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Challenges for Higgs coupling analysis:

The lightest Higgs is Standard Model-like, with deviations 
in partial width of order               (Decoupling Theorem).

Higgs production rates are small, or (especially at LHC) 
backgrounds that resemble the Higgs are very large.

Different non-Standard models of Higgs predict effects in 
different couplings.   Need high statistical and systematic 
confidence. 
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4 σ observation at the LHC



Snowmass Higgs Working Group:       (M ~ 1 TeV)

A goal for the future precision Higgs program should 
be 5 σ  detection of effects of this size.



This criterion applies not only to the experimental 
precision but also to the precision of the Standard 
Model predictions to which the measurements must 
be compared.

“... the SM uncertainty in computing B(h➛bb) is 
presently 3.7% (sum of absolute values of all errors) 
and expected to not get better than 2.8%, with most 
of that coming from the uncertainty of the bottom 
Yukawa coupling determination ... Thus, without 
reducing this error, any new physics contribution to 
the bb branching fraction that is not at least a factor 
of two or three larger than 2% cannot be discerned.  
Thus, a deviation of at least 5\% is  required of 
detectable new physics.''  -  Almeida, Lee, Pokorski, 
and Wells



On the experimental side, the requirements of a 
precision Higgs program are met by the International 
Linear Collider.   (see Howie Haber’s talk)
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w.                         from LHC
BR(h ! ��)

BR(h ! ZZ⇤)



We still must answer the question:  Can we know the 
Standard Model predictions for Higgs partial widths 
to an accuracy comparable to that expected from the 
measurements ?

Two sources of uncertainty:

Perturbative:   uncertainty due to truncation of 
perturbation theory at fixed order

Parametric:   uncertainty due to uncertainty in the 
input parameters 



We express uncertainties on Higgs couplings as

and, for parameters,

The prediction for a Higgs partial width has the form

important parametric 
dependence

compute in 
perturbation theory



Perturbative uncertainties:    

QCD corrections - known to            !
   Baikov, Chetyrkin, Kuhn

electroweak and mixed EW/QCD:
 

�(h ! bb)

O(↵4)

Kwiatkowski-Steinhauser
Kniehl-Spira

Butenschoen-Fugel-Kniehl

a = ↵s/⇡



Perturbative uncertainties: 

   double perturbation theory in     ,               :  

�(h ! gg)

Schreck-Steinhauser, Baikov-Chetyrkin, Moch-Vogt
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Perturbative uncertainties: 

state of the art:  complete                prophecy4f       

     Bredenstein, Denner, Dittmaier, Weber

1-loop corrections are 7% for leptons, 10% for quarks

difference from the Improved Born Approximation is 1%

leading 2-loop corrections known in the IBA: 
                           Kneihl-Veretin

strong parametric dependence on Higgs mass:

this is a 0.2% uncertainty for 

�(h ! WW ⇤)

O(↵)

�mh = 30 MeV



My conclusion is that perturbative uncertainties of order 
0.1% are within the state of the art.   Much work is 
required, but no new theoretical tools are needed.



Now turn to parametric uncertainties.  The strongest 
dependences are those on      ,     ,      .

Most of the parametric dependence comes from the 
prefactor.    The factors of mass must be defined 
carefully.   The perturbation theory is free of large 
logarithms for 

This must be determined by parameter values 
measured at lower energies.   We choose as our 
parameters the         values     

mb mc ↵s

m2
A ! m2

A(MS,µ = mh)

MS

mb(10.0 GeV) , mc(3.0 GeV) , ↵s(mZ)



Formulae for running           masses are known to 4 loops.

Using RunDec  (Chetyrkin-Kuhn-Steinhauser) or the 
private code of HPQCD, we find

Note that the coefficients are much larger if the quark 
masses are evaluated at lower scales, or at scales that 
depend on the quark mass.  For example, 

MS

�mb(mh) = 1.19 · �mb(mb)� (�0.69) · �↵s(mZ)



Combining this dependence with that from the 
perturbation theory, we find

The coefficients are of order 1.  Thus, we still need the 
input parameters at the 0.1% level.



We claim that this level of precision can be achieved 
by lattice QCD.

Lattice QCD already gives the highest-precision 
measurements of          and measurements of precision 
comparable to the state of the art for heavy quark 
masses.

↵s



most recent PDG compilation of       measurements↵s

The PDG value, dominated by lattice QCD, is 

0.1184 (7) (0.6%)



The current best 
determinations of 
from lattice QCD 
calculations of the  
spectrum give

Comparable results 
from QCD sum rules are

4.164 (23)

4.166 (43)

4.171 (9)
4.177 (11)

mb(mb;MS)

⌥

4.163 (16)

From the global fit to B decay distributions using HQET 
(HFAG): 4.194 (43)



I will now describe one strategy for reaching high 
precision using lattice QCD:

Study a 2-point correlation function

Take moments, and extrapolate these to the continuum 
limit

Use                            to set the scale of masses for the 
lattice spacing.         depends on off-shell masses at
 

f⇡,m(⌘c),m(⌘b)
G2n

Q ⇠ 2mQ



This gives the continuum values of QCD sum rules.  
Analyze these using continuum QCD formulae with  
subtraction.  This evades the need for high order QCD 
perturbation theory.

The perturbation expansions for the moments 
are known to 3rd order in QCD perturbation theory.

Chetyrkin-Kuhn-Sturm, Boughezal-Czakon-Schutzmaier, 
Maier-Maierhofer-Marquand-Smirnov

2n  10

MS



The method is similar to the direct use of experimental 
data, except that it is systematically improvable.

Fermilab and JLab clusters



Foreseen improvements:

       -  decrease lattice spacing from 0.045 fm to 0.03 fm

       -  decrease lattice spacing from 0.045 fm to 0.023 fm  

       -  compute one more order in QCD perturbation 
                                   theory

        -  increase statistics by a factor 100

         requires a factor 100 increase in computing power.LS2
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Lepage-Mackenzie  (preliminary)

fractional uncertainties in %



Other, independent, methods are available to measure     
in a manner uncorrelated with heavy quark masses, and 
to measure those masses using different techniques.

↵s



Conclusion:

We will have a precision Standard Model theory of the 
HIggs boson partial width to match the precision of the 
ILC experiments.

Changes in the pattern of Higgs couplings expected from 
models of new physics will become evident with high 
statistical significance.

Jack would love to see this.  Let’s take the opportunity 
present now to make the ILC accelerator available.


