# A heavy ion flashlight for discovering axions

Tom Melia, Berkeley





with Simon Knapen, Tongyan Lin, Tim Lou 1607.06083

# A heavy ion flashlight for discoing axions



# A heavy ion flashlight for discoing axions



# A heavy ion flashlight for discoing axions



# Pb-Pb in each experiment



#### LHC Pb-Pb collisions



# Head-on collisions (5.5 TeV nuc-nuc)



#### 1 PeV 'fireballs'



### Ultra-peripheral collision



no ion break-up low multiplicity

# Ultra-peripheral collision



# Ultra-peripheral collision









s/a

A. B. Balantekin, C. Bottcher, M. R. Strayer, and S. J. Lee Phys. Rev. Lett. **55**, 461 (1985)

A.A. NATALE, *Mod. Phys. Lett. A*, **09**, 2075 (1994)

RHICs 'Gold Flashlight'-> LHCs 'Lead Flashlight'



Worlds most powerful\* flashlight

Pb-Pb collisions are not optimized for typical beyond the SM searches

(low luminosity, lower per nucleon collision energy)

On our side: huge Z<sup>4</sup>enhancement extremely efficient bkg rejection

# Mass reach—quick estimate



# Mass reach—quick estimate



# Mass reach—quick estimate



 $5.6\,\mathrm{TeV}$ 

 $160\,\mathrm{GeV}$ 

 $14\,\mathrm{fm}$ 

Pb

# Enrico Fermi's effective photons



# Some Classical EM (see Jackson)



# Some Classical EM (see Jackson)



$$\int_{-\infty}^{\infty} dt \int d\mathbf{x}_{\perp} \cdot \mathbf{S}(\mathbf{x}, t) = \int_{0}^{\infty} dE \int d\mathbf{x}_{\perp} E N(E, \mathbf{x}_{\perp})$$

R

Poynting vector

$$\mathbf{S}(\mathbf{x},t) = \mathbf{E}(\mathbf{x},t) \times \mathbf{B}(\mathbf{x},t)$$

Photon flux

# Enrico Fermi's effective photons



# Enrico Fern

R



$$N(E, \vec{b}) = \frac{Z^2 \alpha}{\pi^2} \left(\frac{E}{\gamma}\right)^2 K_1^2 \left(\frac{E|\vec{b}|}{\gamma}\right)$$

photon flux with given energy E (point-like charge)

# Look down the beam pipe Pb Pb

# Look down the beam pipe



Obtain γ-γ Lumi

$$\mathcal{L}_{\gamma\gamma}(\hat{s}) = \frac{1}{\hat{s}} \int d^2\vec{b}_1 \, d^2\vec{b}_2 dE_1 dE_2 N(E_1, \vec{b}_1) N(E_2, \vec{b}_2)$$
 
$$\times P(|\vec{b}_1 - \vec{b}_2|) \delta(\hat{s} - 4E_1 E_2)$$
 Restrict  $|\vec{b}_{1,2}| > R$  'No-breakup' probability

# STARlight public code...

S. R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, and J. Butterworth



Obtain γ-γ Lumi

$$\mathcal{L}_{\gamma\gamma}(\hat{s}) = \frac{1}{\hat{s}} \int d^2\vec{b}_1 \, d^2\vec{b}_2 dE_1 dE_2 N(E_1, \vec{b}_1) N(E_2, \vec{b}_2)$$
 
$$\times P(|\vec{b}_1 - \vec{b}_2|) \delta(\hat{s} - 4E_1 E_2)$$
 Restrict  $|\vec{b}_{1,2}| > R$  'No-breakup' probability

Asked 1989 by e.g. M. Drees, J. R. Ellis, and D. Zeppenfeld



$$\sigma_{\gamma\gamma\to H} = \frac{8\pi^2}{m_H}\Gamma(H\to\gamma\gamma)\mathcal{L}_{\gamma\gamma}(m_H)$$

Asked 1989 by e.g. M. Drees, J. R. Ellis, and D. Zeppenfeld





Asked 1989 by e.g. M. Drees, J. R. Ellis, and D. Zeppenfeld



$$\sigma_{\gamma\gamma\to H} = \frac{8\pi^2}{m_H}\Gamma(H\to\gamma\gamma)\mathcal{L}_{\gamma\gamma}(m_H) \sim \mathrm{pb}$$
 $\mathrm{pb} \times 10 \,\mathrm{nb}^{-1} = 0.01$ 

Asked 1989 by e.g. M. Drees, J. R. Ellis, and D. Zeppenfeld

#### Close but not quite!

$$\sigma_{\gamma\gamma\to H} = \frac{8\pi^2}{m_H}\Gamma(H\to\gamma\gamma)\mathcal{L}_{\gamma\gamma}(m_H) \sim \mathrm{pb}$$
 $\mathrm{pb} \times 10 \,\mathrm{nb}^{-1} = 0.01$ 

#### Which ions are best?



G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, and Y. Kharlov (1991)

|   |   | Projectile | Z  | A   | $\sqrt{s}$ , A GeV | Luminosity, $cm^{-2}s^{-1}$ |
|---|---|------------|----|-----|--------------------|-----------------------------|
| d | L | p          | 1  | 1   | 14000              | $1.4\cdot 10^{31}$          |
|   | Н | Ar         | 18 | 40  | 7000               | $5.2\cdot10^{29}$           |
|   | С | Pb         | 82 | 208 | 5500               | $4.2\cdot 10^{26}$          |
|   | R | p          | 1  | 1   | 500                | $1.4\cdot 10^{31}$          |
|   | Н | Cu         | 29 | 63  | 230                | $9.5\cdot 10^{27}$          |
|   | Ι | Au         | 79 | 197 | 200                | $2.0\cdot 10^{26}$          |
|   | С |            |    |     |                    |                             |

# Search for axion like particles

Knapen, Lin, Lou, TM 16

$$\frac{1}{2}(\partial a)^{2} - \frac{1}{2}m_{a}^{2}a^{2} - \frac{1}{4}\frac{a}{\Lambda}F\tilde{F}$$

e.g. pseudo Nambu-Goldstone boson from some spontaneously broken symmetry





Sensitive to mass range M~GeV

Jaeckel, Spannowsky 15

# Search for axion like particles

Knapen, Lin, Lou, TM 16

$$\frac{1}{2}(\partial a)^{2} - \frac{1}{2}m_{a}^{2}a^{2} - \frac{1}{4}\frac{a}{\Lambda}F\tilde{F}$$

e.g. pseudo Nambu-Goldstone boson from some spontaneously broken symmetry



Pb 
$$\gamma \gamma \lambda ... a \lambda \gamma^{\gamma}$$

Pb  $\gamma \gamma \lambda ... a \lambda \gamma^{\gamma}$ 

$$\sigma_a = \frac{8\pi^2}{m_a} \Gamma(a \to \gamma \gamma) \mathcal{L}_{\gamma \gamma}(m_a^2)$$

$$\Gamma = \frac{1}{64\pi} \frac{m_a^3}{\Lambda^2}$$

Jaeckel, Spannowsky 15

#### How to trigger?

Two new triggers prepared (CMS Ultra-Peripheral Collisions working group analysis, to appear)

Two photons with E > 2 GeV and no hadronic activity in one of the forward calorimeters

One photon E > 5 GeV and no hadronic activity in one of the forward calorimeters

# It's like LEP!

..but with LHC-grade detectors





(fake)



## CEP (Central exclusive production)

L. A. Harland-Lang, V. A. Khoze, M. G. Ryskin, and W. J. Stirling (2010-)

—SuperCHIC

In p-p collisions: theory and expt. upper bound



CMS 7 TeV, 36 pb<sup>-1</sup>



## CEP (Central exclusive production)

L. A. Harland-Lang, V. A. Khoze, M. G. Ryskin, and W. J. Stirling (2010-)

—SuperCHIC

Scale to Pb-Pb?
Uncertain, but even A<sup>2</sup>
scaling it is small and
largely reducible



 $50 \text{ MeV} \sim 1 / R_{Pb}$  $1 \text{ GeV} \sim 1 / R_{p}$ 

A more reasonable?



This process has a cross section around 0.1-1 millibarn

Assuming ~1% fake rate, this is in the 10-100 nb region





Electron capture ~100 b (!)<sub>S.R. Klein, arXiv:0005032</sub>

$$Pb^{82+} + Pb^{82+} \to Pb^{81+} + Pb^{82+} + e^{+}$$



Magnets bend this differently





Similar rate for EM excitation of the nucleus and ejection of a neutron



## Similar rate for EM excitation of the nucleus and ejection of a neutron



|                | Projectile | Z  | A   | $\sqrt{s}$ , A GeV | Luminosity, $cm^{-2}s^{-1}$ |
|----------------|------------|----|-----|--------------------|-----------------------------|
| L              | p          | 1  | 1   | 14000              | $1.4\cdot 10^{31}$          |
| Н              | Ar         | 18 | 40  | 7000               | $5.2\cdot10^{29}$           |
| $\mathbf{C}$   | Pb         | 82 | 208 | 5500               | $4.2 \cdot 10^{26}$         |
| $\overline{R}$ | p          | 1  | 1   | 500                | $1.4 \cdot 10^{31}$         |
| Н              | Cu         | 29 | 63  | 230                | $9.5\cdot 10^{27}$          |
| Ι              | Au         | 79 | 197 | 200                | $2.0 \cdot 10^{26}$         |
| $\mathbf{C}$   |            |    |     |                    |                             |





#### LBL (Light by light)

D. d'Enterria and G. G. da Silveira (2013)

Z. Bern, A. De Freitas, L. J. Dixon, A. Ghinculov, and H. L. Wong (2001)



#### Light-by-light scattering in ultra-peripheral Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ =5.02 TeV with the ATLAS detector at the LHC

The ATLAS Collaboration

#### ATLAS-CONF-2016-111

#### **Abstract**

This note reports evidence for light-by-light scattering, using 480  $\mu$ b<sup>-1</sup> of Pb+Pb collision data at  $\sqrt{s_{\rm NN}}$  =5.02 TeV recorded by the ATLAS experiment at the LHC. After background subtraction and analysis corrections, the cross section of  $\gamma\gamma \to \gamma\gamma$  process for photon transverse momentum,  $E_{\rm T} > 3$  GeV, photon pseudorapidity,  $|\eta| < 2.4$ , diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, has been measured to be 70 ± 20 (stat.) ± 17 (syst.) nb, which is in agreement with the SM prediction of 49 ± 10 nb.

#### LBL (Light by light)

D. d'Enterria and G. G. da Silveira (2013)

Z. Bern, A. De Freitas, L. J. Dixon, A. Ghinculov, and H. L. Wong (2001)



#### Trigger

5 GeV < ET < 200 GeV in Ecal

<= 1 hit in inner ring of MBTS

<= 10 hits in pixel detector



### Zero degree calorimeters







Trigger efficiency for LBL scattering estimated using this effect...

...but potential use for new searches?





#### LBL (Light by light)

D. d'Enterria and G. G. da Silveira (2013)

Z. Bern, A. De Freitas, L. J. Dixon, A. Ghinculov, and H. L. Wong (2001)



4.4 sigma observation

~50 nb cross section





### Injected signal



Further cuts:  $|\eta_{\gamma}| < 2.5$   $|\Delta \phi - \pi| < 0.04$ 















#### New limit set



# As far as we are aware, only place heavy ions can better the p-p program for BSM



