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Holography = Solvable Toy Model

Solvable models of strong coupling dynamics.

• Study Transport, real time

• Study Finite Density of electrons or quarks 

• Study far from equilibrium   
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Gives us qualitative guidance/intuition.

Common Theme: Experimentally relevant, calculations challenging.



Why toy models?
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Strong coupling =

no perturbation theory!

But can’t we just do numerical simulations?



Challenge for Computers:
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e.g. Lattice QCD

We do have methods for

strong coupling:

But: typically relies on importance sampling. Monte-Carlo

techniques.
𝑒−𝑆 weighting in Euclidean path integral.

FAILS FOR DYNAMIC PROCESSES OR AT FINITE DENSITY (sign problem)



Holographic Toy models.
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Can we at least

get a qualitative

understanding of

what dynamics look

like at strong coupling?



Holographic Toy models.
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Can we at least

get a qualitative

understanding of

what dynamics looks

like at strong coupling?



Holographic Theories:
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Examples known:

• in d=1, 2, 3, 4, 5, 6 space-time dimensions

• with or without super-symmetry

• conformal or confining

• with or without chiral symmetry breaking

• with finite temperature and density



Holographic Theories:

8

“Large N”:

Holographic toy models have two key properties:

theory is essentially classical

“Large λ”: large separation of scales

in the spectrum

(note: there are some exotic examples where the same parameter N controls both, classicality 

and separation of scales in spectrum)

m
spin-2-meson

m
spin-1-meson

~  λ1/4

QCD: 775 MeV1275 MeV



Mathematical Foundations
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The “glue”:

Find asymptotically hyperbolic

solutions to Einstein’s equations.

Full geometry includes compact

internal factor.

Required geometric data found long ago by two 

mathematicians, Fefferman and Graham. 



Mathematical Foundations
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The “quarks”:

Find minimal area submanifolds in 

asymptotically Einstein spaces. 

Required geometric data for just asympt. Einstein 

constructed by Graham and Witten; generalized to include 

internal space by Graham and AK. 

(AK, Katz)

Flavor Branes



A holographic dual:
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(picture from CLMRW-review, 2011)

E.g: Maximally SUSY SU(N) YM with

fundamental rep hypermultiplets:



Applications to QCD 

Transport.

“The strong force […] is called the strong force 

because it is so strong”

(from Lisa Randall’s “Warped Passages”)
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Applications to QCD Transport

 Viscosity and Hydrodynamics

 Energy Loss
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(as experimentally probed in Heavy Ion Collisions)



Shear Viscosity
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Viscosity = Diffusion constant for momentum

v

Viscosity = [(force/area)]  per unit velocity gradient  



Viscosity in Heavy Ions.

Au Au

How does the almond

shaped fluid expand?

high pressure

low pressure



Viscosity
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(1 cp = 10−2 P = 10−3 Pa·s)



Measuring Viscosity  - an example

17(2.3  1011cp)



Measuring Viscosity  - an example
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Recall: Viscosity of pitch: ~ 2.3  1011cp



Measuring Viscosity  - an example
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Recall: Viscosity of pitch: ~ 2.3  1011cp

RHIC’s measurement of QGP (confirmed by LHC): 



Measuring Viscosity  - an example
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Recall: Viscosity of pitch: ~ 2.3  1011cp

RHIC’s measurement of QGP (confirmed by LHC) : 



Viscosity in Holography:
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(Kovtun, Son, Starinets)

• pinpoints correct observable

• in contrast to QGP, η/s enormous for pitch

• gives ball-park figure

• large at weak coupling: bound?



Viscosity – Recent Developments
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Not a bound! (Kats, Petrov, 2007, using flavor branes)

Higher Curvature corrections violate bound.

Calculations only reliable if violations are small.

(Brigante, Liu, Myers, Shenker, Yaida, Buchel, Sinha, ….)



Energy Loss
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Energy Loss in Heavy Ions.

See one of two back-to-back

created particles.

The other one got “stuck” in the fireball

Jet quenching is a direct indication of large drag.



Holographic Energy Loss
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Observable: Stopping Distance

Perturbative QCD: L ~ E1/2 (BDMPS, …)

Holography:

Maximal Stopping Distance: L ~ E1/3

Typical Stopping Distance: L ~ E1/4

(Arnold, Vaman - 2011)

Experiment: RHIC: holography good 

LHC:  holography bad  -- weak coupling?

(Chesler, Jensen, AK, Yaffe; Gubser, Gulotta, Pufu, Rocha)



Observable: Stopping Distance

Perturbative QCD: L ~ E1/2 (BDMPS, …)

Holography:

Maximal Stopping Distance: L ~ E1/3

Typical Stopping Distance: L ~ E1/4

(Arnold, Vaman - 2011)

Experiment: RHIC: holography good 

LHC:  holography bad  -- weak coupling?

(Chesler, Jensen, AK, Yaffe; Gubser, Gulotta, Pufu, Rocha)

Exponents!



Applications to Condensed 

Matter Physics.
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Strong Coupling in CM.
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The theory of everything:

H=  𝑁𝑢𝑐𝑙𝑒𝑖,𝐴
𝑃𝐴

2

𝑚𝐴
+  𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛,𝑖

𝑝𝑖
2

𝑚𝑒
−

 𝐴,𝑖
𝑒2

𝑥𝑖−𝑥𝐴
+  𝑖≠𝑗

𝑒2

|𝑥𝑖−𝑥𝑗|

How hard can it be?



Strong Coupling in CM
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Already Helium too difficult to

solve analytically.

electron/electron Coulomb repulsion not weak!

if it is negligible, we have good theory control:

Band structure! Insulators and conductors.

but what to do when it is not?



Landau’s paradigms:
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• Identify physical candidates for

low energy degrees of freedom. 

• Write down most general allowed interactions

• See how interactions scale in low energy limit

dominate transport

many interactions “irrelevant” = scale to zero



What could they be?
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1) weakly coupled fermions.

Landau Fermi Liquid

• Fermi Surface

• Low energy excitations near

Fermi Surface

• Only Cooper Pair Instability

survives at low energies, all

other interactions scale to zero

universal!

at low temperatures

resistivity grows as T2



What could they be?
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1) weakly coupled bosons.

Landau’s Theory of Phase Transitions

free energy
order parameter 

= scalar field.

Scalar mass relevant; dominates at low energies.

Can be tuned to zero close to a phase transition.



Is this all?
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Degrees of freedom 

in high Tc

superconductors

are neither!

Non-Fermi Liquid

at low temperatures

resistivity grows as T

Strange Metal



What else could it be?
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Perfect questions to ask a solvable toy model:

• What are the possible low energy 

behaviors?

• Are their qualitative new phenomena 

hiding at strong coupling?



Two Applications

 Far from equilibrium steady states.

 Novel Scaling Exponents.
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Steady States
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Non-equilibrium
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Strongly correlated non-equilibrium physics

is intrinsically difficult, even in holography.

The simplest and most tractable non-equilibrium

systems are non-equilibrium steady states.



DC Conductivity/Resistivity

one of the most basic transport properties of any matter/fluid



Steady State is Out of Equilibrium
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Defects

EE



Dissipation driven Steady States
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Acceleration from electric field balanced

by momentum dissipation.

Typically requires broken translation invariance.

Constant Entropy Production. Ohmic Heating.

First Holographic Realization by AK and O’Bannon.



Quantum Critical Transport:

(AK, Shivaji Sondhi). 

2/3EEj 

At quantum critical point DC conductivity non-linear!

Predicted by Greene and Sondhi based on scaling.

Holography provides only known calculable example.



Flow Driven Steady State
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(Bernard, Doyon;

Doyon, Lucas, Schalm, Bhaseen;

Chang, AK, Yarom)

(picture from Doyon,Lucas, Schalm, Bhaseen)

(intermediate

time steady state)



Flow Driven Steady State
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Strong coupling=

Hydro valid on Plateau



Summary, steady states

Holography gives solvable realizations of 

strongly correlated steady states.

• Confirms (theoretical existence) of non-

linear transport at quantum critical points

• Points to existence of qualitatively novel 

(flow driven) steady states at strong 

coupling.



Novel Scaling Exponents

(recent work with Sean Hartnoll)
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Strange Metal / QCP

(Hussey; Sachdev)

Linear resistivity directly 

driven by Quantum Critical

Fluctuations?



Strange Metal / QCP

(Hussey; Sachdev)

Linear resistivity directly 

driven by Quantum Critical

Fluctuations?

QCP?



Dimensional Analysis at QCP
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𝑥 = −1 𝑡 = −𝑧

Dynamical Critical

Exponent.



Dimensional Analysis at QCP
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𝑥 = −1 𝑡 = −𝑧

𝑠 = 𝑑 − θ

Hyperscaling Violating

Exponent.



Dimensional Analysis at QCP
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𝑥 = −1 𝑡 = −𝑧

𝑠 = 𝑑 − θ

𝐸 = 1 + 𝑧 − Φ

Anomalous Coupling

to E&M Fields.(AK)



Scaling and the Cuprates.

If we try to explain scaling in the cuprates,

is non-zero Φ needed?

Is there a simple physical observable whose dimension

is zero unless Φ is non-zero?

thermal conductivity

electric conductivity

Lorenz ratio

𝜅 = 𝑑 − 𝜃 + 𝑧 − 2

𝜎 = 𝑑 − 𝜃 + 2𝜙 − 2

𝐿 =
𝜅

𝜎𝑇
= −2𝜙



Lorenz Ratio

Thermal conductivity receives contributions

from all degrees of freedom including phonons.

Expect system to be:    QCP +  neutral heat bath

(can carry spin, but no charge)

Isolate: Hall Lorenz ratio.



Wiedemann-Franz Law Violation
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[
𝜅𝑥𝑦

𝑇 𝜎𝑥𝑦
] = −2𝜙

(Zhang et al)



Scaling analysis of Cuprates
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(Sean Hartnoll, AK):

Can a simple scaling analysis based on

3 exponents, z,  θ and Φ give an acceptable

phenomenology of the normal phase of the

cuprates?



Inputs

Need 3 experimentally well established scalings

to pin down the three exponents.

1) Lorenz Ratio  linear in T

𝑧 = −2𝜙



2) Linear Resistivity 

Cooper et al, Science (2009)

θ = 0

𝜎𝑥𝑥~𝑇
(𝑑+2𝜙−𝜃−2)/𝑧



(Tyler and Mackenzie, 1997)

3) Hall Angle

cot 𝜃𝐻 =
𝜎𝑥𝑥
𝜎𝑥𝑦

𝜎𝑥𝑦~𝐵𝑇
(𝑑+3𝜙−𝜃−4)/𝑧

𝑧 =
4

3

𝜙 = −
2

3



Prediction 1: Magnetoresistance

Scaling implies:

Δ𝜌

𝜌𝐵=0
~
𝐵2

𝑇4

Perfectly agrees with experimental data!
(Harris et al, 1996))



Prediction 2: Thermoelectric

Typically measured as Seebeck:

𝑆 ≡
𝛼𝑥𝑥
𝜎𝑥𝑥

~ − 𝑇1/2

(find E so that no current flows 

in response to T-gradient)

(Nishikawa et al, 1994)

No fit to shape of data attempted in

early experimental work.



Prediction 2: Thermoelectric

(Kim et al, 2004)

Ten years later data looks

much cleaner !

The published linear fit clearly

doesn’t capture high T.

Does this look like const.- 𝑇 ?



Prediction 2: Thermoelectric

(Kim et al, 2004)

Use Mathematica to

pick out points along

the x=0.25 curve and attempt

our own fit!



Seebeck Coefficient

𝒂 − 𝒃 𝑻𝟏/𝟐

fits data head on!

𝒂 − 𝒃 𝑻𝟏 and

𝒂 − 𝒃 𝑻−𝟏/𝟐

don’t.



Summary, scaling

Scaling theory works for transport!

• New exponent Φ needed by Lorenz data

• Other transport (Nernst) consistent but 

needs more high T data

• Thermo not scaling; extra “conventional” 

component

• Can be tested in other materials 

(pnictides)



Summary.
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Solvable models of strong 

coupling dynamics.

Holography

=


