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Dark Matter

Begeman, Broeils & Sanders, 1991

Planck, 2013

Viel, Becker, Bolton & Haehnelt, 2013

Ωnbmh2 = 0.1198± 0.0026
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Relic Density from Thermal Freeze-out

DM DM↔ SM SM

H(T) vs. Γ(T)

Γ(T) = n(T)σ(T)v(T)
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dn
dt

= −〈σv〉(n(t)2 − neq(t)2)− 3H(t)n(t)
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The WIMP Miracle in SUGRA

Baer, Box and Summy: 1005.2215
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Three exceptions in the calculation of relic abundances

Kim Griest
Center for Particle Astrophysics and Astronomy Department, University of California, Berkeley, California 94720

David Seckel
Bartol Research Institute, University ofDelaware, Newark, Delaware 19716

(Received 15 November 1990)

The calculation of relic abundances of elementary particles by following their annihilation and
freeze-out in the early Universe has become an important and standard tool in discussing particle
dark-rnatter candidates. We find three situations, all occurring in the literature, in which the stan-
dard methods of calculating relic abundances fail. The first situation occurs when another particle
lies near in mass to the relic particle and shares a quantum number with it. An example is a light
squark with neutralino dark matter. The additional particle must be included in the reaction net-
work, since its annihilation can control the relic abundance. The second situation occurs when the
relic particle lies near a mass threshold. Previously, annihilation into particles heavier than the rel-
ic particle was considered kinematically forbidden, but we show that if the mass diA'erence is
—5 —15%%uo, these "forbidden" channels can dominate the cross section and determine the relic abun-
dance. The third situation occurs when the annihilation takes place near a pole in the cross section.
Proper treatment of the thermal averaging and the annihilation after freeze-out shows that the dip
in relic abundance caused by a pole is not nearly as sharp or deep as previously thought.

I. INTRODUCTION

The calculation of the present-day density of elementa-
ry particles which were in thermal equilibrium in the ear-
ly Universe has become quite commonplace. ' Of particu-
lar interest is the so-called Lee-Weinberg ' calculation in
which annihilation after a particle species has become
nonrelativistic determines the present-day abundance of
that species. Standard approximate solutions to the
Boltzmann equation exist for this calculation and have
been tested numerically. In this paper we wish to point
out three cases where naive application of the standard
methods fails to give correct results and a modified treat-
ment is required. All three cases exist in the literature,
and in all three cases erroneous conclusions have been
drawn. For each case we present appropriate approxi-
mate solutions to the Boltzmann equation(s) and describe
the values of the parameters for which they apply.

The first case occurs when the relic particle is the light-
est of a set of similar particles whose masses are nearly
degenerate. In this case the relic abundance of the light-
est particle is determined not only by its annihilation
cross section, but also by the annihilation of the heavier
particles, which will later decay into the lightest. We call
this the case of "coannihilation. " As an example, consid-
er a supersymmetric theory in which the scalar quarks or
scalar electrons are only slightly more massive than the
lightest supersymmetric particle (LSP), usually taken to
be a neutralino. Previous calculations of the relic abun-
dance which consider only the LSP annihilation can be in
error by more than two orders of magnitude.

The second case concerns annihilation into particles
which are more massive than the relic particle. Previous

treatments regarded this as kinematically forbidden, but
we show that if the heavier particles are on1y 5 —1S%
more massive, these channels can dominate the annihila-
tion cross section and determine the relic abundance. We
call this the "forbidden" channel annihilation case. Ex-
amples include annihilation into bb, tt, W+ W, or Higgs
bosons, when the annihilating particle is lighter than the
final-state particle.

The third case occurs when the annihilation takes
place near a pole in the cross section. This happens, for
example, in Z -exchange annihilation when the mass of
the relic particle is near mz/2. Previous treatments have
incorrectly handled the thermal averages and the integra-
tion of the Boltzmann equation in these situations. The
dip in relic abundance caused by a pole is broader and
not nearly as deep as previous treatments imply.

For all three cases we present simple formulas which
allow for a more correct treatment. We also present ex-
amples for each case and describe the precise conditions
under which the modified treatment is necessary. In Sec.
II we review the standard method for performing the
Lee-Weinberg calculation and describe the approxima-
tions within which we will work. In Sec. III we discuss
the coannihilation case, in Sec. IV we discuss the forbid-
den channel case, and in Sec. V we discuss annihilation
near a pole.

II. STANDARD CALCULATION
OF RELIC ABUNDANCE

Here we summarize the standard technique for calcu-
lating the relic abundance of a particle species y in the
Lee-Weinberg scenario. First, a note about the philoso-
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DM DM ↔ SM1 SM2

DM X ↔ SM1 SM2

X X ↔ SM1 SM2

DM SM1 ↔ X SM2

dn
dt

=− 〈σeffv〉(n(t)2 − neq(t)2)− 3Hn

σeff ∼σDMDM + 2σDMX(1 + ∆)3/2e−xf ∆ + σXX(1 + ∆)e−2xf ∆

∆ =
mDM − mX

mDM
, xf =

mDM

Tf
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Coannihilation in the literature

Bino-Higgsino: 1601.01569, 1510.06151, 1510.02760, 1509.08838
Bino-gluino: 1509.03613, 1508.04811
Bino-wino: 1509.03613, 1506.08206
Bino-stau: 1509.08838, 1509.07152
Bino-sleptons: 1506.08202
Bino-stop: 1509.08838
Neutralino-chargino: 1509.08485, 1507.02288, 1506.08202
Neutralino-sbottom: 1507.01001
Neutralino-gluino: 1510.03498
Radiative Neutrino Mass Models: 1512.07961, 1509.04068, 1507.06782
Scalar DM & vector-like quark mediator: 1511.04452
Triplet-Quadruplet DM: 1601.01354
Lepton-flavored DM: 1510.00100
Kaluza-Klein DM: 1601.00081
Inert Zee model: 1511.01873
Flavoured DM: 1510.04694
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FIG. 1. Artistic view of the DM theory space. See text for detailed explanations.

us to describe the DM-SM interactions mediated by all kinematically inaccessible

particles in an universal way. The DM-EFT approach [3–9] has proven to be very

useful in the analysis of LHC Run I data, because it allows to derive stringent bounds

on the “new-physics” scale Λ that suppresses the higher-dimensional operators. Since

for each operator a single parameter encodes the information on all the heavy states

of the dark sector, comparing LHC bounds to the limits following from direct and

indirect DM searches is straightforward in the context of DM-EFTs.

(II) The large energies accessible at the LHC call into question the momentum expansion

underlying the EFT approximation [6, 9–16], and we can expand our level of detail

toward simplified DM models (for early proposals see for example [17–22]). Such

models are characterized by the most important state mediating the DM particle

interactions with the SM, as well as the DM particle itself. Unlike the DM-EFTs,

simplified models are able to describe correctly the full kinematics of DM production

at the LHC, because they resolve the EFT contact interactions into single-particle s-

channel or t-channel exchanges. This comes with the price that they typically involve

not just one, but a handful of parameters that characterize the dark sector and its

6
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Simplified Models of DM at the LHC

Simplified Models for Dark Matter Searches at the LHC
Abdallah et al. 1506.03116

. . . outlines a set of simplified models of DM for searches at the
LHC

Dark Matter Benchmark Models for Early LHC Run-2 Searches:
Report of the ATLAS/CMS Dark Matter Forum

Abercrombie et al. 1507.00966

. . . a minimal basis of dark matter models that should influence
the design of the early Run-2 searches. At the same time, a
thorough survey of realistic collider signals of Dark Matter
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Our Goal

A complete classification of simplified coannihilation models

The Coannihilation Codex

A bottom-up framework for discovering dark matter at the
LHC
LHC phenomenology testing DM freeze-out
Identify lesser studied models & searches
In the event of a signal, gives a framework for the inverse
problem
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Outline

1 Motivation

2 Coannihilation Codex

3 Using the Codex
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Assumptions

To complete a classification we need to make some
assumptions

DM is a thermal relic
DM is a colourless, electrically neutral particle in (1,N, β)

Coannihilation diagram is 2-to-2 via dimension four,
tree-level couplings
New particles have spin 0, 1/2 or 1
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Coannihilation Diagrams

X

DM

SM2

SM1

⇓
X

DM

SM2

SM1

Ms

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1
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Classification Procedure

Work in unbroken SU(2)L × U(1)Y

Given SM field content, iterate over SM1 and SM2 to find all
possible X using

Gauge invariance
Lorentz invariance
Z2 parity (to prevent DM decay)

Then find all s-channel and t-channel mediators, using
same restrictions and

Dimension four, tree-level couplings
Gauge bosons only couple through kinetic terms
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s-channel classification - sample

DM in (1,N, β)
ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

ST11

(3, N ± 1, α)

7
3

(3, 2, 7
3
)

B (QL`R), (uRLL)

ST12 F (uRH)

ST13 1
3

(3, 2, 1
3
)

B (dRLL), (QLdR), (uRLL)

ST14 F (uRH
†), (dRH) QL

ST15
− 5

3
(3, 2,− 5

3
)

B (QLuR), (QL`R), (dRLL)

ST16 F (dRH
†)

ST17

(3, N ± 2, α)

4
3

(3, 3, 4
3
)

B (QLLR) Xα = − 2
3

ST18 F (QLH)

ST19
− 2

3
(3, 3,− 2

3
)

B (QLQL), (QLLL) Xα = 1
3

ST20 F (QLH
†)

B:

X

DM

SM2

SM1

Ms

X

DM

SM2

SM1

Ms

F:

X

DM

SM2

SM1

Ms

X

DM

SM2

SM1

Ms

X

DM

SM2

SM1

Ms

X

DM

SM2

SM1

Ms

X

DM

SM2

SM1

Ms

X

DM

SM2

SM1

Ms
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t-channel classification - sample

DM in (1,N, β)

ID X α + β Mt Spin (SM1 SM2) SM3

TU26

(1, N ± 2, α)

0

(1, N ± 1, β − 1) I (HH†)

TU27 (1, N ± 1, β + 1) II (LLH)

TU28 (1, N ± 1, β − 1) III (HLL)

TU29 (3̄, N ± 1, β − 1
3

) IV (QLQL)

TU30 (1, N ± 1, β + 1) IV (LLLL)

TU31

−2

(1, N ± 1, β + 1) I (H†H†)

TU32 (1, N ± 1, β + 1) II (LLH
†)

TU33 (1, N ± 1, β + 1) III (H†LL)

I

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1

Mt II

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1

Mt

III

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1

Mt IV

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1

Mt

X

DM

SM2

SM1

Mt



22/51

Motivation Coannihilation Codex Using the Codex

Classification: hybrid models

ID X α + β SM partner Extensions

H1
(1, N, α)

0 B,W
N≥2
i SU1, SU3, TU1, TU4–TU8

H2 −2 `R SU6, SU8, TU10, TU11

H3
(1, N ± 1, α) −1

H† SU10, TU18–TU23

H4 LL SU11, TU16, TU17

H5
(3, N, α)

4
3

uR ST3, ST5, TT3, TT4

H6 − 2
3

dR ST7, ST9, TT10, TT11

H7 (3, N ± 1, α) 1
3

QL ST14, TT28–TT31

7 models
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Classification: s-channel

ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

SU1

(1, N, α)

0

(1, 1, 0)
B

(uRuR), (dRdR), (QLQL)
B,W

N≥2
i

X
(`R`R), (LLLL), (HH†)

SU2 F (LLH)

SU3
(1, 3, 0)N≥2

B (QLQL), (LLLL), (HH†) B, Wi X

SU4 F (LLH)

SU5

−2

(1, 1,−2)
B (dRuR), (H†H†) X

SU6 F (LLH
†) `R

SU7
(1, 3,−2)N≥2

B (H†H†), (LLLL) X(α = ±1)

SU8 F (LLH
†) `R

SU9 −4 (1, 1,−4) B (`R`R) X(α = ±2)

SU10

(1, N ± 1, α)

−1 (1, 2,−1)
B (dRQL), (uRQL), (LL`R) H†

SU11 F (`RH) LL

SU12
−3 (1, 2,−3)

B (LL`R)

SU13 F (`RH
†)

SU14

(1, N ± 2, α)

0 (1, 3, 0)
B (LLLL), (QLQL), (HH†) X(α = 0)

SU15 F (LLH)

SU16
−2 (1, 3,−2)

B (H†H†), (LLLL) X(α = ±1)

SU17 F (LLH
†)

SU type - 17 models

ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

ST1

(3, N, α)

10
3

(3, 1, 10
3

) B (uRlR) Xα = − 5
3

ST2

4
3

(3, 1, 4
3
)

B (dR`R), (QLLL), (dRdR) Xα = − 2
3

ST3 F (QLH) uR

ST4
(3, 3, 4

3
)N≥2 B (QLLL) Xα = − 2

3

ST5 F (QLH) uR

ST6

− 2
3

(3, 1,− 2
3
)

B (QLQL), (uRdR), (uR, `R), (QLLL) Xα = 1
3

ST7 F (QLH
†) dR

ST8
(3, 3,− 2

3
)N≥2 B (QLQL), (QLLL) Xα = 1

3

ST9 F (QLH
†) dR

ST10 − 8
3

(3, 1,− 8
3
) B (uRuR), (dR`R) Xα = 4

3

ST11

(3, N ± 1, α)

7
3

(3, 2, 7
3
)

B (QL`R), (uRLL)

ST12 F (uRH)

ST13 1
3

(3, 2, 1
3
)

B (dRLL), (QLdR), (uRLL)

ST14 F (uRH
†), (dRH) QL

ST15
− 5

3
(3, 2,− 5

3
)

B (QLuR), (QL`R), (dRLL)

ST16 F (dRH
†)

ST17

(3, N ± 2, α)

4
3

(3, 3, 4
3
)

B (QLLR) Xα = − 2
3

ST18 F (QLH)

ST19
− 2

3
(3, 3,− 2

3
)

B (QLQL), (QLLL) Xα = 1
3

ST20 F (QLH
†)

ST type - 20 models

U: X uncoloured

T: X SU(3) triplet

O: X SU(3) octet

E: X SU(3) exotic

ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

SO1

(8, N, α)
0

(8, 1, 0)6=g[s2] B (dRdR), (uRuR), (QLQL) Xα = 0

SO2 (8, 3, 0)N≥2 B (QLQL) Xα = 0

SO3 −2 (8, 1,−2) B (dRuR) Xα = ±1

SO4 (8, N ± 1, α) −1 (8, 2,−1) B (dRQL), (QLuR)

SO5 (8, N ± 2, α) 0 (8, 3, 0) B (QLQL) Xα = 0

SE1

(6, N, α)

8
3

(6, 1, 8
3
) B (uRuR) Xα = − 4

3

SE2 2
3

(6, 1, 2
3
) B (QLQL), (uRdR) X(α = − 1

3
)

SE3 (6, 3, 2
3
)N≥2 B (QLQL) Xα = − 1

3

SE4 − 4
3

(6, 1,− 4
3
) B (dRdR) Xα = 2

3

SE5
(6, N ± 1, α)

5
3

(6, 2, 5
3
) B (QLuR)

SE6 − 1
3

(6, 2,− 1
3
) B (QLdR)

SE7 (6, N ± 2, α) 2
3

(6, 3, 2
3
) B (QLQL) Xα = − 1

3

SO and SE type - 5 and 7 models
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Classification: t-channel

ID X α + β Mt Spin (SM1 SM2) SM3

TU1

(1, N, α)

0

(1, N ± 1, β − 1) I (HH†) B, W
N≥2
i

TU2 (1, N ± 1, β + 1) II (LLH)

TU3 (1, N ± 1, β − 1) III (HLL)

TU4 (3̄, N ± 1, β − 1
3

) IV (QLQL) B, W
N≥2
i

TU5 (3̄, N, β − 4
3

) IV (uRuR) B, W
N≥2
i

TU6 (3̄, N, β + 2
3

) IV (dRdR) B, W
N≥2
i

TU7 (1, N ± 1, β + 1) IV (LLLL) B, W
N≥2
i

TU8 (1, N, β + 2) IV (`R`R) B, W
N≥2
i

TU9

−2

(1, N ± 1, β + 1) I (H†H†)

TU10 (1, N ± 1, β + 1) II (LLH
†) `R

TU11 (1, N ± 1, β + 1) III (H†LL) `R

TU12 (1, N ± 1, β + 1) IV (LLLL)

TU13 (3, N, β + 4
3

) IV (uRdR)

TU14 (3̄, N, β + 2
3

) IV (dRuR)

TU15 −4 (1, N, β + 2) IV (`R`R)

TU16

(1, N ± 1, α)

−1

(1, N, β + 2) II (`RH) LL

TU17 (1, N ± 1, β − 1) III (H`R) LL

TU18 (1, N, β + 2) IV (`RLL) H†

TU19 (1, N ± 1, β − 1) IV (LL`R) H†

TU20 (3̄, N, β + 2
3

) IV (dRQL) H†

TU21 (3, N ± 1, β + 1
3

) IV (QLdR) H†

TU22 (3̄, N ± 1, β − 1
3

) IV (QLuR) H†

TU23 (3, N, β + 4
3

) IV (uRQL) H†

TU24
−3

(1, N ± 1, β + 1) IV (LL`R)

TU25 (1, N, β + 2) IV (`RLL)

TU26

(1, N ± 2, α)

0

(1, N ± 1, β − 1) I (HH†)

TU27 (1, N ± 1, β + 1) II (LLH)

TU28 (1, N ± 1, β − 1) III (HLL)

TU29 (3̄, N ± 1, β − 1
3

) IV (QLQL)

TU30 (1, N ± 1, β + 1) IV (LLLL)

TU31

−2

(1, N ± 1, β + 1) I (H†H†)

TU32 (1, N ± 1, β + 1) II (LLH
†)

TU33 (1, N ± 1, β + 1) III (H†LL)

TU type - 33 models
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)
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)
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−
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)
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+
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TT type - 52 models

ID X α + β Mt Spin (SM1 SM2) SM3

TO1

(8, N, α)

0

(3̄, N ± 1, β − 1
3

) IV (QLQL)

TO2 (3̄, N, β − 4
3

) IV (uRuR)

TO3 (3̄, N, β + 2
3

) IV (dRdR)

TO4
−2

(3̄, N, β + 2
3

) IV (dRuR)

TO5 (3, N, β + 4
3

) IV (uRdR)

TO6

(8, N ± 1, α) −1

(3̄, N, β + 2
3

) IV (dRQL)

TO7 (3, N ± 1, β + 1
3

) IV (QLdR)

TO8 (3̄, N ± 1, β − 1
3

) IV (QLuR)

TO9 (3, N, β + 4
3

) IV (uRQL)

TO10 (8, N ± 2, α) 0 (3̄, N ± 1, β − 1
3

) IV (QLQL)

TE1

(6, N, α)

8
3

(3̄, N, β − 4
3

) IV (uRuR)

TE2

2
3

(3̄, N ± 1, β − 1
3

) IV (QLQL)

TE3 (3̄, N, β − 4
3

) IV (uRdR)

TE4 (3̄, N, β + 2
3

) IV (dRuR)

TE5 − 4
3

(3̄, N, β + 2
3

) IV (dRdR)

TE6

(6, N ± 1, α)

5
3

(3̄, N, β − 4
3

) IV (uRQL)

TE7 (3̄, N ± 1, β − 1
3

) IV (QLuR)

TE8
- 1
3

(3̄, N, β + 2
3

) IV (dRQL)

TE9 (3̄, N ± 1, β − 1
3

) IV (QLdR)

TE10 (6, N ± 2, α) 2
3

(3̄, N ± 1, β − 1
3

) IV (QLQL)

TO and TE type - 10 and 10 models
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Motivation Coannihilation Codex Using the Codex

LHC Production: Common

q

q

X, M

X, M

q

q
γ/Z

X, M, DM

X, M, DM

q

q

FJ

FJ

X, M, DM

X, M, DM

if (SM1SM2) ∈ p

SM2

SM1

X

DM
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Decays: Common

X

DM

SM1

SM2

/ET
+}

soft
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Motivation Coannihilation Codex Using the Codex

Signature Table: Common

pp→ . . . Prod. via Signatures Search

co
m

m
on

DM + DM + ISR

gauge int.

mono-Y + /ET [55,56,62,63,104]or SM1 ∈ p

for t-channelX (→ SMsoft
1 SMsoft

2 DM)
X (→ SMsoft

1 SMsoft
2 DM)

ISR

gauge int. mono-Y + /ET [55,56,62,63,104]

or SM2 ∈ p mono-Y + /ET+ ≤ 4 SM Partial coverage [105]

for t-channel

DM + X (→ SMsoft
1 SMsoft

2 DM) + ISR (SM1 SM2) ∈ p
mono-Y + /ET [55,56,62,63,104]

mono-Y + /ET+ ≤ 2 SM Partial coverage [105]
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LHC Production: s-channel

Gauge boson production +

if (SM1SM2) ∈ p

SM2

SM1

X

DM

⇒
q

q′

M

if SM1/SM2 ∈ p

q

g
q∗

SM

M
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LHC Production: s-channel

Gauge boson production +

if (SM1SM2) ∈ p

SM2

SM1

X

DM

⇒
q

q′

M

if SM1/SM2 ∈ p

q

g
q∗

SM

M
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Motivation Coannihilation Codex Using the Codex

Decays: s-channel

X

DM

Ms

SM1

SM2

/ET
+}

soft

Ms

SM1

SM2

}
Resonance

Ms

DM

X
DM

M∗s

SM1

SM2

}
/ET

+}
soft
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Motivation Coannihilation Codex Using the Codex

Decays: s-channel

X

DM

Ms

SM1

SM2

/ET
+}

soft

Ms

SM1

SM2

}
Resonance

Ms

DM

X
DM

M∗s

SM1

SM2

}
/ET

+}
soft
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Signature Table: s-channel

pp→ . . . Prod. via Signatures Search

s-
ch

an
ne

l

{
Ms (→ [SM1 SM2]res)
Ms (→ [SM1 SM2]res)

gauge int.

2 resonances [106-112]

{
Ms (→ [SM1 SM2]res)
Ms (→ DM + X (→ SMsoft

1 SMsoft
2 DM))

resonance + /ET No search

resonance + /ET+ ≤ 2 SM No search{
Ms (→ DM + X (→ SMsoft

1 SMsoft
2 DM))

Ms (→ DM + X (→ SMsoft
1 SMsoft

2 DM))
/ET+ ≤ 4 SM [113-124]

Ms (→ [SM1 SM2]res)

(SM1 SM2) ∈ p

1 resonance [125-146]

Ms (→ DM + X (→ SMsoft
1 SMsoft

2 DM)) /ET+ ≤ 2 SM
[120-122,124]

[104,147-153]

SM1,2 + Ms (→ [SM1 SM2]res)

SM2,1 ∈ p

1 resonance + 1 SM Partial coverage [154,155]{
SM1,2
Ms (→ DM + X (→ SMsoft

1 SMsoft
2 DM))

/ET + 1 ≤ 3 SM
[114,120-124]

[147-153,156-158]
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LHC Production: t-channel

Gauge boson production +
Coannihilation diagram +

if SM1 ∈ p

q

g
q∗

DM

M

if SM2 ∈ p

q

g
q∗

X

M
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Motivation Coannihilation Codex Using the Codex

LHC Production: t-channel

Gauge boson production +
Coannihilation diagram +

if SM1 ∈ p

q

g
q∗

DM

M

if SM2 ∈ p

q

g
q∗

X

M
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Motivation Coannihilation Codex Using the Codex

Decays: t-channel

X

SM2

Mt

SM1

DM /ET

+

}
soft

Mt

SM1

DM

hard
+

/ET

Mt

SM2

X
SM2

M∗t

SM1

DM

hard
+}

soft

+

/ET
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Decays: t-channel

X

SM2

Mt

SM1

DM /ET

+

}
soft

Mt

SM1

DM

hard
+

/ET

Mt

SM2

X
SM2

M∗t

SM1

DM

hard
+}

soft

+

/ET
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Decays: t-channel

X

SM2

Mt

SM1

DM /ET

+

}
soft

Mt

SM1

DM

hard
+

/ET

Mt

SM2

X
SM2

M∗t

SM1

DM

hard
+}

soft

+

/ET
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Signature Table: t-channel

pp→ . . . Prod. via Signatures Search

t-
ch

an
ne

l

{
Mt (→ SM1 DM)
Mt (→ SM1 DM)

gauge int.

/ET+ ≤ 2 SM
[120-122,124]

[104,147-153]{
Mt (→ SM1 DM)
Mt (→ SM2 + X (→ SMsoft

1 SMsoft
2 DM))

/ET+ ≤ 4 SM
[106-112]

[114,119-124]{
Mt (→ SM2 + X (→ SMsoft

1 SMsoft
2 DM))

Mt (→ SM2 + X (→ SMsoft
1 SMsoft

2 DM))
/ET+ ≤ 6 SM

[113,114,120-124]

[116-118,159-163]

DM + Mt (→ SM1 DM)

SM1 ∈ p

/ET+ ≤ 1 SM
[55,56,62,63]

[104,149]{
DM
Mt (→ SM2 + X (→ SMsoft

1 SMsoft
2 DM))

/ET+ ≤ 3 SM
[114,120-124]

[152,153,156-158]{
Mt (→ SM1 DM)
X (→ SMsoft

1 SMsoft
2 DM)

SM2 ∈ p

/ET+ ≤ 3 SM
[114,120-124]

[152,153,156-158]{
Mt (→ SM2 + X (→ SMsoft

1 SMsoft
2 DM))

X (→ SMsoft
1 SMsoft

2 DM)
/ET+ ≤ 5 SM

[113,114,116-124]

[159-161,164]
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LHC Production: hybrid models

Gauge boson production +

if SM ∈ p

q

g
q∗

X

DM
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LHC Production: hybrid models

Gauge boson production +

if SM ∈ p

q

g
q∗

X

DM
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Decays: hybrid models

X

SM

DM

soft
+

/ET
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Motivation Coannihilation Codex Using the Codex

Signature Table: hybrid models

pp→ . . . Prod. via Signatures Search

hy
br

id

{
X (→ DM + SMsoft

3 )
X (→ DM + SMsoft

3 )
gauge int.

/ET+ ≤ 2 SM
[120-122,124]

or SM3 ∈ p [104,147-153]

DM + X (→ DM + SMsoft
3 ) SM3 ∈ p /ET+ ≤ 1 SM

[128,129,149]

[55,56,62,63,104]
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Signature Table

pp→ . . . Prod. via Signatures Search

co
m

m
on

DM + DM + ISR

gauge int.

mono-Y + /ET [55,56,62,63,104]or SM1 ∈ p

for t-channelX (→ SMsoft
1 SMsoft

2 DM)
X (→ SMsoft

1 SMsoft
2 DM)

ISR

gauge int. mono-Y + /ET [55,56,62,63,104]

or SM2 ∈ p mono-Y + /ET+ ≤ 4 SM Partial coverage [105]

for t-channel

DM + X (→ SMsoft
1 SMsoft

2 DM) + ISR (SM1 SM2) ∈ p
mono-Y + /ET [55,56,62,63,104]

mono-Y + /ET+ ≤ 2 SM Partial coverage [105]
s-

ch
an

ne
l

{
Ms (→ [SM1 SM2]res)
Ms (→ [SM1 SM2]res)

gauge int.

2 resonances [106-112]

{
Ms (→ [SM1 SM2]res)
Ms (→ DM + X (→ SMsoft

1 SMsoft
2 DM))

resonance + /ET No search

resonance + /ET+ ≤ 2 SM No search{
Ms (→ DM + X (→ SMsoft

1 SMsoft
2 DM))

Ms (→ DM + X (→ SMsoft
1 SMsoft

2 DM))
/ET+ ≤ 4 SM [113-124]

Ms (→ [SM1 SM2]res)

(SM1 SM2) ∈ p

1 resonance [125-146]

Ms (→ DM + X (→ SMsoft
1 SMsoft

2 DM)) /ET+ ≤ 2 SM
[120-122,124]

[104,147-153]

SM1,2 + Ms (→ [SM1 SM2]res)

SM2,1 ∈ p

1 resonance + 1 SM Partial coverage [154,155]{
SM1,2
Ms (→ DM + X (→ SMsoft

1 SMsoft
2 DM))

/ET + 1 ≤ 3 SM
[114,120-124]

[147-153,156-158]

t-
ch

an
ne

l

{
Mt (→ SM1 DM)
Mt (→ SM1 DM)

gauge int.

/ET+ ≤ 2 SM
[120-122,124]

[104,147-153]{
Mt (→ SM1 DM)
Mt (→ SM2 + X (→ SMsoft

1 SMsoft
2 DM))

/ET+ ≤ 4 SM
[106-112]

[114,119-124]{
Mt (→ SM2 + X (→ SMsoft

1 SMsoft
2 DM))

Mt (→ SM2 + X (→ SMsoft
1 SMsoft

2 DM))
/ET+ ≤ 6 SM

[113,114,120-124]

[116-118,159-163]

DM + Mt (→ SM1 DM)

SM1 ∈ p

/ET+ ≤ 1 SM
[55,56,62,63]

[104,149]{
DM
Mt (→ SM2 + X (→ SMsoft

1 SMsoft
2 DM))

/ET+ ≤ 3 SM
114,120-124]

[152,153,156-158]{
Mt (→ SM1 DM)
X (→ SMsoft

1 SMsoft
2 DM)

SM2 ∈ p

/ET+ ≤ 3 SM
[114,120-124]

[152,153,156-158]{
Mt (→ SM2 + X (→ SMsoft

1 SMsoft
2 DM))

X (→ SMsoft
1 SMsoft

2 DM)
/ET+ ≤ 5 SM

[113,114,116-124]

[159-161,164]

hy
br

id

{
X (→ DM + SMsoft

3 )
X (→ DM + SMsoft

3 )
gauge int.

/ET+ ≤ 2 SM
[120-122,124]

or SM3 ∈ p [104,147-153]

DM + X (→ DM + SMsoft
3 ) SM3 ∈ p /ET+ ≤ 1 SM

[128,129,149]

[55,56,62,63,104]
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Outline

1 Motivation

2 Coannihilation Codex

3 Using the Codex
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Bino-gluino Coannihilation

Label Field Rep. Spin assignment

DM Bino (1,1,0) Fermion

X Gluino (8,1,0) Fermion

M Squark (3,1,4/3) Scalar

DM ∼ (1,N, β)
X ∼ (8,N, α)
α+ β = 0

M ∼ (3,N, β + 4/3)

t-channel: IV

X

DM

SM2

SM1

Mt
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Bino-gluino Coannihilation

X ∼ (8,N, α) α+ β = 0

M ∼ (3,N, β + 4/3) Spin: IV

ID X α + β Mt Spin (SM1 SM2) SM3

TO1

(8, N, α)

0

(3̄, N ± 1, β − 1
3

) IV (QLQL)

TO2 (3̄, N, β − 4
3

) IV (uRuR)

TO3 (3̄, N, β + 2
3

) IV (dRdR)

TO4
−2

(3̄, N, β + 2
3

) IV (dRuR)

TO5 (3, N, β + 4
3

) IV (uRdR)

TO6

(8, N ± 1, α) −1

(3̄, N, β + 2
3

) IV (dRQL)

TO7 (3, N ± 1, β + 1
3

) IV (QLdR)

TO8 (3̄, N ± 1, β − 1
3

) IV (QLuR)

TO9 (3, N, β + 4
3

) IV (uRQL)

TO10 (8, N ± 2, α) 0 (3̄, N ± 1, β − 1
3

) IV (QLQL)
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Bino-gluino Coannihilation

DM ∼ (1, 1, 0)F X ∼ (8, 1, 0)F

M ∼ (3, 1, 4/3)B (SM1SM2) = (uRuR)

g̃

B̃

uR

uR

ũR
g2

g1

pp→ . . . Prod. via Signatures Search Strength

co
m

m
on

DM + DM + ISR

gauge int.

mono-Y + /ET [55,56,62,63,104] g4
1αior SM1 ∈ p

for t-channelX (→ SMsoft
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Using the Codex II

Underexplored DM Models
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Motivation Coannihilation Codex Using the Codex

Leptoquark Mediated DM - ST11

ID X α + β Ms Spin (SM1 SM2) SM3 M-X-X

ST11 (3, N ± 1, α) 7
3

(3, 2, 7
3
) B (QL`R), (uRLL)

DM in (1,N, β)

Field Rep. Spin and mass assignment

DM (1,1,0) Majorana fermion

X (3,2,7/3) Dirac fermion

M (3,2,7/3) Scalar
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Motivation Coannihilation Codex Using the Codex

Leptoquark Mediated DM - ST11 - Relic Density
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Leptoquark Mediated DM - ST11 - Signatures
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ST11 - Existing Collider Constraints
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ST11 - Existing Collider Constraints
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ST11 - Constraints from New Searches

L
Q
P
a
ir
(V
is
ib
le
)
[8
T
e
V
]

XX+j (Monojet) [8 TeV]

L
Q
P
ai
r
(V
is
ib
le
)
[1
3
T
eV

]

LQ
Pair(M

ixed
)

[13
T
eV

]

XX+j (Monojet) [13 TeV]

XX+j (Leptons) [13 TeV] (pT(l) > 10 GeV)

XX+j (Leptons) [13 TeV] (pT(l) > 25 GeV)

Relic Density + APV (3σ allowed)

(2+
Δ)
mD

M
=m

LQ

Δ = 0.1, Br(LQ→lq)|mDM=0 = 0.5

400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

mLQ [GeV]

m
D
M
[G
eV

]

g g

g

X

X

DM
DM

q

e+

e−

q

g

g M

M† e−

q
DM

X
DM

M∗
q

e+



50/51

Motivation Coannihilation Codex Using the Codex

ST11 - Constraints from New Searches

L
Q
P
a
ir
(V
is
ib
le
)
[8
T
e
V
]

XX+j (Monojet) [8 TeV]

L
Q
P
ai
r
(V
is
ib
le
)
[1
3
T
eV

]

LQ
Pair(M

ixed
)

[13
T
eV

]

XX+j (Monojet) [13 TeV]

XX+j (Leptons) [13 TeV] (pT(l) > 10 GeV)

XX+j (Leptons) [13 TeV] (pT(l) > 25 GeV)

Relic Density + APV (3σ allowed)

(2+
Δ)
mD

M
=m

LQ

Δ = 0.1, Br(LQ→lq)|mDM=0 = 0.5

400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

mLQ [GeV]

m
D
M
[G
eV

]

g g

g

X

X

DM
DM

q

e+

e−

q

g

g M

M† e−

q
DM

X
DM

M∗
q

e+



51/51
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Summary

Coannihilation Codex gives a complete list of simplified
models of coannihilation
Guaranteed kinetic & coannihilation vertices→ signatures
Classify signatures of a wide range of models

Identify new signatures
Identify interesting models, e.g., leptoquarks and DM

Huge number of coannihilating models of DM
with interesting collider signatures to study
at the LHC and future colliders
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EWSB I

The main effect of EWSB on our models is from mixing:
Due to Z2 symmetry, in t-channel models the effects of the
mixing will be entirely in the dark sector
Mediators in s-channel models may mix with SM particles,
giving hybrid model like signatures
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EWSB II

It is also possible to construct new 2-to-2 diagrams exist thanks
to EWSB

E.g.: mixing between Wi(1, 3, 0) and Vi(1, 5, 0) in the 3–3–1
model

However, all diagrams are built from verticies present in our
tables and LHC signatures (almost always) differ only by mixing
angles and group theory factors
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Cut-flow table - Mixed decay

QCD W + 1, 2j t̄t Zνν + j Zττ + j W+W− WZνν + j WZjj signal

pT(j1) > 50 GeV 2.1×1012 4.4×108 1.3×108 7.0×107 1.3×107 1.2×106 1.3×105 3.1×105 600

Nh
e = 1, Ne ≤ 2 4.8×109 8.8×107 1.2×107 8.6×104 4.8×105 2.4×105 1.9×104 6.1×104 415

b-jet veto 4.0×109 8.2×107 5.0×106 8.2×104 4.6×105 2.2×105 1.9×104 5.4×104 395

Nhard jets ≤ 3 3.9×109 8.2×107 4.3×106 8.2×104 4.6×105 2.2×105 1.9×104 5.4×104 335

Z veto 3.9×109 8.2×107 1.7×106 8.2×104 4.6×105 2.2×105 1.9×104 5.4×104 326

/ET > 700 GeV 133 1738 15 19 9 10 27 2 75

mT > 150 GeV 132 16 10−3 18 0.005 0.01 10 0.001 67

mass window 3 0.2 0 0.3 10−5 10−5 0.1 10−5 24
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Cut-flow table - XXj

t̄t Z`` + j Diboson W`ν + j t + j Signal

/ET > 50 GeV 1.9× 107 7.9× 106 1.1× 106 1.9× 108 5.6× 105 8.5× 104

plead
T > 50 GeV 1.8× 107 6.1× 106 5.9× 105 1.5× 108 4.6× 105 7.1× 104

∆φj1j2 < 2.5 1.2× 107 4.2× 106 5.0× 105 1.1× 108 2.9× 105 5.4× 104

Z and µ veto 8.5× 106 2.7× 106 4.0× 105 8.6× 107 1.9× 105 5.2× 104

b veto 3.6× 106 2.6× 106 3.7× 105 8.2× 107 1.1× 105 2.0× 104

Nl ≥ 2 2.5× 104 4371 1076 9.8× 104 382 1748

/ET > 400 GeV 12 11 0.07 780 2 118∣∣∣∣pT j1
/ET
− 1
∣∣∣∣ < 0.2 1 11 0.07 148 0.2 85
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