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More WW pairs than expected?
Process of interest

/(nc/us/v? WW production:
so they think
p+p — WT+W + g all jets

leptonic

ATLAS CMS Theory (MCFM)
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A mild, but persistent excess.

Two experiments more consistent
with each other than with theory.



Perhaps new physics?
(with dilepton + MET signature)

Perhaps SUSY?

SCIENTIFIC
AMERICAN"

Signs of New Physics from the LHC

Physicists may have overlooked hints of supersymmetry

Aug 19, 2014 | By Maggie McKee |

particles produced by more common Standard Model processes. “Signs of
could be hiding

supersymmet: right under our noses,” says Curtin, a member of

e.g.

From Curtin, Jaiswal & Meade, 1206.6888
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Or perhaps not ...
Subtlety: Experiments actually only measure

p+p — W+ W™+ ) ol jets
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Or perhaps not ...
Subtlety: Experiments actually only measure

p+p — W'+ W™ 4 "ol jets

some
. . . From ATLAS-CONF-2014-033
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Or can theory be subtle with jet veto?
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Yes, it’s subtle!

Inclusive case: Orientation of WW system
doie Rapidity of WW system
d Myw B /d(COS 0) - Invariant mass of WW system
= a function of only one mass scale Mww
. o M
Loop integrals —— Series in log LVW
Log can be minimized
by 1~ Mww
Jet-veto case:
do-veto
— | d(cos@)dn ---
Y- / (cos0) dn
= a function of two scales Mww, pr*°
. M veto
Loop integrals —— log LVW . log pi
MWW

Left with series in log



Do the logs matter?

| L M P
Biggest log at 1-loop ~ as log( eto)3

e.g. pr™ =30GeV, Myw = 300 GeV —— (log100)* ~ 20



Do the logs matter?

. Miw
Biggest log at 1-loop ~ o log( eto)3

e.g. pr™ =30GeV, Myw = 300 GeV —— (log100)* ~ 20
Actually, worse than this because

2
Miyw . -
wtong S are from IR divergences from initial states
(pT ) (soft and/or collinear) \

1—300 " on
anO'/OI’ CO///ne A 4
ar
q <

- NS

log




Do the logs matter?

. Miw
Biggest log at 1-loop ~ o log( eto)3

e.g. pr™ =30GeV, Myw = 300 GeV —— (log100)* ~ 20
Actually, worse than this because

2
Miyw . -
wtong S are from IR divergences from initial states
(pT ) (soft and/or collinear) \

q . >
~ @)
Only knows about s %mm%m |
. A ar
.e., Mg, not t. 3 )

log

- NS

€ M2 no _§ B 10+ M2
oy 1S actually log ey = o8 Vztvgf)vQ .
Pr Pr




Do the logs matter?

. My :
Biggest log at 1-loop ~ o log( eto)3

e.g. pr™ =30GeV, Myw = 300 GeV —— (log100)* ~ 20

Actually, worse than this because

My
log Vetowz s are from IR divergences from initial states
(pT ) (soft and/or collinear)
\ .
q ~ >
A O
Only knows about s %mﬁ%%”ggb%% |
. A €aq
.e.. Mg, not t. q ) o
-
( M2 n o _§ - 10_|_ M2 | .
log( VXtVOV)VQ s actually log ———— = log Vth:VQ AT &)
Pr (PT"°) (pT) wo‘sl :
m ~ 10

(p™°)?

Must resum the whole log



So we did.

Comparing jet-veto cross-sections directly:

Our Our
®Resummed M ATLASA CMS ® Resummed M ATLASA CMS
Calculation Calculation
451V =T7TeV _- 00 \/s = 8 TeV
| - 5|
40} | ]
2 | }+ ¢ | & 50 +
sk | | = | {
: ‘ ¢ 40_ veto __ veto __ _
30fpyeto = 25 GeV p¥t = 30 GeV pr” =25 GeVopp® =30 GeV |
R=04 R=05 | arl =04 R=0.5

Nicely compatible!
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How did we do it?

Resummation automatic if “right viewpoint” adopted.

/

In perturbative QFT calculations,

Vertices — Easy.
Polynomial, hence analytic in momenta.

Propagators — Hard.
Can lead to singularities when on-shell.

+

We should use a maximally vertices-like lagrangian,
(for the processes in question)

aka an efftective tield theory!
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INn “familiar” EFTs (to BSM model builders) e.g. Fermi theory

Particles
|
I I
Guaranteed-off-shell Can-be-on-shell
particles e.g. 2,W* particles €.9-4.7
Propagators — Analytic Propagators — Can go singular
Reclassity them as vertices! Keep them.

(“integrate them out”)

used in this work

In_ more general EFTS (e.g. HQET, NRQED, SCET)

Do the same thing mode-by-mode

(a la Wilson, except in MinkowskKi

Fourier modes instead of Euclidean space)
|
I I
Guaranteed-off-shell Can-be-on-shell
modes modes
Convert propagators Keep propagators

to vertices as they are
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What’s the difference?
In familiar EFTs:

(full theory)

P Se < L2
o0tz R
Massless quarks.

Can-be-on-shell.
Keep!

In SCET:
(full theory)

>

00
Sof a%m
Or Colyip, o4
-

N (EFT)

egrated out

-

Guaranteed-off-shell. =
Integrate out!

Ced

Can-be-on-shell.
Keep!



Can-be-on-shell modes may be divided further
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Can-be-on-shell modes may be divided further
k= (2, 0, pr, 2E + O3/ E))
e\
p=(E 0,0, E) collinear Ma
~L0llineg,
1= ((1=2)E, 0, ~pr, (1-2)E ~O(%/E))

Collinear can-be-on-shell modes have large positive rapidity:

L, kO + kS e E | E>>1
= — 10 ~ 10 ~ 1090 —

Anticollinear modes have large negative rapidity:

2/ E E
Pt/ ~ —log — <« —1
kE Pt

n ~ log

Collinear/anticollinear modes obey different scaling laws:

heir kY + £ components scale oppositely in —.

heir virtualities are the same, k* ~ p7.. b
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Multiple cutoffs in EFT

Artificial boundaries to separate different groups of modes

p* —m?| > A3
Guaranteed-off-shell.

All EFTs have a “UV” cutoff A: Integrate it out!
‘pQ o mQ‘ < A2
Can-be-on-shell.
Keep it!

In our SCET, virtuality ~ p+ . A = prcutoff

We also need a rapidity cutoff n. > 1:

N >1"7. — collinear
n < —n. — anticollinear

We have TWO cutoffs! (Boundaries b/w on- vs off-shell modes
& b/w collinear vs anticollinear modes)
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Multiple Renormalization Groups
Cutoffs are artificial mode boundaries.

Physical observables should be

A independent — AN Familiar RGEs
aé\ (Virtuality)
'le independent —— g = Rapidity RGES!

In practice, sharp boundaries are cumbersome.

(We only like oo for limits of integration!)
— (i) Let's make "mistakes” and ignore boundaries.

— Divergences!
(i) (Re)regulate integrals by “unbounded” reqgulators.
Dim reg for divergences from A — oco: X — 1/e, p
Analytic reg for divergences from . — 01 % — 1/a, v

(i) Correct “mistakes” by renormalization.
Then,
s,

o 0
Virtuality RGEs: Hgn' = Rapidity RGEs: Vo =
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The Strategy

(1) Integrate out virtuality of O(Mgw) (hence i ~ Myw):

Guaranteed off-
.49 +— shell by ~ M2,

At this point,

Allowed virtuality ~ O( Mz )

|.e. p ~ (anapTvE)
where p° ~ p1 can be O(Mywy)

To avoid large logs, must choose pr ~ Mww

But this pt = prof qQQQQQJ

— [00 big to pass jet veto!

Don’t attach Q9 to >qf£yet!
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The Strategy

(2) Solve for rapidity RGEs to remove 1 dependence.

(3) Run pr RGE to lower allowed virtuality from u ~ Mww

veto

O pu~pr.

No large logs, b/c it's just matching EFT at g onto EFT at p — dp.

Now,

veto

Allowed virtuality ~ pr

— pr Of OQQQQQJiS at most ~ py°

Consistent with jet veto!

(4) Attach real gluons to >ﬁ No large logs since pj(jto ~1!
T

(5) Perform jet-clustering and impose jet veto.

(N.B.) In steps (1) & (3), take u? < 0 to also resum 7° terms.



Other building blocks:

(A) Beam functions
(B) Nonlocality

(C) Multiple SU(3)c gauge groups

(D) Wilson lines
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(A) Beam functions

But we want D _

o
.
.
.
o*
.*
.
.
.
.

over all X

- 00000
000000000K

> X

over all X passing jet veto

f\"}OT perturbatively
" calculable

2

= Beam function
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(B) Nonlocality
In "familiar” EFTs:

Lagrangians are expanded In % which is < 1 for all p

> |sotropically local lagrangians

In our SCET: 12
12 (e W pre
p € VIWW with € = iy < 1
Collinear momenta ={ 7°—p® ~ {(2Mww o
0 4 p3 NOWWW Lo — X3

Expansion in 8 + 8° cannot be truncated!
Collinear sector is NON-local in zg + =3 !

Similarly, anticollinear sector is non-local in xg — 3.
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(C) Multiple SU(3)c gauge groups

Global SU(3)c— a real symmetry in full theory, a real symmetry in EFT.
Gauge SU(3)c— a redundancy to remove gluons’ unphysical polarizations.

In full theory

Only one gluon field with all possible Fourier modes
— Need SU(3)c¢ gauge transformations with all possible modes
In SCET

( contains only collinear modes

Collinear gluon — | . ~
 couples to collinear 9 but not to anticollinear q

( contains only anticollinear modes
' couples to anticollinear q but not to collinear gq
S0, we need two sets of gauge transformations:
Collinear SU(3)¢ = gauge transformations w/ collinear modes only
q = triplet q = singlet
Anticoll. SU(3)¢ = gauge transformations w/ anticoll. modes only
q =singlet  q = triplet

Anticoll. gluon — |
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(D) Wilson lines
But, wait! Under SU(3)con X SU(3)anti-con, WW production vertex

W;j_ Wy_ qF'LW q iS NOT invariaﬂt! (It’s still invariant under SU(3)giobal.)

/N

only SU(3)e
Only SU(S)anti—coll y ( ) :

What should we do? Exploit the nonlocality!

Define a collinear Wilson line: Collinear gluon

WC:ﬁeXp —igc/dm-GC
D

¥ Straight path in o + 23 direction

Allowed nonlocal direction for collinear fields

Then, x = Wlq is SU(3)en invariant!

(Do the analogous thing in anticollinear sector.)
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Differences from pT resummation
(P. Meade et al., arXiv:1407.4481)

(1) Jet-algorithm dependence

veto

In Jet-veto resummation, pr < pr

S
P ﬂfog
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% ——

Jet-veto cross-section depends on jet radius R at O(a?)

jet-by-|et

Passes jet veto with p¥* = 30 GeV
if reconstructed as 2-jet event.

Don'’t pass it deemed 1-jet event.

In pT resummation, pr

pr of WW = pr of all |ets

& 9
o9 &
%%666 Q&é@@ﬁ — Always goes into the 57-GeV bin.

No dependence on R!
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(2) = resummation
We did.

The logs come as log

,U T 12
Unnatural (though possible) to resum only log —*¥ but not 1.
(12

They didn’t. Does it matter?

— 17T .

Difference ~ 10%

|
| for prt© ~ 25-30 GeV

Can explain difference b/w
our and their results!

Larger logs tend to cancel

with 72
- . ] M\%VW ’ 2
20 ;/ without 72 | [log (p%eto)zl -
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Our results
Comparison with fixed-order NLO (MCEM)
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Our results NNLL+NLO: Our result

(with power corrections)

Comparison with Monte Carlo + Parton Shower MG: Madgraph5

PY: Pythiab HW: Herwigb
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Comparison with Monte Carlo + Parton Shower
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Our results

Comparison with Experimental Data

Our
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