Effective Field Theories From String Compactification

Jonathan J. Heckman

UNC Chapel Hill

Question:

What is String Theory Good For?

Potential Answer(s):

• As a model of quantum gravity

• Framework for high energy physics

• Tool for strongly coupled systems

• Tool for revealing maths

Focus Of This Talk:

• As a model of quantum gravity

• Framework for high energy physics

• Tool for strongly coupled systems

• Tool for revealing maths

What This Talk Is About

Geometry of Extra Dimensions

"compactification"

Effective Field Theories

Goals

Short-Term: Classical Geometry \rightarrow EFT

- What are the rules of the game?
- Spectrum of physical states?
- Physical / Mathematical structures?

Goals

Short-Term: Classical Geometry \rightarrow EFT

Longer Term: Quantum Geometry \rightarrow ???

- Quantum Gravity + QFT?
- Emergent Spacetime?
- ...?

What This Talk Is About

Geometry of Extra Dimensions

"compactification"

Effective Field Theories

What's an EFT?

Effective (Quantum) Field Theory

Physics at Energies $\ll \Lambda_{max}$ (the cutoff)

- Remain agnostic about $E \sim \Lambda_{max}$
- Describes many systems!

Everyday Example: Water

Short Distance Description:

Long Distance Description:

The Standard Model

The Standard Model

• Works great at energies $\ll 10^{19}$ GeV (Planck Scale)

• Old Idea: Near Planck Scale, complete via strings

• Still Active Area: Standard Model ⊂ String Theory

Other Examples of EFTs

Conformal Field Theories (no scales, just angles)

- Phase Transitions
- AdS/CFT (quantum gravity)
- Conformal Geometry

What This Talk Is About

Geometry of Extra Dimensions

"compactification"

Effective Field Theories

Strings?

Even after 40 years: A Work in Progress

One Use: To Study Quantum Gravity

e.g. graviton

Strings?

Even after 40 years: A Work in Progress

New Use: To Study Novel EFTs

AdS/CFT: (QFT via classical gravity)

String Compactification: (Geometrize EFT)

Ingredients: Extra $Dim^n s$

Self-Consistency \Rightarrow 10 Spacetime Dimensions (some may be small)

4D Effective Theory

6D Effective Theory

Ingredients: P-Branes

Self-Consistency ⇒
Strings Can End on "P-Branes"
(P spatial dimensions)

What This Talk Is About

Geometry of Extra Dimensions

"compactification"

Effective Field Theories

Illustrative Example

Geometry of Extra Dimensions

string

6D Superconformal Field Theories

So What's a 6D CFT?

A physical theory in 5 + 1 Dimensions

(basically no distances, only angles)

Spacetime Symmetries: SO(6,2)

Lorentz (i.e. SO(5,1)) + a few more:

Includes Translations and Scaling + ...

So What's a 6D SCFT?

A 6D CFT + supersymmetry:

$$Q^2 = 0$$

$$QQ' + Q'Q = 6D$$
 Translation

Two Possibilities:

- 8 Independent Q's: The "(1,0) Theories"
- 16 Independent Q's: The "(2,0) Theories"

Why Are They Interesting?

Intrinsic Reasons:

Nahm: SCFTs only for $D \le 6$

No examples until mid 1990's! (required input from string theory)

Constituents involve *strings* (not just particles)
Note: These are *effective* strings

Why They Are Interesting

Particles have mass, Strings have tension (mass / length)

 $SCFT \Rightarrow Tensionless Strings$

Conceptually Challenging!

Force carriers for particles: vector bosons A_{μ}

Force carriers for strings: tensor bosons $B_{\mu\nu}$

Conceptually Important

Major Issue: ¿¿¿ Define Quantum Field Theory???

More Examples \Rightarrow More Clues to the Definition

Why They Are Interesting

"Practical" Reasons:

6D (2,0) Theories on $\mathbb{R}^{3,1} \times \Sigma_{2D}$ "solve":

4D $\mathcal{N}=2$ Theories with Electrons and Monopoles (c.f. Seiberg and Witten '94 + Witten '97 + Gaiotto '09 + ...)

i.e. $\overrightarrow{\nabla} \cdot \overrightarrow{B} = \rho_{electric}$ and $\overrightarrow{\nabla} \cdot \overrightarrow{B} = \rho_{magnetic}$

Why They Are Interesting

"Practical" Reasons:

(2,0) Theory on $\mathbb{R}^{3,1} \times \Sigma_{2D}$ "solves" 4D Theory Electrons:

Monopoles:

In this Talk

Use String Theory to

Explain what all 6D SCFTs "look like"

Bottom Up Perspective

Draw a Picture!

What the Picture Says

Quantum Consistency $\Rightarrow N_i = N$ for all i

SCFT Limit?

Strong Interactions \rightarrow Scale Invariance

Note: Now it's hard to compute anything!

¿¿¿So how do we know there's an SCFT at all???

Stringy Description

Need: Tensionless Strings

Can we use Superstrings?

No, Superstring Tension $\neq 0$

Effective Strings

But, we can use 3-branes:

$$\mathbb{R}^{5,1} \qquad \qquad \mathcal{M}_4^{extra}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$
 Effective String $\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$

Tension =
$$Vol(\Sigma_{6,7}) \to 0$$

Name of the Game

Find Σ 's and shrink to zero size

Name of the Game

Physics: $-\Sigma \cap \Sigma = \text{String Charge}$ (which must be integer > 0)

Special Case: (2,0) Theories

These have 16 Q's, and $\Sigma_i \cap \Sigma_i = -2$

A priori, more than one Σ , e.g.

Special Case: (2,0) Theories

Introduce $A_{ij} = -\Sigma_i \cap \Sigma_j$

CFT Conditions: A is positive definite

$$\Sigma_i \cap \Sigma_j = 0 \text{ or } 1 \text{ if } i \neq j$$

Already Classified!

(2,0) ADE Classification

We Can Borrow a Famous Result

Coxeter '34, Witt '41, Dynkin '46, '47; Witten '95

(1,0) Theories?

These theories have 8 Q's (the minimum)

What are the possible \mathcal{M}_4^{extra} 's?

What kinds of string charges?

Studied since the 1990's

Many groups:

But: Even now, still viewed as "mysterious"...

How to Build More 6D SCFTs (Use F-theory)

JJH et al. '13 - '15

A Hidden Assumption

So far, we have assumed \mathcal{M}_4^{extra} Ricci-Flat

Einstein Field Equations in 10D vacuum:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 0$$

This limits us to $\Sigma \cap \Sigma = -2$

"Non-Compact Calabi-Yau two-folds"

More Generally

We can allow \mathcal{M}_4^{extra} not Ricci-Flat

Einstein Field Equations with sources:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \text{Sources}$$

This allows us to consider $\Sigma \cap \Sigma \neq -2$

F-theory Compactification

Vafa '96

 $\mathcal{M}_{6}^{F-theory}$ is Ricci-Flat (a Calabi-Yau three-fold)

F-theory is Useful!

- Dualities: Vector Bundles on $K3 \leftrightarrow$ Elliptic CY_3 Vafa '96, Morrison Vafa et al., '97, Friedman Morgan Witten '97 + ... JJH, Morrison, Rudelius, Vafa '15
- Particle Physics: Most Realistic Stringy Models to Date SM spectrum, flavor ($\theta_{13}^{\nu} \sim 0.2$), funparticle extra sectors + ... JJH et al. '08 '15 + ...
- 6D SCFTs: Novel Theories without a mass scale in 6D JJH et al. '13 '15 + (some examples from '90's)

F-theory Compactification

Vafa '96

 $\mathcal{M}_{6}^{F-theory}$ is Ricci-Flat (a Calabi-Yau three-fold)

The Sources

 T^2 can pinch off:

 \Rightarrow Extra Physics

Gauge Coupling:
$$\frac{1}{g^2} = \text{Vol}(\Sigma_{67})$$

Fibers and String Charge

c.f. Kodaira '64, '66, Morrison Taylor '12

charge = n	pinching of T^2	gauge symmetry
3	8	\mathfrak{su}_3
4		\mathfrak{so}_8
5	00000	\mathfrak{f}_4
6		\mathfrak{e}_6
7	0000000	\mathfrak{e}_7
8	0008000	\mathfrak{e}_7
12	00000000	\mathfrak{e}_8

No Pinch-Off \Rightarrow (2,0) Theory

Sources \Rightarrow (1,0) Theory

Generalizations...

Links \neq Particles

JJH et al. '14

Use F-theory!

The Link is also an SCFT!

How to Build All 6D SCFTs

JJH et al. '13 - '15

Rules of the Game?

In 6D, things are quite rigid...

Can we enumerate every possible theory?

This is a purely geometric question!

Strategy

1) Find all \mathcal{M}_4^{extra} 's which could support an SCFT

2) Find all ways to add sources (pinched T^2)

Punchline #1

6D SCFTs = Generalized Quivers

Punchline #2

Looks Like Chemistry

"Atoms"

c.f. Morrison and Taylor '12

- n for $3 \le n \le 12$
- 3 2
- 2 3 2
- 3 2 2

- $A_N \bigcirc \cdots \bigcirc$
- D_N $\otimes \cdots \circ$
- E_6
- E_7
- E_8

"Radicals"

Building Blocks

c.f. Morrison and Taylor '12

$$A_N \circ \circ \circ \circ \circ$$

$$D_N$$
 $\otimes \cdots \circ$

$$E_6$$

$$E_7$$
 ∞

$$E_8$$

The -1 Building Block

Basic Unit of String Charge = 1

This theory has an E_8 Flavor Symmetry

States transform in multiplets of E_8 irreps

Gluing

"Gauging a flavor symmetry"

An Example of Gluing

Constraints on Gluing

JJH, Morrison, Vafa '13

1) No Closed Loops

Corollary: $\Sigma_i \cap \Sigma_j = 0$ or 1 if $i \neq j$

2) Trees are enough, e.g.

Useful Terminology: I / II

Split up building blocks into two groups:

$$\mathfrak{so}_8$$
 \mathfrak{e}_6 \mathfrak{e}_7 \mathfrak{e}_7 \mathfrak{e}_8 \mathfrak{e}_8 \mathfrak{e}_8 \mathfrak{e}_8 \mathfrak{e}_8 DE-type: 4, 6, 7, 8, 9, 10, 11, 12

non-DE-type: 1, 2, 3, 23, 232, 223, 5

Useful Terminology: II / II

Define a Base Quiver:

Nodes: DE-type curves \bigcirc

Links: Connecting DE-type curves —

Example:

$$E_8$$
 E_8

The Big Surprise

All 6D SCFTs have a very simple structure!

$$G_1 \subseteq G_2 \subseteq \cdots \subseteq G_m \supseteq \cdots \supseteq G_{k-1} \supseteq G_k$$

More Results...

JJH et al. '15

2) Classification of all possible links

3) Classification of all possible gauge groups

So What's Next?

Near Term Goals

Short-Term: Classical Geometry \rightarrow QFT

- Compactify to $\mathbb{R}^{4,1} \times S^1$, on $\mathbb{R}^{3,1} \times \Sigma$ In Progress: JJH et al.
- Operator Content?

 Some scaling dimensions now known (JJH '14)
- $\Lambda_{string}^*/\Lambda_{string}$ and spectrum of 6D defects? To Appear: JJH et al. '15

Broader Goals

Short-Term: Classical Geometry \rightarrow EFT

- What are the rules of the game?
- Spectrum of physical states?
- Physical / Mathematical Structures?

Example: Doughnuts

• Pinching Doughnut \Rightarrow Charge from 7-Brane

But...

• How About Dipole Moments?

"T-Branes": Cecotti, Cordova, JJH, Vafa '10

Beyond Doughnuts

• How About Dipole Moments?

"T-Branes": Cecotti, Cordova, JJH, Vafa '10

• Recent Progress involves heavy machinery:

"Theory of Limiting Mixed Hodge Structure"

Anderson, JJH, Katz '13, In Progress: Anderson, JJH Katz Schaposnik '15

Making a Dipole

Math Description

$$\mathcal{J}(CY) \to \mathcal{M}_{HK}$$

$$\downarrow$$

$$\mathcal{M}_{cplx}(CY)$$

"Hitchin System" $\overline{D}\Phi = 0$

$$F + [\Phi, \overline{\Phi}] = 0$$

Broader Goals

Short-Term: Classical Geometry \rightarrow QFT

Longer Term: Quantum Geometry \rightarrow ???

- Quantum Gravity + QFT?
- Emergent Spacetime?
- ...?

Beyond Classical Geometry:

• Non-Commutative Spacetimes

$$[x, x'] \neq 0$$
:

• Information Geometry

• Pixelize: $[x_{4D}, x'_{4D}] \neq 0$ and $[x_{6D}, x'_{6D}] \neq 0$ JJH, Verlinde '10 - '14

- Pixelize: $[x_{4D}, x'_{4D}] \neq 0$ and $[x_{6D}, x'_{6D}] \neq 0$ JJH, Verlinde '10 '14
- Quantify: How many bits of data in \mathcal{M}^{extra} ?

How about in 4D? JJH '13 + In progress

Balasubramanian, JJH, Maloney '14

What This Talk Was About

 \bullet Geometry \to Effective Field Theories

• DONE: Classification of 6D SCFTs

• Next Up: Extract Universal Features

Compactify to 5D/4D/3D/2D