomaly cancelation is a gauge artifact

○ The theory in the Higgs phase has a cutoff Λ related to the GB mass



Preskill’s Argument 

● Massive U(1) coupled to a single Weyl fermion

Under                                      the theory has an anomaly  

We can cancel the anomaly by introducing a gauge artifact field b:  

The anomaly cancels if                              under a gauge transformation



Preskill’s Argument 

● In the b theory, we can always go to unitary gauge and set b=0, and the 
Lagrangian reduces to the original, anomalous Lagrangian

● The two theories, with and without the b field, are identical in unitary gauge, 
and so all of their physical observables are the same 

● Consequently, there is no physical difference between an anomalous massive 
theory, and a massive theory with “WZW” anomaly cancellation



Preskill’s Argument 

● The massive theory has an inherent cutoff Λ, which is evident in the b≄0 
gauge. The theory has a tower of divergent diagrams, generating effective 
operators:

where and n arbitrarily high 

Clearly the theory is only calculable if  



A Pause for Confusion 

● By Preskill’s argument, an anomalous EFT is equivalent to an anomaly 
canceled EFT. But what about the Ward identities? Anomalous or not?  

● Also...
○ Didn’t we say that anomalous gauge theories cannot be quantized?
○ Apparently massive anomalous gauge theories can be quantized

Our research question:

What’s the fundamental difference between the massless and massive 
theory that only allows to quantize the latter?

We want a manifestly gauge invariant answer!



On-Shell Methods: a Manifestly Gauge Invariant Formalism

● To understand the consistency of massive anomalous gauge theories, we 
first focus on the inconsistency of massless ones

● This inconsistency should arise in a gauge invariant way, i.e. in scattering 
amplitudes

● The on-shell formalism allows us to compute tree and loop level scattering 
amplitudes without introducing any action / gauge freedom

● We first review the formalism, and then arrive at the on-shell notion of a 
gauge anomaly as tension between locality and unitarity @ 1-loop



On-Shell Methods: a Manifestly Gauge Invariant Formalism

● In the on-shell formalism, a theory is specified not by an action, but by the 
representations of the scattering particles under the Lorentz group (actually 
little group)

● The basic building blocks are tree-level three-point amplitudes

3 - -
1+

2-Massless vector 
with helicity -1

Massless fermion 
with helicity 1/2

Massless fermion 
with helicity -1/2



Extremely Quick Intro to Spinor-Helicity
● 3-pt amplitudes are uniquely determined by their little group transformation. i.e. 

saying that a helicity -1 vector scatters with helicity ±1/2 fermion is enough to fix the 
amplitude (up to color factors)

3 - -
1+

2-

The spinor-helicity variables  are defined by                                         or explicitly

with little group weight -1/2

with little group weight +1/2



Rules For Forming Helicity Amplitudes

● The little group transformation of the amplitude is known and has to be saturated by 

stacking up spinor-helicity variables.

● Dotted and undotted indices have to be contracted separately, with

● A spinor in the denominator has the opposite little group weight (helicity) 

3 - -
1+

2-

● Locality requires that all amplitudes factorize on their poles. Since 3-pt amplitudes 
can’t factorize, they cannot have poles. Dimensional analysis further reduces 
them to these unique expressions.

3++

1+

2-



4-pt Tree Level Amplitudes
● Little group fixes 4-pt amplitudes up to functions of the Mandelstam variables with 

simple poles, namely

3 ++

1+

2-

Note that we are considering color ordered amplitudes, i.e. the order of external legs is 
fixed and we cannot have a u-pole. 

Once again, cs and ct are determined by locality / factorization. We have: 

4 - -

3 ++

1+

2-

4 - -

3 ++

1+

2-

4 - -



4-pt Tree Level Amplitudes

● From factorization on the s and t poles we get cs=2s, ct=2t and so 

3 ++

1+

2-

4 - -

● So far we have used little group, dimensional analysis, and locality / factorization  

● Similarly, we can determine all tree-level amplitude for massless vectors and 
fermions, up to the specification of the structure constants fabc of the gauge group  

● To determine the form of loop-level amplitudes we have to use one more ingredient: 
unitarity  



Massless 4-Vector 1-loop Amplitude

● A theory with a single Weyl Fermion coupled to massless vectors is inconsistent

● The inconsistency arises in the 1-loop 4-vector amplitudes

○ Constructed in a manifestly unitary way, these amplitudes cannot be also local

○ This is seen using  generalized unitarity

Chen, Huang and McGady 14’

Little group factor APT (Parke-Taylor) Function of Mandelstams determined by 
unitarity cuts up to rational terms

How do we determine F?

3 ++

1++

2--

4 - -

1-L



Massless 4-Vector 1-loop Amplitude

Expand amplitude in basis of all possible loop integrals (like Passarino-Veltman)

Bern, Dunbar, Kosower 95’
                               Forde 07’

3 ++

1++

2--

4 - -

1-L

The             are known master integrals with unique branch cuts. We can extract the 

coefficients      by performing unitarity cuts on both sides. R is a rational term, unfixed by 

unitarity alone.



Massless 4-Vector 1-loop Amplitude

Let’s extract           by performing three unitarity cuts on both sides of the expansion

On the RH side we have

Bern, Dunbar, Kosower 95’
                               Forde 07’

Cutting the integral means replacing: 



Massless 4-Vector 1-loop Amplitude

Next, we eliminate the delta functions by choosing an appropriate parametrization for l

Bern, Dunbar, Kosower 95’
                               Forde 07’

such that

and

where      is the Jacobian for the t parametrization. Other integrals on the RH side have 

different t dependence in the integral. We will see that the LH side has a unique term 

that matches to this one, so we can compute          . 



Massless 4-Vector 1-loop Amplitude

On the RH side, we also cut

Bern, Dunbar, Kosower 95’
                               Forde 07’

By cutting rules, the amplitude has the form

3 ++

1++

2--

4 - -
+-

- +
-+

where the                are tree level 3- and 4-pt amplitudes involving the external 

vector and the internal Weyl Fermion



Massless 4-Vector 1-loop Amplitude Bern, Dunbar, Kosower 95’
                               Forde 07’

In our case

3 ++

1++

2--

4 - -
+-

- +
-+

All satisfy cut conditions



Massless 4-Vector 1-loop Amplitude Bern, Dunbar, Kosower 95’
                               Forde 07’

In fact, one can show

Poles in t corresponding to 
Box Integral I4

where                               is the constant term in a Laurent expansion in t 

Plugging everything in, we have

And so we’ve successfully calculated the coefficient of the triangle master integral



Massless 4-Vector 1-loop Amplitude Bern, Dunbar, Kosower 95’
                               Forde 07’

Similarly, we obtain all other coefficients in 

3 ++

1++

2--

4 - -

1-L

Coefficients for LH/RH fermions 
running in the loop. Since the 
vectorlike contribution cannot 
be anomalous, we set



Massless 4-Vector 1-loop Amplitude Bern, Dunbar, Kosower 95’
                               Forde 07’

Similarly, we obtain all other coefficients in 

3 ++

1++

2--

4 - -

1-L

What about the rational term?

Can’t determine from cuts!

Coefficients for LH/RH fermions 
running in the loop. Since the 
vectorlike contribution cannot 
be anomalous, we set



Touching Base
● We look for an inconsistency in the on shell construction of the 1-loop, massless 

4-vector amplitude (on shell manifestation of a “gauge anomaly”)

● Using generalized unitarity, we can nail down the functional form of 

3 ++

1++

2--

4 - -

1-L

up to an unknown rational term.

 ● Further constraint: locality implies that the full 1-loop amplitude, including the 

rational term, factorizes correctly on all of its poles

● For our inconsistent theory, no rational term can lead to correct factorization

Chen, Huang and McGady 14’



Constraints on the Rational Term

● First of all, our amplitude is color ordered so external legs cannot cross and we 

cannot have a pole in the u (or s13) channel. Taking the limit s13 ￫ 0, we have

Chen, Huang and McGady 14’

● Demanding a sign flip under the cyclic shift A(1++,2--,3++,4--) ￫ A(4--,1++,2--,3++) we 

arrive at the only viable rational term:

● But                                    , and so the rational term modifies the residues of the full 

amplitude in the s12 and s14 channels.  



Constraints on the Rational Term

● The extra s12 residue from the rational term is:

Chen, Huang and McGady 14’

● By locality, this residue should be a product of two 3-pt amplitudes:  

3 ++

1++

2--

4 - -

1-L 1-L

3 ++

4 - - 1++

2--

● However, there are no possible 3-pt amplitudes that can yield this residue



The On Shell Inconsistency of a Massless Anomalous Gauge Theory

● The inconsistency of a massless gauge anomalous theory arises in the 1-loop, 4- 

vector amplitude 

Chen, Huang and McGady 14’

● This is different from our field theory intuition, where the gauge anomaly signals a 

disconnect between unitarity and Lorentz invariance (different gauges)

● From an on-shell perspective, the tension is between unitarity and locality

● Constructed in a manifestly unitary way, there is no choice of rational term that could 

lead to consistent factorization on all channels



The On Shell Consistency of a Massive Anomalous Gauge Theory

● The demonstrate the consistency of the massive theory, we developed a formalism 

for generalized unitarity with massive external vectors. This is a fusion of the 

generalized unitarity formalism of Forde 07’ and the massive amplitude formalism 

of Arkani-Hamed, Huang and Huang 17’.

This work, 19’

● Massive particles correspond to bolded spinors                     , transforming as ☐ of 

their SU(2) little group, and defined so that



A 1-Loop Massive Amplitude

In this work we perform the first generalized unitarity calculation in the massive 

amplitude formalism. Expanding in the master integral basis, we have as usual

The SU(2) little group constrains the coefficients to be of the form

where we suppress SU(2) little group indices. The Ti are made of                    and Mandelstams



Example Calculation: c4

We demonstrate the calculation of c4 the coefficient of the box integral

where

Cutting this integral four times completely localizes the integral:

(we dropped the (2π)4 appearing both on the amplitude and master integral  sides)



Calculation of c4

On the amplitude side we have

3

1

2

4

And we just need to solve for 



Calculation of c4

To solve the cut conditions, we need to express     in a basis of massless vectors 
constructed from external momenta. Following Forde 07’ we define

so that                                      . Expressing     in this basis, we get

which immediately gives                                    .  



Calculation of c4

We have one more variable to fix - t , and one more cut condition               .

 Solving the cut algebraically, we get the full solution of the 4 cut conditions:

By Fierzing the spinors we can get

For any bolded spinors a and b, and for 



Calculation of c4

Now we can easily compute c4

By substituting



Checking the Massless Limit for c4

In the massless limit, for A(1++,2--,3++,4--), we have

To reach this limit from the massive result, we must first single out the (1++,2--,3++,4--) 
helicity assignment, as described in Arkani-Hamed et. al.   To do this we unbold the 
spinors in the following way:

where ni are reference spinors whose arbitrariness reflects the emergence of 
unbroken gauge symmetry at m⇾0



Checking the Massless Limit for c4

Unbolding the spinors, and noting that for m=0  we have

and so

After a lot of algebra, we get that indeed                                         as expected,

with all of the reference spinors dropping out 



Status: Generalized Unitarity for 4-Massive Vectors

● We’ve calculated all of the coefficients

using our generalized unitarity formalism for massive external particles

● All of the coefficients match their correct massless limits

● We are still working on extracting the s13 pole and finding the rational 

term which cancels it (lots of algebra!)



Expectations from Calculation

● We know from the field theory side that the massive anomalous theory is  
consistent, so we expect to find a rational term that can factorize on all the poles

● It would be interesting to understand if there’s a spurious s13 pole that can be resolved 
by a rational term, without modifying all of the other residues, or if there’s no s13 pole 
to begin with.

● Most of all, we want to gain physical intuition why massive theory is consistent, while 
the massless one isn’t. Is there a way to know in advance that the massive theory 
resolved the tension between unitarity and locality, without all the gory detail?

● Next, we plan to study how the spurious poles emerge in the m⇾0, or alternatively the 
high energy limit. This will provide us with a natural cutoff for the massive EFT, 
analogous to the one explored by Preskill



Summary

● We presented a counterintuitive field theory argument (due to Preskill) that massive 
anomalous gauge theories are equivalent to massive “anomaly canceled” theories

● We asked the gauge invariant question why massless theories are inconsistent while 
massive ones are

● We are still wondering about the gauge invariant physics that makes one theory 
consistent, while the other one isn’t. Perhaps a close look at the poles will provide a 
more fundamental resolution of this issue.

● We are close to a technical resolution of the question: the spurious poles arising in the 
1-loop 4-vector amplitude should disappear in the massive theory. The tension 
between Unitarity and locality is resolved. 



Thank You!
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