Minimal Leptophillic Dark Matter

Ralph Edezhath w/ Spencer Chang, Jeffrey Hutchinson, Markus Luty

January 29, 2014

Outline

- Motivation
- Models
- Oirect detection
- Collider searches
- Limits
- Conclusion

Motivation

- Many probes of dark matter : collider, direct, indirect detection
- Want to know quantum numbers, interactions with SM or other new particles, compare different experiments
- Either complete theory like SUSY WIMPs, or effective DM:

$$\mathcal{L} \sim rac{1}{M^n} |\mathsf{SM}|^2 |\mathsf{DM}|^2$$

• Useful compromise between complete theory and effective DM:

$$\mathcal{L} \sim \lambda(\mathsf{SM})(\widetilde{\mathsf{SM}})(\mathsf{DM})$$

Effective WIMPs

- Freeze out fixes coupling
- For each point in mass parameter space, calculate collider production, nuclear interaction σ , etc

Models overview

Lepton partners couple to left-handed lepton doublets

Model Particles		\mathcal{L}_{int}
Dark matter χ	Lepton partner <i>L</i>	Lint
Majorana fermion	Complex scalar	$\lambda(\chi I)L^* + \text{h.c.}$
Dirac fermion	Complex scalar	$\lambda(\chi I)L^* + \text{h.c.}$
Real scalar	Dirac fermion	$\lambda(L^c I)\chi + \text{h.c.}$
Complex scalar	Dirac fermion	$\lambda(L^c I)\chi + \text{h.c.}$

Leptophillic direct detection signals

- WIMP-electron scattering (WES)
- requires non-negligible momentum for electron
- WIMP-atom scattering (WAS)
- suppressed by electron wave function overlap
- loop-mediated WIMP-nucleus scattering (WNS) : loop suppression $\left(\frac{\alpha_{\rm em}Z}{\pi}\right)^2$

$$R^{WAS}: R^{WES}: R^{WNS} \sim 10^{-17}: 10^{-10}: 1$$

Loop mediated scattering

one-loop charge radius interaction for Dirac and Complex Scalar DM

$$\frac{d\sigma_{b\chi}}{dE_R} = \frac{m_N}{2\pi v^2} Z^2 e^2 b_{\chi}^2 F^2 [E_R]$$

- same form as usual SI cross section
- charge radius vanishes for Real and Majorana, only two loop diagrams
- reduced far below current and projected SI bounds

Collider limits

- \bullet lepton "partners" produced through γ or Z, and decay into lepton and dark matter
- strongest bounds come from Lepton+MET searches
- only depends on partner type
- no simplified model limits for monolepton

Dirac DM Results

Dirac DM Results

Complex Scalar DM Results

Complex Scalar DM Results

Real scalar and Majorana

- Two-loop suppressed nuclear interaction
- Not probed by current or projected directed detection
- Collider limits same for Real Scalar (Majorana) same as Complex Scalar (Dirac)

- Direct detection better than dilepton searches for Dirac, Complex Scalar
- Direct detection does not probe Majorana, Real Scalar
- ATLAS should have gone to higher masses
- Complementary in a way to the quark-ophillic Effective WIMPs
- ATLAS and CMS should present mono-lepton limits for simplified models

Muon g-2

• Anomalous magnetic moment receives contributions from $\chi - L$ loops

$$\mathcal{M}=\textit{i}\textit{e}\bar{\textit{u}}\left(\gamma^{\lambda}+\left(\textit{a}_{\mu}^{\textit{SM}}+\delta\textit{a}_{\mu}\right)\frac{\textit{i}\sigma^{\lambda\beta}\textit{q}_{\beta}}{2\textit{m}_{\mu}}\right)\textit{u}\epsilon_{\lambda}$$

For fermionic dark matter, contribution is similar to neutralino-slepton loop

$$\delta a_{\mu, fermion} = -rac{\lambda^2 m_{\mu}^2}{192\pi^2 m_L^2} rac{2}{(1-r_L)^4} \left(1 - 6r_L + 3r_L^2 + 2r_L^3 - 6r_L ln(r_L)
ight)$$

where $r_L \equiv \frac{m_L^2}{m^2}$

For scalar dark matter, contribution is similar to sneutrino-chargino loop

$$\delta a_{\mu,scalar} = \frac{\lambda^2 m_{\mu}^2}{192\pi^2 m_{\chi}^2} \frac{2}{(1-r_L^{-1})^4} \left(2 + 3r_L^{-1} - 6r_L^{-2} + r_L^{-3} - 6r_L^{-1} ln(r_L)\right)$$

produces the observed excess for $m_\chi \sim \mathcal{O}(\text{GeV})$, but already ruled out by LUX in our models

Model		Relic Abundance Direct Detection	
χ	L	Nelic Abullual	Direct Detection
Majorana fermion	Complex scalar	$\begin{vmatrix} a \sim m_{\ell}^2 \\ \lambda \sim 0.5 - 3 \end{vmatrix}$	Two loop suppressed WNS
Dirac fermion	Complex scalar	$\lambda \sim 0.2-1$	One loop charge radius $\sigma_{SI} \overset{m_L\gg m_\chi}{\sim} \frac{m_p^2}{m_\chi^2} \sigma_{ann}$
Real scalar	Dirac fermion	$a,b\sim m_\ell^2 \ \lambda\sim 1-7$	Two loop suppressed WNS
Complex scalar	Dirac fermion	$a \sim m_\ell^2$ $\lambda \sim 0.5 - 3$	One loop charge radius $\sigma_{SI} \overset{m_L \gg m_\chi}{\sim} \frac{m_p^2}{m_\chi^2} \sigma_{ann}$

Leptophillic direct detection signals

- WIMP-electron scattering (WES) $\mathcal{O}(KeV)$ requires non-negligible momentum for electron $\epsilon_{WES} = \sqrt{2m_e(E_d-E_B)}\,(2l+1)\int \frac{dp\,p}{(2\pi)^3}\,|\chi_{nl}(p)|^2 \sim 10^{-6}$
- WIMP-atom scattering (WAS) $\epsilon_{W\!A\!S} = \sum |\langle n'l'm'|e^{i(\mathbf{k}-\mathbf{k'})\mathbf{x}}|nlm\rangle|^2 \sim 10^{-19}$,
- loop-mediated WIMP-nucleus scattering (WNS) loop suppression $\left(\frac{\alpha_{\rm em}Z}{\pi}\right)^2$

$$R^{WAS}: R^{WES}: R^{WNS} \sim \epsilon_{WAS}: \epsilon_{WES} \frac{m_e}{m_N}: \left(\frac{\alpha_{\rm em}Z}{\pi}\right)^2$$

 $\sim 10^{-17} \cdot 10^{-10} \cdot 1$

