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Introduction: amplitudes

Objective of amplitude community:

Study a priori known objects from different perspective

Example in mind: gluon amplitudes

1986: Parke and Taylor calculated 6-point gluon-scattering

simplification: tree-level, no-fermions

final result: extremely simple

other way of calculation?
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Example: gluon amplitudes

At tree level:

colour ordering → stripped amplitude

Ma1...an(p1, . . . pn) =
∑
σ/Zn

Tr(taσ(1) . . . taσ(n))Mσ(p1, . . . , pn)

Mσ(pσ(1), . . . , pσ(n)) = M(p1, . . . , pn) ≡ M(1, 2, . . . n)

propagators ⇒ the only poles of Mσ

thanks to ordering the only possible poles are:

P2
ij = (pi + pi+1 + . . .+ pj−1 + pj)

2
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Pole structure

Weinberg’s theorem (one particle unitarity): on the factorization channel

lim
P2
1j→0

M(1, 2, . . . n) =
∑
hl

ML(1, 2 . . . j , l)× 1

P2
1j

×MR(l , j + 1, . . . n)
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BCFW relations, preliminaries
[Britto, Cachazo, Feng, Witten ’05]

Reconstruct the amplitude from its poles (in complex plane)

shift in two external momenta

pi → pi + zq, pj → pj − zq

keep pi and pj on-shell, i.e.

q2 = q · pi = q · pj = 0

amplitude becomes a meromorphic function A(z)

only simple poles coming from propagators Pab(z)

original function is A(0)
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BCFW relations: factorization channels

Cauchy’s theorem

0 =

1

2πi

∫
dz

z
A(z) = A(0) +

∑
k

Res (A, zk)

zk

If A(z) vanishes for z →∞

A = A(0) = −
∑
k

Res (A, zk)

zk
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BCFW relations

P2
ab(z) = 0 if one and only one i (or j) in (a, a + 1, . . . , b).

Suppose i ∈ (a, . . . , b) 63 j

P2
ab(z) = (pa + . . .+ pi−1 + pi + zq + pi+1 + . . .+ pb)2 =

= P2
ab + 2q · Pabz = 0

solution

zab = −
P2
ab

2(q · Pab)
⇒ P2

ab(z) = −
P2
ab

zab
(z − zab)

Thus

Res(A, zab) =
∑
s

A−sL (zab)× −zab
P2
ab

× As
R(zab)

and for allowed helicities it factorizes into two subamplitudes
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BCFW relations

Using Cauchy’s formula, we have finally as a result

A =
∑
k,s

A−skL (zk)
1

P2
k

Ask
R (zk)

based on two-line shift (convenient choice: adjacent i ,j)

recursive formula (down to 3-pt amplitudes)

number of terms small = number of factorization channels

all ingredients are on shell
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BCFW Example: gluon amplitudes

# od diagrams for n-body gluon scatterings at tree level

n 3 4 5 6 7 8

# diagrams (inc.crossing) 1 4 25 220 2485 34300
# diagrams (col.ordered) 1 3 10 38 154 654

# BCFW terms – 1 2 3 6 20

[C.Cheung: TASI Lectures ’17]

[KK, Novotny, Trnka ’13]
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BCFW recursion relations: problems

We have assumed that

A(z)→ 0, for z →∞

More generally we have to include a boundary term in Cauchy’s theorem.

This is intuitively clear: we can formally use the derived BCFW recursion
relations to obtain any higher n amplitude starting with the leading
interaction. But this does not have to be the correct answer.

10/36



BCFW recursion relations: problems
example: scalar-QED

L = −1

4
FµνF

µν − |Dφ|2 − 1

4
λ|φ|4

e e

Due to the power-counting the boundary term is proportional to

B ∼ 2e2 − λ

In order to eliminate the boundary term we have to set λ = 2e2, then the
original BCFW works.

I.e. we needed some further information (e.g. supersymmetry) to
determine the λ piece.
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Effective field theories
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Effective field theories: general picture
Now we have infinitely many unfixed “λ” terms. Schematically

L = 1
2(∂φ)2 + λ4(∂m4φ)4 + λ6(∂m6φ)6 + . . .

Example: 6pt scattering, Feynman diagrams

Corresponding amplitude:

M6 =
∑

I=poles

λ24
. . .

PI
+ λ6(. . .)

λ6 part: not fixed by the pole behaviour.

Task: to find a condition in order to link these two terms
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Effective field theories: introduction

Usual steps:

Symmetry → Lagrangian → Amplitudes → physical quantities

(cross-section, masses,
decay constants, . . . )

In our work – opposite direction:

Amplitudes → Lagrangian → Symmetry

Our aim: classification of interesting EFTs

works done in collaborations with Clifford Cheung, Jiri Novotny,
Chia-Hsien Shen, Jaroslav Trnka and Congkao Wen
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Effective field theories: scalar theories

As simple as possible: a spin-0 massless degree of freedom with a
three-point interaction.

General formula for three-particle amplitude

A(1h12h23h3) =

{
〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1 , Σhi ≤ 0

[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 , Σhi ≥ 0

Used a spinor-helicity notation, e.g. pi · pj ∼ 〈ij〉[ij ]

For scalars (hi = 0) this is a constant - corresponding to Lint = λφ3.
All derivatives can be removed by equations of motions (boxes)

Lint = (∂α . . . ∂ωφ)(∂α . . . ∂ωφ)φ → Lint = (�φ)(. . .)
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Effective field theories: scalar theories

We start with (m counts number of derivatives)

Lint = λ4∂
mφ4

n.b. we want to connect this four-point vertex with the 6-point contact
terms

This rules out again no-derivative terms, as the powercounting dictates:

∂m × 1

∂2
× ∂m → ∂2m−2φ6
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Simplest example: two derivatives, single scalar

L = 1
2∂µφ∂

µφ+ λ4∂
2φ4 + λ6∂

2φ6 + . . .

How to connect λ4 and λ6?
Well Lagrangian, an infinite series, looks complicated, but it is not the
case. It represents a free theory:

L = 1
2∂µφ∂

µφ (1 + λ4φ
2 + . . .)︸ ︷︷ ︸

F (φ)

F (φ) can be removed by a field redefinition

Non-trivial simplest example:

more derivatives

more flavours (φ→ φ1, φ2, . . .)
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More flavours

L = 1
2∂µφ

i∂µφi + λijkl∂µφ
i∂µφjφkφl + λi1...l6∂µφ

i1∂µφi2φi3 . . . φi6 + . . .

Can be used for systematic studies of two species, three species, etc.

Very complicated generally

Assume some simplification, organize using a group structure

φ = φaT a

motivated by the ‘gluon case’: flavour ordering [KK,Novotny,Trnka ’13]

Aa1...an =
∑
perm

Tr(T a1 . . .T an)A(p1, . . . pn)
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More flavours: stripped amplitude

first non-trivial case 6pt scattering:

power-counting is ok:

λ24 p
2 1

p2
p2 + λ6 p

2

in order to combine the pole and contact term we need to consider some
limit. The most natural candidate: We will demand soft limit, i.e.

A→ 0, for p → 0

⇒ λ24 ∼ λ6
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Standard direction(s)
Assuming the shift symmetry

φa → φa + εa

⇒ Noether current

Aa
µ =

δL
δ∂µφa

⇒ Ward identity ⇒ LSZ

〈0|Aa
µ(x)|φb(p)〉 = iF δabpµe

−ipx

⇒ Adler zero
lim
p→0
〈f |i + φa(p)〉 = 0

⇒ CCWZ: non-linear sigma model

L =
F 2

2
Tr(∂µU

†∂µU), U = e
i
F
φaT a

[Weinber’66], [Ian Low ’14-’15]
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Natural classification: σ and ρ
Soft limit of one external leg of the tree-level amplitude

A(tp1, p2, . . . , pn) = O(tσ), as tp1 → 0

Interaction term
L = ∂mφn

Then another natural parameter is (counts the homogeneity)

ρ =
m − 2

n − 2
“averaging number of derivatives”

e.g. L = ∂mφ4 + ∂m̃φ6

so these two diagrams can mix: p2m−2 ∼ pm̃

2m − 2− 2 = m̃ − 2 ⇒ 2m−4
4 = m̃−2

4 ⇒ ρ = ρ̃

rho is same if they
talk to each other
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Non-trivial cases
for: L = ∂mφn : m < σn

or

σ >
(n − 2)ρ+ 2

n

i.e.

ρ σ at least

0 1

1 2

2 2

3 3

i.e. non-trivial regime for ρ ≤ σ
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First case: ρ = 0 (i.e. two derivatives)

Schematically for single scalar case

L = 1
2(∂φ)2 +

∑
i

λi4(∂2φ4) +
∑
i

λi6(∂2φ6) + . . .

similarly for multi-flavour (φi : φ1, φ2, . . .).
non-trivial case

σ = 1

Outcome:

single scalar: free theory

multiple scalars (with flavour-ordering): non-linear sigma model

n.b. it represents a generalization of [Susskind, Frye ’70], [Ellis, Renner ’70]
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Second case: ρ = 1, σ = 2 (double soft limit)
1. focus on the lowest combination and fix the form:

Lint = c2(∂φ · ∂φ)2 + c3(∂φ · ∂φ)3 condition: c3 = 4c42

2. find the symmetry

φ→ φ− bρx
ρ + bρ∂

ρφφ (again up to 6pt so far)

3. ansatz of the form

H
HHH

HHHj

��������)

cn(∂φ · ∂φ)n + cn+1(∂φ · ∂φ)n∂φ · ∂φ

4. in order to cancel: 2(n + 1)cn+1 = (2n − 1)cn
i.e. c1 = 1

2 ⇒ c2 = 1
8 , c3 = 1

16 , c4 = 5
128 , . . .
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Second case: ρ = 1, σ = 2 (double soft limit)

4. in order to cancel: 2(n + 1)cn+1 = (2n − 1)cn
i.e. c1 = 1

2 ⇒ c2 = 1
8 , c3 = 1

16 , c4 = 5
128 , . . .

solution:
L = −

√
1− (∂φ · ∂φ)

This theory known as a scalar part of the Dirac-Born-Infeld [1934] – DBI
action
Scalar field can be seen as a fluctuation of a 4-dim brane in five-dim
Minkowski space

Á

Remark: soft limit and symmetry are “equivalent”
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Third case: ρ = 2, σ = 2 (double soft limit)

Similarly to previous case we will arrive to a unique solution: the Galileon
Lagrangian

L =
d+1∑
n=1

dnφLdern−1

Ldern = εµ1...µd εν1...νd
n∏

i=1

∂µi∂νiφ

d∏
j=n+1

ηµjνj = −(d − n)! det
{
∂νi∂νjφ

}
.

It possesses the Galilean shift symmetry

φ→ φ+ a + bµx
µ

(leads to EoM of second-order in field derivatives)

25/36



Surprise: ρ = 2, σ = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley ’14] [KK, Novotny ’14])

we demanded O(p3) behaviour

we have verified: possible up to very high-pt order

suggested new theory: special galileon [Cheung,KK,Novotny,Trnka

1412.4095]

symmetry explanation: hidden symmetry [K. Hinterbichler and

A. Joyce 1501.07600]

φ→ φ+ sµνx
µxν − 12λ4s

µν∂µφ∂νφ
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New recursion for effective theories

[Cheung, KK, Novotny, Shen, Trnka 2015]
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The high energy behaviour forbids a naive Cauchy formula

A(z) 6= 0 for z →∞

Can we instead use the soft limit directly?

yes!
The standard BCFW not applicable, we propose a special shift:

pi → pi (1− zai ) on all external legs

This leads to a modified Cauchy formula∮
dz

z

A(z)

Πi (1− aiz)σ
= 0

note there are no poles at z = 1/ai (by construction).
Now we can continue in analogy with BCFW
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Further avenues

similarly for vector EFT:

LBI = 1−
√

(−1)D−1det(ηµν + Fµν),

(see [Cheung, KK, Novotny, Shen, Trnka, Wen ’18])

so far avoided the fermionic degrees of freedom (see e.g. Elvang et
al.’18)

higher orders in NLSM (see [Bijnens,KK,Sjö 2019])

multiple flavours – especially without flavour ordering

only two-flavour case fully classified

preliminary study of the mixed scalar-vector case (Galileon-BI): more
promising than the pure Galileon-like BI

spin-2: similar to Galileon-like studies – no exceptional candidate

non-abelian Born-Infeld

non-zero masses (technically possible)

loop corrections – focused on the exceptional theories
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BUT...

[KK, Novotny, Shifman, Trnka 2019 and in prep.]

29/36



it seems we have a powerful method to classify effective field theories

more efficient than the standard group oriented methods:
spontaneous symmetry breaking, (non-)compact groups,
(semi-)simple, CCWZ construction . . .−→ complicated monomial
structure, where equivalence is not transparent

e.g. for two flavours – two-derivative counting:
only one non-trivial theory: O(3)/O(2)

more problematic for three flavours – finished (work in progress with
J.Bijnens): again only O(4)/O(3) and combinations of O(3)/O(2)
plus one free scalar

but what about completely broken O(3):

SU(2)/1
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SU(2)/1

it describes three GBs

CCWZ construction

⇒ Lagrangian

it is neither equivalent to O(4)/O(3) nor to O(3)/O(2), nor any
their flavour combinations

on top of it: the amplitudes don’t have adler zero!

What have we missed?

30/36



General discussion

answer is then easy – we missed “non-zero” Adler zero

beyond the scope of our classification

so our method is not that general

can we extend it?
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Adler zero: textbook derivation

GB couples to the associated Noether current

〈0|Jµ(x)|φ(p)〉 = −ipµF e−ip.x

For the process i → f + φ(p) we have:

〈f |Jµ(0)|i〉 = F
pµ

p2
A(f + φ(p), i) + Rµ(p)

The current conservation pµ〈f |Jµ(0)|i〉 = 0 yields

A(f + φ(p), i) = − 1

F
pµR

µ(p)

and thus finally
lim
p→0
A(f + φ(p), i) = 0

if R(p) regular in the limit.
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Adler zero: loophole

When
lim
p→0

pµR
µ 6= 0 ?

Two possibilities:

there are cubic vertices

Noether current is quadratic in fields
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SU(2)/1: new soft theorem

n.b.:three GBs, can be rotated to: two charged φ± and one neutral
φ.

Simplification: charge conservation + shift symmetry in the neutral
mode.

standard Adler zero for the neutral mode

we can focus only on the φ+ shift. Ansatz:

lim
p1→0

φ+(p1) . . . φ+(pn)φ−(q1) . . . φ−(qn)φ(k1) . . . φ(km) =

x
m∑
i=1

φ+(ki) . . . φ
+(pn)φ−(q1) . . . φ−(qn)φ(k1)�

��φ(ki ). . . φ(km)

+y
n∑

i=1

���
�XXXXφ+(p1) . . . φ+(pn)φ−(q1)�

��φ(qi ). . . φ−(qn)φ(qi)φ(k1) . . . φ(km)
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SU(2)/1: new soft theorem

lim
p1→0

φ+(p1) . . . φ+(pn)φ−(q1) . . . φ−(qn)φ(k1) . . . φ(km) =

x
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�XXXXφ+(p1) . . . φ+(pn)φ−(q1)�

��φ(qi ). . . φ−(qn)φ(qi)φ(k1) . . . φ(km)

IT WORKS!

y = −x
verified on amplitudes up to 7-pt

can be proved from Lagrangian

new generalization for the formal Lagrangian (work in progress)
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Summary

We have offered a new tool for effective field theories

motivated by the amplitude methods employed for renormalizable
theories

analogy between gravity and soft scalar theories (Bonifacio et al.
’today)

used for classification of scalar theories

one new theory discovered: special galileon

one exceptional theory for spin-1 particles: BI

generalization of Adler zero

work in progress: classification can be extended for generalized Adler
zero

Thank you!

36/36



Summary

We have offered a new tool for effective field theories

motivated by the amplitude methods employed for renormalizable
theories

analogy between gravity and soft scalar theories (Bonifacio et al.
’today)

used for classification of scalar theories

one new theory discovered: special galileon

one exceptional theory for spin-1 particles: BI

generalization of Adler zero

work in progress: classification can be extended for generalized Adler
zero

Thank you!

36/36


