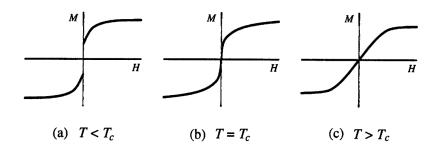
Bootstrapping Conformal Field Theories

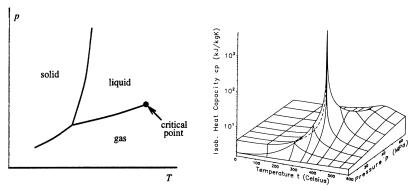
David Simmons-Duffin


IAS

January 29, 2015

Outline

- 1 Critical Universality
- 2 Conformal Field Theory
- Oracles
- 4 Prophecies
- **5** The Future


Critical Point of a Ferromagnet

Critical exponents:

- Specific heat $C \propto |T T_c|^{-\alpha}$
- Susceptibility $\chi \propto |T T_c|^{-\gamma}$

Critical Point of Water

Critical exponents:

- Specific heat $C \propto |T T_c|^{-\alpha}$
- Compressibility $\chi_T \propto |T-T_c|^{-\gamma}$

Critical Universality

- magnet vs. liquid
- $\{T, H\}$ vs. $\{T, p\}$
- Same critical exponents!

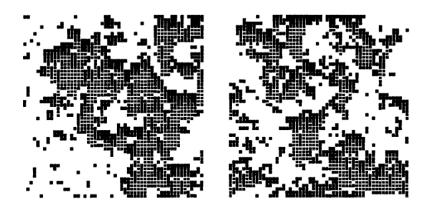
$$\alpha_{\mathrm{Magnet}} = \alpha_{\mathrm{Water}} = 0.110...$$
 $\gamma_{\mathrm{Magnet}} = \gamma_{\mathrm{Water}} = 1.237...$
 \vdots

Universality class: 3d Ising model

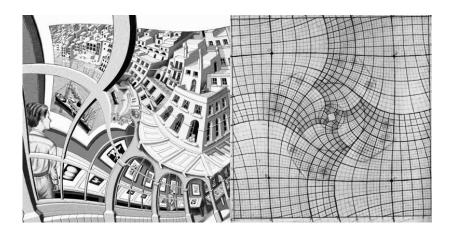
$$H = -J \sum_{\langle ij \rangle} s_i s_j$$

Critical Universality

- Why?
- What are α, γ, \dots ?
- How do we calculate them?


Beautiful story, spanning decades.

Today: a new chapter.


Outline

- Critical Universality
- 2 Conformal Field Theory
- Oracles
- 4 Prophecies
- **5** The Future

Scale Invariance

Scale ⇒ Conformal

 $\frac{\text{conformal}}{\text{transformation}} = \frac{\text{rescaling} + \text{rotation}}{\text{near each point}}$

Conformal Field Theory (CFT)

- Local operators $\mathcal{O}_1(x)$, $\mathcal{O}_2(x)$, ...
 - Magnet: magnetization, energy, ...
 - Liquid: density, energy, . . .
- Scaling dimensions $\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = |x-y|^{-2\Delta_{\mathcal{O}}}$

$$\alpha = \frac{3 - 2\Delta_{\epsilon}}{3 - \Delta_{\epsilon}}$$

$$\gamma = \frac{3 - 2\Delta_{\sigma}}{3 - \Delta_{\epsilon}}$$

where σ, ϵ are operators.

Operator Product Expansion

- "..." determined by conformal symmetry
- Associativity $(\mathcal{O}_1\mathcal{O}_2)\mathcal{O}_3 = \mathcal{O}_1(\mathcal{O}_2\mathcal{O}_3)$

Using the OPE

• Reduce n-pt correlator to (n-1)-pt correlator

$$\langle \mathcal{O}_i(x_1)\mathcal{O}_j(x_2)\dots\mathcal{O}_l(x_n)\rangle$$

= $\sum_k f_{ijk} x_{12}^{\Delta_k-\Delta_i-\Delta_j} \langle \mathcal{O}_k(x_2)\dots\mathcal{O}_l(x_n)\rangle + \dots$

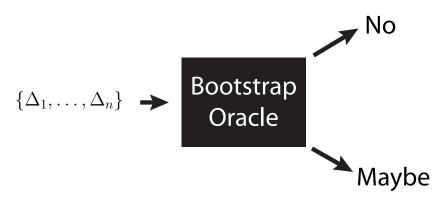
1-pt correlators are simple:

$$\langle \mathbf{1} \rangle = 1$$

 $\langle \mathcal{O}_i(x) \rangle = 0$ (otherwise)

The Conformal Bootstrap

Solve CFTs by classifying OPE algebras [Polyakov '74]


- Progress in d=2 throughout 80's and 90's.
 - ∞-dim conformal group [BPZ '83]
 - 2d Ising CFT exactly solved
 - Partial classification of 2d CFTs
- Huge revival for d > 2 a few years ago...

Outline

- Critical Universality
- 2 Conformal Field Theory
- 3 Oracles
- 4 Prophecies
- **5** The Future

Bootstrap Revival [Rattazzi, Rychkov, Tonni, Vichi '08]

Is $\{\Delta_1, \ldots, \Delta_n\}$ part of some CFT spectrum?

An Oracle

- Scalar $\phi(x)$
- OPE

$$\phi(x)\phi(0) = \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}} x^{\Delta_{\mathcal{O}} - 2\Delta_{\phi}} \left(\mathcal{O}(0) + \ldots \right)$$

• Unitarity: $f_{\phi\phi\mathcal{O}} \in \mathbb{R}$

Idea: Study constraints of associativity + unitarity on $\langle \phi \phi \phi \phi \rangle$

Conformal Blocks & Crossing Symmetry

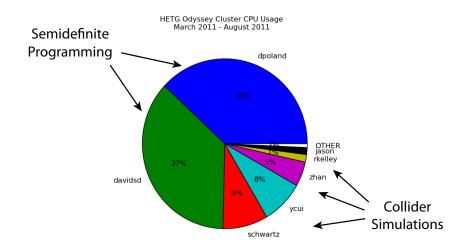
$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle = \sum_{\mathcal{O}} \left(\sum_{i=1}^{4} \frac{\mathcal{O}}{2} \right)^{4}$$

Crossing Symmetry

$$\sum_{\mathcal{O}} \left(\sum_{2}^{1} \underbrace{\mathcal{O}}_{3}^{4} - \underbrace{1}_{2} \underbrace{\mathcal{O}}_{3}^{4} \right) = 0$$

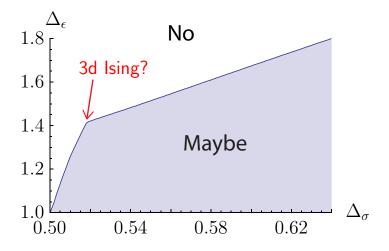
$$\sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}}^{2} F_{\Delta_{\mathcal{O}},\ell_{\mathcal{O}}}(u,v) = 0$$

Crossing Symmetry vs. Unitarity

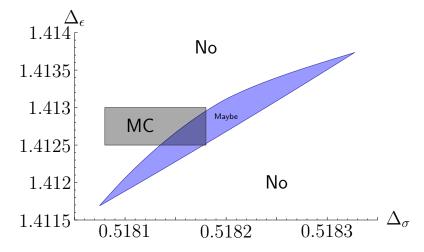

 F_{Δ_3,ℓ_3}

$$\sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}}^2 F_{\Delta_{\mathcal{O}},\ell_{\mathcal{O}}}(u,v) = 0$$
 Maybe
$$F_{\Delta_1,\ell_1} F_{\Delta_2,\ell_2} F_{0,0} F_{\Delta_1,\ell_1} F_{\Delta_2,\ell_2} F_{\Delta_3,\ell_3}$$

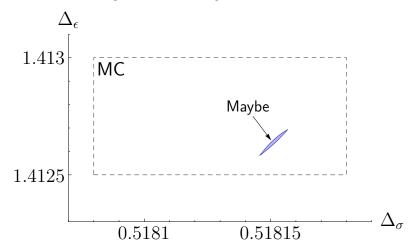
 α


Finding $\alpha \implies \text{Linear/Semidefinite Programming}$

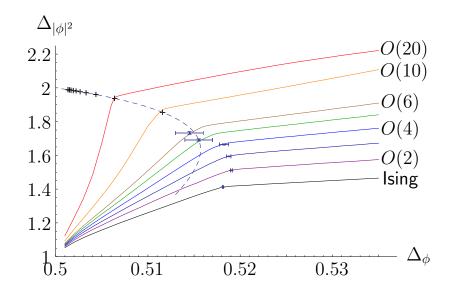
Harvard Linux Cluster Usage, Spring 2011


Outline

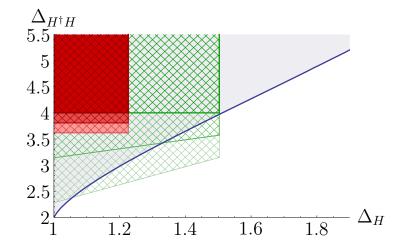
- Critical Universality
- 2 Conformal Field Theory
- Oracles
- **4** Prophecies
- **5** The Future


- Unitary 3d CFT with $\epsilon \sim \sigma^2$
- From studying $\langle \sigma \sigma \sigma \sigma \sigma \rangle$

Multiple Correlators [Kos, Poland, DSD '14]


- From studying $\langle \sigma \sigma \sigma \sigma \rangle$, $\langle \sigma \sigma \epsilon \epsilon \rangle$, $\langle \epsilon \epsilon \epsilon \epsilon \epsilon \rangle$
- Assuming σ, ϵ are only relevant scalars

New Oracle [DSD to appear]

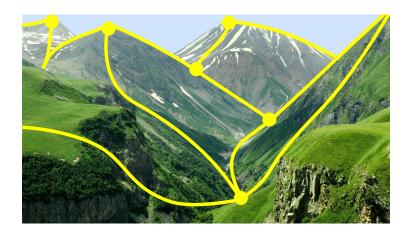


- Same setup as before
- $\Delta_{\sigma} = 0.518151(5), \ \Delta_{\epsilon} = 1.41263(5).$

${\it 3d}\,\,O(N)\,\,{\it Vector}\,\,{\it Models}\,\,{\tiny [Kos,\,\,Poland,\,\,DSD\,\,'13]}$

Viable Regions for Conformal Technicolor

- Flavor generic
- Flavor optimistic


Outline

- Critical Universality
- 2 Conformal Field Theory
- Oracles
- 4 Prophecies
- **5** The Future

CFTs are Ubiquitous

- They describe 2nd order phase transitions in condensed matter systems
- They may appear in Beyond the Standard Model physics
- They encode theories of quantum gravity via AdS/CFT

Landmarks in the Space of Physical Theories

Future Directions

- Improve precision/compute more quantities in 3d Ising,
- Isolate other 3d theories (O(N) models, SUSY lsing, ...),
- Conserved currents J_{μ} and stress tensors $T_{\mu\nu}$,
- Other dimensions, different amounts of SUSY,
- Analytic results, new consistency conditions,
- Classify 3d critical points with small number of relevant operators,
- Study strongly-coupled 4d gauge theories (perhaps find the conformal window of QCD)...