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For a nonlocal, nonobservable, ultraviolet cut-off dependent 
quantity, entanglement entropy has become surprisingly 

important in theoretical physics today. 

A Unifying Theme



Why is It Important?

✤ Quantum information, communication and computation — measure of 
entanglement in quantum systems!

✤ Condensed matter physics — order parameter for exotic phase transitions 
(Osborne-Nielsen 2002, Vidal et al. 2003)!

✤ Quantum field theory (QFT) — measure of renormalization group flow (a 
and c theorems) (Casini-Huerta 2006, 2012)!

✤ Gravity — relations to black hole entropy (Bombelli et al. 1986, Srednicki 1993); 

Bekenstein bound (Casini 2008)!

✤ String theory — Ryu-Takayanagi (2006) formula and AdS/CFT ties QFT 
and gravity aspects together.



My Plan 

✤ Define entanglement entropy.!

✤ Explain the Ryu-Takayanagi formula!

✤ Discuss my own work— thermal corrections to 
entanglement entropy (work with M. Spillane, T. Nishioka, J. Cardy, J. 
Nian, R. Vaz, but see in particular arXiv:1407.1358)



Entanglement

✤ We say two quantum systems are entangled when a 
measurement on one system affects the state of the other 
system.!

✤ The classic entangled example, the EPR pair:!

!

✤                            is not entangled.!

✤ For larger vector spaces, how do you tell?

| i = 1p
2
(|"iA ⌦ |#iB � |#iA ⌦ |"iB)

| i = |"iA ⌦ |#iB



Entanglement Entropy

✤ Consider a state                                in a factorizable 
Hilbert space.!

✤ Form density matrix:!

✤ Perform the partial trace: !

✤ Compute the von Neumann entropy of 

⇢ = | ih |

⇢A = trB ⇢

SE ⌘ � tr(⇢A log ⇢A)

⇢A

| i 2 H = HA ⌦HB

⇢A =
1

2
(|#ih#|+ |"ih"|)

For the EPR pair

SE = log 2



Thermal Corrections?

⇢(T ) =
e�H/T

tr(e�H/T )
The initial density matrix is !

not that of a pure state!

Entanglement entropy measures some combination !
of thermal entropy and quantum entanglement.

Why bother with thermal effects?

✤ Nice to be able to remove them.!
✤ Lessons to be learned from EE in non-traditional contexts.!
✤ Connection to black hole physics.
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Further 
Restrictions

✤ For the gravity, QFT, 
and condensed matter 
applications,     is not 
finite.!

✤ A and B are typically 
spatial regions.

A

B

These restrictions make it surprising I have 
anything to say to you today at all.

H



The Challenges

✤ The assumption that the Hilbert space can be 
factorized wrt to A and B is often problematic. !

✤ The infinite number of degrees of freedom means EE 
is badly divergent.!

✤ That the density matrix grows exponentially with the 
size of the Hilbert space means EE is difficult to 
compute.
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Challenge 1: 
Boundary terms

✤ For a lattice version of E&M, 
observables are loops.  The 
Hilbert space does not factor 
well.  Active area of research.!

✤ We will see later that there are 
problems with boundary terms 
even for the simplest quantum 
field theory — a free scalar 
field!

A

B

magnetic field

(Buividovich-Polikarpov 2008)



Challenge 2: Ultraviolet Problems

A

B

e

For a quantum field theory in the 
ground state

EE is ultraviolet cut-off dependent!

Games involve extracting pieces which are !
argued to be universal and insensitive to e.

SE ⇠ Area(@A)

"d�2
(Srednicki 1993)



Challenge 3: Computability

✤ The standard tool for computing EE is the replica trick.  Requires computing a 
partition function on an n-sheeted cover of space-time, branched over A,  for 
all integer n, and then analytically continuing to compute a derivative at n=1.!

✤ For free theories, a lattice regulated version of the density matrix can be 
computed numerically. !

✤ For conformal field theories, various tricks, one of which we will see later.!

✤ For quantum field theories with a dual classical gravity descriptions via the 
AdS/CFT correspondence, there is the Ryu-Takayanagi formula.!

✤ Other numerical methods: Tensor networks, matrix product states.



AdS/CFT and Ryu-Takayanagi



A Statement of the Duality

z

z=0

Think of AdS as a half-space

Bulk information is projected 
onto the boundary where the 

field theory lives.

a) In a certain limit, the gravity becomes classical and we can use 
the correspondence to learn interesting things about QFT.!

b) In another limit, we can use perturbative QFT to learn about 
quantum gravity.

Some QFTs have dual descriptions as quantum theories !
of gravity (string theory).!



What is AdS/CFT?   
It depends on how you slice it.

✤ D-branes are surfaces strings 
end on.!

✤ The lowest closed string mode 
is the graviton.!

✤ The lowest open string mode is 
a gauge boson.

D-brane string world-sheet



The Original AdS/CFT Correspondence

✤ Maximally supersymmetric SU(N) Yang-Mills theory (MSYM) — an 
example of a conformal field theory (CFT) — is dual to type IIB string 
theory in a                     background.!

✤ A theory like QCD.  N colors instead of three.  Supersymmetry 
means the gluons have scalar and fermionic partners that 
transform in the adjoint representation of SU(N).!

✤ The correspondence becomes useful                                                  
(string theory becomes classical gravity)                                              
in the large N, large                     limit.

AdS5 � S5

Maldacena 1997

� = g2YMN



01

MSYM at Nonzero 
Temperature

✤ Put MSYM on a three sphere 
with radius R.!

✤ QFT tells us fields get a mass   
of order 1/R.!

✤ Gravity tells us there is a phase 
transition (Hawking-Page 1983) at 
RT ~ 1 between a solution with 
a black hole (high T) and a 
solution without (low T).
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thermal AdS small black!

holes

large black!
holes

Witten pointed out 
relevance for MSYM (1998)!
        —!deconfinement phase 
! ! transition



Calculating Entanglement Entropy 
in AdS/CFT (T=0)

A

B

g

Take minimal surface g in bulk such that                 .@A = @�

SE(A) =
area(�)

4GN

Ryu-Takayanagi (2006); Fursaev (2006); !
Lewkowycz-Maldacena (2013)

Note: SE(A) = SE(B)



Calculating EE at T > 0.

A

B

In presence of a black hole, !
instructed to consider different g.

SE(A) 6= SE(B)

Note: !EE serves as an order parameter !
! ! for the phase transition.



Three comments

✤ Finite volume implies phase transition a large N effect.!

✤ While it can be proven that SE(A) = SE(B) at T=0, for 
T>0 the two are generically different.!

✤ RT is only the leading order result: 1

GN
⇠ N2



A Universal Result

In the                 limit, for a cap A !
of opening angle 2q on the S3, 

RT ⌧ 1

m is the mass gap, ~ 1/R!
g is the degeneracy of the 1st excited state

✤ Turns out to be true for any CFT in any dimension!!
✤ Subleading in the large N expansion.!
✤ The exp(-m/T) Boltzmann suppression should             

be true of any gapped QFT (Herzog-Spillane 2012).

(Herzog 2014)

SE(A, T )� SE(B, T ) = 2⇡gmR cot(✓) e

�m/T
+ o(e

�m/T
)

A

B

2q



Where does it come from?

Start with a thermal density matrix

(That r is mixed means we’re not really !
measuring quantum entanglement.)

Make a small T perturbative expansion

⇢(T ) =
e�H/T

tr(e�H/T )

where          creates the first excited state.

h (x) (y) log ⇢A(0)iNeed to calculate

 (x)





A Special Trick for CFTs

For CFTs and A a cap on a sphere, 

HM = � log ⇢A(0)

also called the modular Hamiltonian, is known.!
 (see e.g. Casini-Huerta-Myers 2011)

HM is proportional to the stress-energy tensor Tµn. 

Three point functions involving the stress tensor in CFTs are 
constrained by symmetry to take relatively simple forms.

h (x) (y) log ⇢A(0)i ! h (x) (y)Tµ⌫(0)i



Numerical Check
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free (conformally coupled) !
scalar in 3d (Herzog 2014)

free fermion in 3d!
(Herzog, Nian, Spillane, Vaz to appear)

points: modernized version of Srednicki’s (1993) method.!
line: analytic prediction

�SA = SE(A, T )� SE(A, 0)
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Analytic Checks via the  
Replica Method

✤ Free scalar and fermion can 
also be checked analytically 
using the method of images 
(Herzog, Nian 2014; Herzog, Nian, 
Spillane, Vaz to appear).!

✤ Results in 2d can be checked 
independently using a 
conformal transformation 
(Cardy-Herzog 2014).  

These results also yield Rényi entropies.

A

A

A



Related Result Not Quite Right

where

SE(A, T )� SE(A, 0) = gmR Id(✓) e
�m/T + . . .

Id(✓) = 2⇡
Vol(Sd�2

)

Vol(Sd�1
)

Z ✓0

0

cos ✓ � cos ✓0
sin ✓0

sin

d�2 ✓ d✓

But for a scalar field, it turns out the other methods match Id-2(q).

From the modular Hamiltonian method

WHAT’S GOING ON!?!



What’s Going On.

Turns out that the result for                        !
is incorrect by a boundary term for the scalar field.  !

Challenge 1: Does the Hilbert space factorize? 

HM = � log ⇢A(0)

One can go in by hand, put back the boundary term, !
and find agreement.

But….



Where are we going?

✤ Given boundary term issues in construction of HM are 
there more general lessons to be drawn?  Probably yes. 
(Lee et al. 2014; Casini et al. 2014)!

✤ Can these corrections can be computed in AdS/CFT?  
Yes in d=2 (Barrella et. al. 2013), but unknown in d>2.!

✤ Can we go beyond             ?  Yes for fermions in d=2 
(Herzog-Nishioka 2013), but unknown in general.

RT ⌧ 1



The Three Challenges

✤ Challenge 1: Boundary terms and factorizability issues 
can play a role even in the simplest field theories.!

✤ Challenge 2: By looking at certain EE differences, the 
result reduced to a local, observable — a three point 
function — and was UV cutoff independent.!

✤ Challenge 3: A thermal correction turned out to be 
easily computable for CFTs and universal.



✤ Can EE help us understand black holes?!

✤ Can EE help us map out the space of 
QFTs?!

✤ How does AdS/CFT relate these two 
questions?!

✤ Can EE give us deeper insight into why 
AdS/CFT might be correct?

Big Questions
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