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Setting the stage

Currently, there are no robust indications of the existence of new
particles beyond the Standard Model within the reach of current
or future colliders

For the sake of this talk | will assume that there indeed aren’t any
new light particles

On the other hand, we know for sure that new physics beyond the
Standard Model does exist (because neutrino masses, dark
matter, baryogenesis, inflation, gravity)

These assumptions + experimental facts imply that the
microscopic theory at E~1 TeV is a (relativistic) effective theory
with the Standard Model particle content
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Open question

e The main practical questions is whether the particle interactions
in the EFT are sufficiently different from those in the Standard

Model so as to be observable in any of the current or near-future
experiments

e However, there remains one outstanding theoretical question

e Namely, whether electroweak symmetry is realized
linearly or non-linearly in the EFT Lagrangian



Linear vs non-linear

Two mathematical formulations for effective theories with SM spectrum

SU(B)c x SU(2). x U(1)v | SU(3)c x U(1)em

H—LH, LeSU@2):; U~ gUgy, h—h
[25 GeV Higgs boson
zG’ \
H = v+ h ] Goldstone bosons 1G4
/ eaten by W and Z U = exp < )
v

In general, the two formulation lead to two physically distinct theories




SMEFT
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SMEFT SM AL =5 A2 D=6 A % D=7 A4
Known SM Higher-dimensional

SU(3)c x SU(2). x U(1)vinvariant

. .
agrangian interactions added to the SM

Dimensionful expansion parameter
Interpreted as mass scale of new physics

1 TeVSAS?

Dimensionful expansion parameter
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for B-L violating interactions A | T 10" GeV

Los+ ...



Buchmuller,Wyler

S M E FT (1986)

Z'SMEFT = Z'sMm A2 Zp=s A4 Zp=g

Known SM Higher—dimensio_nal _
SU(3)c x SU(2). x U(1)vinvariant

. .
agrangian interactions added to the SM

Dimensionful expansion parameter
Interpreted as mass scale of new physics

1 TeVSAS?

In the following for simplicity we set AL —> OO0

For A >> v expansion can be truncated at dimension-6 level for most practical applications



Dimension-6 operators

Bosonic CP-even

Oy (HTH)3?
Own | (H'H)O(H'H)
Oup |H'D,H|’

Onc H'H G%,G4,
Ogw | HTHW. W/,
OugB H'VH B, B,
Onws | H'o'HW/ B,
Ow | €7RWE Wi, Wk,
Oc fabeGa Gb e

pv v pu

Table 2.2: Bosonic D=6 operators in the Warsaw basis.
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"=

Bosonic CP-odd

O,z | H'HGG,
O,w | HIHW., Wi,
O,z | H'HB,B,
O, 5p | Ho'HW!,B,,

O= e* WM,/WﬂprM
Oé fachabe Gie

pv v pp

v—l—h(.a.cj—k...

Grzadkowski et al.
1008.4884

+ 2-fermion and
4-fermion operators


http://arxiv.org/abs/1303.3876

for review see e.g.

HEFT Jo1007922

; a _.d
Introduce triplet of Goldstone field ¢ via unitary matrix U: U = exp iIGo
\Y%
Linear transformation of U under SU(2). x U(1)y implies ;
electroweak symmetry acts non-linearly on ¢: U — grLUgy, h— h
Lagrangian organized in derivative expansion: Higgs boson is perfect singlet

under electroweak symmetry!
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SMEFT vs HEFT - Higgs self-couplings

In SM
self-coupling 1
completely fixed... > m}%h2
2

Lo D m*H|"— A H|”

2 y
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2v Sv?

...but they can be deformed by BSM effects

SMEFT: D=6

C6 ,rriTr3
ZSMEFT = £ sMm Az(HH)

m? m? A A
[ — 2—3(1 + SAz)h3 — S—V’;(l + 5A R — 75h5 - V—§h6
2cv? 12¢cv* 3cev? CeV?
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SN Tt m2A2T T 4N 8A2

(Truncated) SMEFT: Predicts correlations

HEFT

m m C C
\Y

) _
8v2 vy V2

HEFT: in general no correlations



SMEFT vs HEFT - Higgs couplings to matter

Lerr DA/ 97 + 9% [(l+5q °)Z,erLver + (1+5c; “YZ,ERVuER+ - . ]
1
T acl, Cr e h.c. 172, 60,60 + h.c. i
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Linear vs Non-linear

Expansion parameter Expansion parameter
E E
A v

Each Higgs boson interaction term
IS a-priori uncorrelated
with other interactions

For A>>v: correlations between various
interaction terms of the Higgs boson

SMEFT C HEFT

HEFT is more general than (truncated) SMEFT,
and it reduces to the latter in very special points of its parameter space



Linear vs Non-linear

Higgs boson coupling to WW Higgs boson coupling to WW

_ ) b .
gf?:z) Lrpr D mypyW, W, + c;m,%{,w,) W,

A2 T

g r c h' r r
Ly D -m%v W 0 W i ok Zg’m.%‘,- W p’l W 7 (l + e

|

free O(1) parameter free O(1) parameter
Parametric limit A—c where No parametric where
Higgs boson couplings become SM-like Higgs boson couplings become SM-like

LHC measurements of the Higgs boson couplings can be interpreted as
a strong hint for linearly realized electroweak symmetry with A >> v



Accidentally SM-like HEFT?

(a) (b)
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Could be that HEFT couplings
are SM-like
as the consequence of
HEFT UV completion being
far above the electroweak scale?

As is well known, in the SM Higgs
boson is crucial for unitarization of
2-to-2 WW scattering amplitudes

For that to work, the Higgs boson
coupling to WW is uniquely fixed,
given the W boson mass and gauge
coupling

More generally, if the Higgs boson
coupling to WW in the EFT is close
to the SM one, the validity range of
the EFT can extend far above the
electroweak scale



This talk

There isn’t really such thing as “small HEFT deformations”,
consistently with the intuition of the lack of physical scale other
than electroweak scale v in the HEFT

There is a dramatic difference between the SMEFT and HEFT,
which shows in the high-energy behavior of multi-Higgs
amplitudes

As a result, the HEFT loses perturbative unitarity at the scale
parametrically of order 4 11 v, even when deviations of the
Higgs interactions from the SM is tiny

The trick to see this is to realize that HEFT can be rewritten as
an effective theory with linearly realized electroweak symmetry,
but with non-analytic terms in the Lagrangian



Galloway et al
1306.6534

Integrating out 2nd Higgs doublet with large quartic yields
effective theory with Higgs boson tadpole:

2

Vi, = %fﬂ —fh

< 1

1—|—Cl< E;JH ) . - /67) ) A_|_

e 2
ms; u)(J * \maux J / 7)1 mauxf

The limit where only tadpole is kept is part of the HEFT but not SMEFT parameter space

Tadpole model be equivalently represented in SU(2). x U(1)y invariant form,
with non-analytic term in Higgs potential:

| iG
V = m%HTH —mivV2HH, H = ( v+h_4z'—(;z )
L V2
In unitary gauge, G=0, this reduces to the tadpole model above, up to field
redefinition

ef

h——> =
My



Galloway et al
1306.6534

Tadpole model be equivalently represented in SU(2)L x U(1)y invariant form,
with non-analytic term in Higgs potential:

1G
V = miHTH — mivv 2HTH, H = ( v+ii-/—_iGz )
- 2

Away from unitary gauge, Lagrangian contains infinite series of interactions
between Goldstone and Higgs bosons, suppressed only by electroweak scale v

2 2 2 2
_ mh 2 2 G G :2G+G_—|—G2
Vo= - (v+h) mhv(v—l—h)\/1+<v+h>2
2 2 4
mp ;2 2 G 2 G
= —h° —
> G T R AT AT

0@

_ %hQ— %GQ; (%) +%G4n§::0(n+2)(n+l) (%) T
This can be used to calculate Goldstone scattering amplitudes,
and translating them into scattering amplitudes of
longitudinal W and Z bosons at large energies



Multi-Higgs production in tadpole model

Consider VBF production of n = 2 Higgs bosons: VLVL — n X h

Expanded V contains interactions VLA e ”
mi o~ (—h\" <=7
vo -Tey(F) >l
n=0 ) .

leading to interaction vertices with Vi ‘\X\J
arbitrary number of Higgs bosons

s-wave isospin-0 amplitude for GG—h" is momentum-
independent constant proportional to the deformation

1 +/3n! mh
4y/m V"

Amplitudes for multi-Higgs production in W/Z boson fusion are only
suppressed by scale v and not decay with growing energy, leading to
unitarity loss at some scale above v

IM([GG]/Z — h")| = M| =



Unitarity primer
S matrix unitarity  §TQ — 1

implies relation between forward scattering amplitude,
and elastic and inelastic production cross sections

2ImM (1, p2 = pr1,p2) = 52 / ATy | Mot (p1,p2 — k1, k)P + ) S / AL, | Minel (D1,p2 = k1 .. - K|

Equation is “diagonalized” after
initial and final 2-body state are projected into partial waves

9 1
a(s) = %\/1 — Zli/ d cos 0P (cos 0) M(S, cos 8),
T s J_,

2Im a; = |ay|* + Z Sn/dﬂn\M(E,O,l,m% n})|*.

né€inel.

This can be rewritten as the Argand circle equation

— T
Reaq;)? + (Ima; — 1)° = R?, R= 1- S, dM,|M(E,0,l,m - {n})|2.
[
n LInél.




S'S =1 Unitarity primer

Argand circle equation

| | I h ]
(Rea;)?+ (Ima; —1)° =R}, R = 1-— S, dM,|M(E,0,1,m - {n})|2.

n Liné&].

leads to the constraint

(Rea)’+ » Sn[dHnlﬂ(E,O,l,m Y PANERS

n€inel )
A Argancl circle

shrinks in presence

of inelastic channels

which implies constraints on both
elastic and inelastic amplitudes

‘Re al‘ — ....... L. : Re(a) ,

— 0 1
S, dM,|M(E,0,l,m - {n})]? < 1.

n Linél.

- —



Unitarity primer

A

Im(a)) I | | B
(Rea))?+ (Ima;— 1) =R?, R = 1-— S, dM,|M(E,0,1,m - {n})[2.

| Re_(gl)_y

0 1

In a unitary theory, all partial wave amplitudes must lie on the boundary of the
Argand circle

Amplitudes calculated in perturbation theory may violate this condition, which
signals that higher order corrections are non-negligible

This goes under the name of perturbative unitarity violation

New degrees of freedom must appear around the scale of perturbative unitarity
violation, either as a UV completion of the effective theory, or as a strong
coupling transition



Unitarity primer

A

Im(a)) I ' I h—'l
(Rea;)? + (Ima; — 1)° = R?, R= 1-— S, dM,|M(E,0,l,m - {n})|2.
21 n Onél.
; Re(a) ,
0 1

Scale Ay where perturbative predictions are no longer reliable

(Reay)” + Z Sn/dHn\M(\E,O,I,m — {n})|? = 1.

n Cindl. Vson,

Estimated scale A- where new degrees of freedom must appear

(Rea;)® + Z Sn/dHn]./\/l(\/g,O,l,m% n})|? ~ T

néEinel. s=A4




Tadpole model: elastic channels

W h W --h W -h
"/ 7 "/
. -3 -=¢
‘s\ ~ ‘s\
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WE M h WE e h WL N h
~E ~E ~const

Tadpole model modifies significantly the Higgs boson self-couplings, but not its couplings
to W bosons. In 2-t0-2 scattering at tree level only the latter are important for unitarity

Thus, non-unitary behavior is not visible at the level of 2-to-2 amplitudes



Tadpole model: inelastic channels

In effective theory, unitarity constraints can be used to place bounds
on scale A- where new degrees of freedom must appear

(Rea;)* + Z Sn/dHn|/\/l(\@,O,l,m—> {n})|? ~ T,

n€inel. Vs=Ax

2-t0-2 amplitude will hit unitarity bounds whenever some partial
waves grow with energy

2-to-n amplitude will hit unitarity bounds whenever some partial
waves decays at large energies more slowly than 1/E2-4

That’s because n-body phase space grows more quickly with
energy for larger n

n—2 -
Vo= 1 S in massless
=

2(4m)2r=3 (n — )!(n — 2)! ' limit



Unitarity bounds in tadpole model

Perturbative unitarity bound on non-elastic amplitudew' L - _
e o S nxh
e
S, drln|Mn|ZE = —i' Vil ()| M, |7 ~ T2, i\{\' R e
n=2 Je=p, =2 " VI~
MGG, = h")| = [ Mol = 45% ﬁcn’m%
Sum over n Higgs bosons exponentiates
, Iﬁﬂﬁ T 1 1 A20=4 (n!)?
n —_—
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N\ Eﬁgl 0 4TV New phylslcsfmu:‘.: enter
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to regulate multi-Higgs amplitudes!



Unitarity bounds in tadpole model

e Tadpole model loses perturbative unitarity at the scale of
order 4 it v, and has to be UV completed around that
scale

e This is hardly surprising, given the construction of the
model as effective theory of a non-decoupling limit of the
two-Higgs doublet model

e However, the same lesson applies to any HEFT theory
that is not part of the SMEFT parameter space, even
when it is a continuous deformation of the SM!



Given Lagrangian for Higgs boson h, one can always uplift it
to manifestly SU(3)xSU(2)xU(1) invariant form replacing h — \/QH 1-I{ — 4l
2 2 2 s R R g
. K m ey oy
—2h% 4+ 2 (14 6A3) B® + —=h* Ay = S 28Ag
2 2v 8/1) RO =N § S :

—mZHYH + A\(H'H)? + 3A302(2HTH)Y/2 + A3 (2HTH)3/?

1G
H = ( 'v-l—h—_l'_Gz )
V2

2 2
v ﬁ_?i%mg((h F 0+ G224 TREA(h o+ 0)? + G2
2= 2G.G_+ G2

Non-analytic terms lead to infinite series of n-point Goldstone and Higgs boson
Interactions
LOLa2+Laga+ Las + ...
. h 1+ 36A3 h®  36A3 A°
2 2
L=t 30845 [21) * A 2 L §E s

1 35\s b 158Ag h2 )

g 22
£C4——mh(2G+G._+Gz) (81_3+ T 16 '1.-'4+

Consequence: in deformed SM with 6A320,
VV->n x h, VW= VV + n x h, ...., lose unitarity near scale 4nv



Higgs potential with Goldstones

2 2
v ﬁ_%i%w\g((h )+ G2 4 TREN (4 v)? + GR.
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Vi =
G2:2G+G_—|—Gz I "f’ L e
g 5, S
Expanding to leading order in G2 P
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2 h+wv 2 g v

s-wave isospin-0 amplitude for GG—h" is momentum-
independent constant proportional to the deformation

2 197y 2
Inlmy

) 1 3
MGG ~ )| = M, = =8k,

Un

By equivale"e, oISh ttrig Iids at large
energies are related to those of longitudinal W and Z bosons

Amplitudes for multi-Higgs production in W/Z boson fusion are only
suppressed by scale v, leading to unitarity loss at some scale above v



Same calculation can be performed (much more
~ painfully) without resorting to equivalence theorem
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Consider V.V.—hhh which depends on triple and other Higgs
couplings.
Diagrams with one triple Higgs vertex contribute
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"~ In SM, various contributions that go like E° cancel against each other

S so that full amplitude behaves as 1/E at high energy,
[N consistently with perturbative unitarity
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However, as soon as 0A3#0, cancellation is no longer happening,
- and then tree level V.VL.—hhh cross section explodes at high energies
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Vi e

Perturbative unitarity bound on non-elastic amplitude . < _
g o SR nxh
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Sum over n Higgs bosons exponentiates

2 %76)\%771% @_ N34 (n!)?
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For any observable cubic Higgs
deformations, new physics must entel
at scale <=few*4n v
to regulate multi-Higgs amplitudes!




Maximum new physics scale for different 613

14/
12|
10}

A.[TeV]

6A3=10 OA3=1  A3=10"" 6A3=10"% &A3=10" 6A3=10""

For observable deformations of Higgs cubic, new physics must
enter below ~10 TeV scale

Corollary: if we demonstrate no new physics strongly coupled to
Higgs below~ 10 TeV, we practically prove EW symmetry is linearly

realized



Maximum new physics scale for different 613

350 :

6A=10  OAs=1  $ps=10"" OAs=10  OAs=1 $A3=10""

HEFT SMEFT

For SMEFT maximum new physics scale increases as (643)-1/2



Unitarity bounds separately for each n
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n

The smaller 613, the larger multiplicity n which dominates unitarity

bounds. But even for tiny 643, dominant n is order 10, so neglecting
Higgs masses in phase space is justified a posteriori



U = exp(210*T"/v)

1 2

U 2
ZLygrT = §fh(h)8uh8uh —V(h)+ Zfl(h)Tr[auUTauU] ‘|'U2f2(h) (TT[UTauUUSD + ...
(H, H)
One can always re-express non-linear Lagrangian U -
in linear language by replacing: V H™H

h—\2HTH —v

After this substitution, Lagrangian has linearly realized electroweak
symmetry but, for a generic point in parameter space, it contains terms
that are (that is, not continuously differentiable) at H=0



HEFT vs SMEFT

ZLuErr = %fh(h)ﬁuhﬁuh _ V(h) + %fl(h)Tr[f)’uUT({?MU] ‘|‘U2f2(h) (TI'[UT@MUag])Q +...

A point in HEFT parameter space is a part of (H , H )
SMEFT if, after the substitution, non-analytic U —
terms cancel (up to equations of motion) \VH'H

h—\V2HTH —v

For example
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HEFT vs SMEFT

usrr = SOOIV () + = A(BTHO,U10,U] +* o(h) (THU'0,U o)) +

A point in HEFT parameter space is a part of

SMEFT if, after the substitution, non-analytic U (H , H )
terms cancel (up to equations of motion) ?
\VH'H

More generally, HEFT reduces to dimension-6 SMEFT for
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In effective theories, non-analytic terms in Lagrangian appear due
to integrating out light degrees of freedom

More precisely, non-analyticity at H—0 signals that particle whose
mass vanishes as H—0 has been integrated out (e.g. integrating
out 4th chiral generation produces Log|H|?2 in Coleman-Weinberg
potential)

Thus, HEFT is effective theory for UV models containing particles
who get their masses from EW symmetry breaking. This clarifies

why cutoff cannot be taken parametrically above 4nv.

In contrast, SMEFT is effective theory for UV models where new
particles decouple in the limit v—0

For practical purpose, there is no difference between HEFT and
SMEFT with A of order v



e HEFT = SMEFT + non-analytic interactions

* Non-analytic term — infinite series of interactions
suppressed by vn — cut-off near 4nv

* Manifested as n>2-body Higgs production violating
perturbative unitarity bounds around that scale
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Question for next high-energy collider ?

O,
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@ LEP
@ Tevatron
@ LHC

@ <LA#C++

UV completion to Fermi theory identified

SM-like interactions of fermions confirmed

Top quark mass

Higgs boson mass

Leinear v non-linear electromeats symmetry 7



