DIMENSIONAL REDUCTION
of
S-CONFINING DUALITIES

Cornell fres
& University

work in progress, in collaboration with C. Csaki, Y. Shirman,
F. Tanedo and J. Terning.

/
- o

/
(’. \\'I

Mario Martone, mcm293@cornell.edu UCDAVES  ucDavis, 1021113 @
r29, 13


mailto:mcm293@cornell.edu
mailto:mcm293@cornell.edu

3D Yang-Mills

Nuclear Physics B188 (1981) 479-512
© North-Holland Publishing Company

THE QUALITATIVE BEHAVIOR OF YANG-MILLS THEORY
IN 2+1 DIMENSIONS

Richard P. FEYNMAN'
California Institute of Technology, Pasadena, California 91125, USA

Received 11 February 1981

The SUI(2) gauge theory of gluons (no quarks) is studied in two space and one time dimensions.,
Only qualitative or suggestive discussions arc made. Starting from the quantum field equations it
is argued that the necessary gauge invariance of the wave functional results, in this non-abelian
case, in a finite encrgy for any excitation (“glueball") above the ground state. Furthermore,
fluctuations in which gauging factors change sign can occur independently in regions adequately
separated in space. This results in a potential between distant massive quarks rising linearly with
distance (quark confinement). The situation in 3 + 1 dimensions is not discussed.
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Why now?

J
20
- T
)

[ —— -(.. S -."\‘

.
New: set of dualities in 3D from dimensional

reduction of 4D theories and many: exact results
from partition function calculations.

O, Anarony, o. Razamat, IN. SEIDErg ¢ 5. VVIIIE
5.3924]

JHEP 1307 (2013) 149 [arXiv:130
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- S-Confining theories

2- Dimensional reduction of 4D dualities.

3= Elements of N=2 SUSY in 3D.

4- Dimensional reduction of S-Confining dualities.
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“smooth confinement without chiral symmetry breaking and
a non-vanishing confining superpotential”

C. Csaki, M. Schmaltz & W. Skiba Phys. Rev. G. Dotti, A.V. Manohar and W. Skiba Nucl.
Lett. 78 (1997) 799 [hep-th/9610139] Phys. B 531 (1998) [hep-th/9803087]

N P —

Infrared physics Is described everywhere on the moduli space k

In terms of gauge Invariant operators.
.

p
A non-vanishing superpotential is dynamically generated

which Is holomorphic function of the confined degrees of
freedom.

‘The vacuum of the classical theory, where all the global

symmetries are unbroken, is a vacuum of the quantum theory

as well.
\_ y,
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NATURALNESS, CHIRAL SYMMETRY, AND SPONTANEOUS

CHIRAL SYMMETRY BREAKING

G. 't Hooft
Institute for Theoretical Fysics

Utrecht, The Netherlands

ABSTRACT

A properly called "naturalness" is imposed on gauge theories.
It is an order-of-magnitude restriction that must hold at all
energy scales u. To construct models with complete naturalness for
elementary particles one needs more types of confining gauge
theories besides quantum chromodynamics. We propose a search
program for models with improved naturalness and concentrate on
the possibility that presently elementary fermions can be con-
sidered as composite. Chiral symmetry must then be responsible
for the masslessness of these fermions.| Thus we search for QCD=
like models where chiral symmetry is not or only partly broken
spontaneously. They are restricted by index relations that often
cannot be satisfied by other than unphysical fractional indices.
This difficulty made the author's own search unsuccessful so far.
As a by-product we find yet another reason why 1in ordinary QCD

| chiral symmetry must be broken spontaneously.

g/
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Why 5-Confinement?

1 -

massless (very light).

f there was no spontaneously chiral symmetry |
oreaking, the proton (baryons) would be

fundamental quarks to be co

\ of freedom.

n a s-confining theory would be natural for the |

mposite degrees

Mario Martone, mcm293@cornell.edu
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SU(N) with N+ flavours.

The magnetic dual has no 1-
gauge group. .

(W = gev=r(det M — BMB)]

3-
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Tuesday, October 29, 13


mailto:mcm293@cornell.edu
mailto:mcm293@cornell.edu

SU(N) with N+ flavours.

The magnetic dual has no 1- ﬁ
gauge group. .

(W = gev=r(det M — BMB)]

3-
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SU(N) with N+ flavours.

The magnetic dual has no
gauge group.

(W = gev=r(det M — BMB)]
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SU(N) with N+ flavours.

The magnetic dual has no
gauge group.

(W = gev=r(det M — BMB)]

.

SU(N) with N flavours.

The magnetic dual has no
gauge group.

(W = A(det M — BB — A?N))

. J

(5 g
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How do we search for these theories!?

‘A magnetic theory of baryons and mesons should match the

anomalies of the electric theory.
.

2 - [The dynamically generated super-potential should only involve J

positive powers of the composite degrees of freedom.

[ )

» T(rj)—T(Ad) =1

J

.

C. Csaki, M. Schmaltz & W. Skiba Phys. Rev. | G. Dotti and A.V. Manohar, Nucl Phys. BS18
D 55 (1997) 7840 [hep-th/9612207] (1998) 575-602 [hep-th/9710024]

Mario Martone, mcm293@cornell.edu UC Davis, 10/21/13 @

Tuesday, October 29, 13



mailto:mcm293@cornell.edu
mailto:mcm293@cornell.edu

A complete classification.

SU(N)| (N + 1)( ' - O+ O+ 3@+0)
SU(5) 3(

SU(6)
SU(7)

Magnetic th.

Wagn = Ai (T°M§ — 12T HHM, — 24MyM; — 24HHM,)

‘R
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3D analog

There Is no anomaly

How would we go about it!

Mario Martone, mcm293@cornell.edu
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1- S-Confining theories.

~ Dimensional reduction of Seiberg dualiies

3= Elements of N=2 SUSY in 3D.

4- Dimensional reduction of S-Confining dualities.
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Many 3D dualities look like Seiberg dualities!

Selberg dualities [hep-th/9411149]

Electric (Theory A) Mé}ﬁ?e}iﬁ (Theory B)
SU(N) with F ( SU(F — N) with F (L + L)

and 2 mesons

W =0 (W =qMgq)

Electric (Theory A) Magnetic (Theory B)
3 th
U(N) with F ( U(F —N) with F (0 + L)

and F'2 mesons

W =0) @VZQMq+V+V_+V_@

Although strong coupling gauge dynamics is very different
in 4D and in 3D, this similarity calls for dimensional
reduction.

Mario Martone, mcm293@cornell.edu UCDAVIES  uc Davis, 10121113
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Why doesn’t naive dimensional reduction, work?

O. Aharony, S. Razamat, N. Seiberg & B. Willet O. Aharony, 5. Razamat, N. Seiberg & B. Willet
JHEP 1307 (2013) 149 [arXiv:1305.3924] [arXiv:1307.0511]

Seiberg dualities are IR dualities

In the range of parameters where both
theories are asymptotically free, Theory A and
Theory B are equivalent only at low energies

k (E<AA<A@ J

" Confinement scale for Theory A " Confinement scale for Theory B

AA—exp( 8772/gA) ) AB—exp( 8772/93)

. J

Such dualities still holds true when we compactity
both theories on a circle of radius r.
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Compactification on a circle.

r . . . . )
When we compactity one space dimension to a circle the
gauge coupling satisfies:

93 = 27rg3 )

Mario Martone, mcm293@cornell.edu UCDAVIS uc Davis, 10/121/13 @
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Compactification on a circle.

r . . . . )
When we compactity one space dimension to a circle the
gauge coupling satisfies:

93 = 2mrg3 )

[Ab £ exp(l—élﬂ/rg%)]
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Compactification on a circle.

r . . . . )
VWhen we compactify one space dimension to a circle the
gauge coupling satisfies:

93 = 2mrg3 )

[Ab £ exp(l—élw/rg%)]

In the r — O limit, g3 should be kept constant

AA%O
AB%O
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Compactification on a circle.

gauge coupling satisfies:

r . . . . )
VWhen we compactify one space dimension to a circle the

93

— l27rrg§]

;

[Ab £ exp(—47r/rg§)]

In the r — O limit, g3 should be kept constant

AA%O
AB%O

Straightforward dimensional reduction does

not work.

Mario Martone, mcm293@cornell.edu UCDAVIS
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VWe can take a different limit keeping r fixed

E,SAA,SAB<1/7°

.

In this limit the effective low-energy behaviour

kof both theories Is three dimensional.

.

(TheoryA and Theory B are still dual because of j
the 4D IR duality.

.

The 3D duality so obtained from the 4D duality,
differs from the naive dimensional reduction.

Mario Martone, mcm293@cornelledu  UCDAVIS  yc Davis, 10/21/13 @
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How do they differ?

r N
Because of the compact S* there are extra non-perturbative

corrections to the superpotential

W:W3D+77Y

\
™) \ )
" Non perturbative correctlon

3D Super-Potential from
straightforward dim. from the compact St

. J

reduction.
_
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Summarizing | /2.
0 B

B (- R

Theory A4 Iheory B4
N =1 ° > N =1

Wy #0

\4

Theory B3

O. Aharony, 5. Razamat, N. Seiberg & B. Willet O. Aharony, 5. Razamat, N. Seiberg & B. Willet
JHEP 1307 (2013) 149 [arXiv:1305.3924] [arXiv:1307.0511]

.
€ - 5
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summarizing 2/2.
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Image taken from [arXiv:1305.3924].
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Matching global symmteries

No anomalies in 3D

\
The naive dimensionally reduced

3D theory has an extra U( 1) global
symmetry.

The nY is neutral under all non-
anomalous symmetries but breaks the
anomalous U(1).
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Through dimensional reduction more 3D
dualities were conjectured.

SU(N) with F' ( U(F = N) and FQ(mesons

~

SO(F — N +2) with F [J and
F(F 4+ 1)/2 mesons

1 .F— N

W = 5 Mqq + —; ijJ

O. Aharony, 5. Razamat, N. Seiberg & B. Willet O. Aharony, S. Razamat, N. Seiberg & B. Willet
JHEP 1307 (2013) 149 [arXiv:1305.3924] [arXiv:1307.0511]
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1- S-Confining theories.

2- Dimensional reduction of 4D dualities.

- Blements of N=2 SUSY in 3D

3- Dimensional reduction of S-Confining dualities.
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Dimensional reduction of 4D Supersymmetric algebra

K. Intrilligator and N. Seiberg, “Aspects of 3d N=2 Chern-
Simons-Matter Theories” [arXiv:1305.1633]

O. Aharony, A. Hanany, K. Intrilligator; N. Seiberg and M. J. Strassler,
Nucl. Phys. B 499,67 (199/) [hep-th/9703110]

Mario Martone, mcm293@cornell.edu UC Davis, 10/21/13
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Chiral Supertfields (nothing exciting...)
Do® =0
D=¢+ 0+ 0°F

Vector superfield - U(1) -

Mario Martone, mcm293@cornell.edu UC Davis, 10/21/13 @
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Vector Supertfields

V=vI
0 1020\ — 1620\

[In 3D even the vector superfield can acquire a VEV J

v

Coulomb Branch
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What is the Topology!
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What is the Topology!
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What is the Topology!

27
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What is the Topology!

[Dual photon!j

/

i/g/ 0
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Dual photon

The vector supermultiplet has both a real and imaginary scalar
component. 7Y arises as dual photon!

xF' ~ dry

This construction, trivially generalises to the
non-Abelian case

Mario Martone, mcm293@cornell.edu UC Davis, 10/21/13 @
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p
1 We can arrange 0 and Y as lower component of a chiral
|

superfield ,
O =041y +..

.

2- (\/\/e should take care of the periodicity of the dual photon.

It's a good coordinate for the Coulomb branch. @

‘R 28
Mario Martone, mcm293@cornell.edu J( ' UC Davis, 10/21/13
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Operators describing the moduli space.

Higgs branch. Coulomb branch.

Nothing new: The operator Y is well defined

aYa throughout the Coulomb branch
Meson opgrators] M = QQ and can be used to describe It.
(For F>N)

@ &— 6?‘1”.?’]\7@21...@”\7
B = Ezl"'zNQil...QiN)

Baryons {

.
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Masses In SUSY

In 4D the only mass deformation allowed is a complex

[Mdass. 2
W =m_.o

Mario Martone, mcm293@cornell.edu J( ' UC Davis, 10/21/13 @
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Masses In SUSY

In 4D the only mass deformation allowed is a complex
mdass:

[mc s protected by holomorphy. ]

In 3D real mass deformations are also allowed.

Mario Martone, mcm293@cornell.edu UC Davis, 10/21/13 @
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~\

D=t O+ O2F

J

Real mass

40 xT m.00 m%*

.

Mario Martone, mcm293@cornell.edu J( ' UC Davis, 10/21/13 @
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~\

D=t O+ O2F

J

Real mass

My

1= M, isreal

MMy IS a mass term.

Mario Martone, mcm293@cornell.edu UC VIS  UC Davis, 10121113 @
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~\

D=t O+ O2F

J

My

1= M, isreal ,
} My 1s a Real Mass.

MMy IS a mass term.

4 \
. 2 ‘ |2
M = \/m2 + |m,
. : E—
Mario Martone, mcm293@cornell.edu UCUDAVES  UC Davis, 1021113
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Real mass

420 e 9% ~ | d40 BT edY

— 000 — 0v'0A; + i0°0X — 620\ + 1026°D |

Mapping across dualities

Real masses can be seen as background configurations of weakly gauged
olobal symmetries

—

m
g = —A=D=0
9

As global symmetries match, real mass deformations can be easily mapped
,across the dualrty.

Mario Martone, mcm293@cornell.edu J( ' UC Davis, 10/21/13 @
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Moduli space deformations

ny

Mario Martone, mcm293@cornell.edu UC VIS  UC Davis, 10121113 @
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Moduli space deformations

chQ Yhz’gh - mc)/low

J

ny

Mario Martone, mcm293@cornell.edu J( ' UC Davis, 10/21/13 @
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Moduli space deformations

chQ Yhz’gh - mc}/low

J

VEV
}/ZO’U)

= v° | Yaigh = —
77Y (QQ) y

.
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Moduli space deformations

Complex mass

chQ Yhz’gh - mc}/low

J

VEV
}/ZO’U)

= v° | Yaigh = —
77Y (QQ) y

Real mass

Real mass deformations depend on real
parameters and real parameters cannot appear
in the super-potential.

My — OC nY —0

J
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1= Dimensional reduction of 4D dualities.
2= Flements of N=2 SUSY in 3D.

3= S-Confining theories.

 Dimensiona reducion of 5-Confring heoris
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3D Dynamics

# flavours Magnetic description 5-Confining

U(1) gauge theory ves  no

W =Y (det M — BB)

Ydet M =1

K Intrilligator and N. Seiberg, “Aspects of 3d N=2 Chern-
Simons-Matter Theories” [arXiv:1305.1633]

O. Aharony, A. Hanany, K. Intrilligator; N. Seiberg and M. |. Strassler

Nucl. Phys. B 499, 67 (1997) [hep-th/9703110]
Mario Martone, mcm293@cornell.edu UC Davis, 10/21/13 @
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3D Dynamics

# flavours Magnetic description 5-Confining

U(1) gauge theory ves  no
N_|_]- W:qu+Yb5—|—V+—|—V— m

W =Y (det M — BB)

Ydet M =1

K Intrilligator and N. Seiberg, “Aspects of 3d N=2 Chern-
Simons-Matter Theories” [arXiv:1305.1633]

O. Aharony, A. Hanany, K. Intrilligator; N. Seiberg and M. |. Strassler

Nucl. Phys. B 499, 67 (1997) [hep-th/9703110]
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3D Dynamics

# flavours Magnetic description 5-Confining

U(1) gauge theory ves  no
N_|_]- W:qu+Yb5—|—V+—|—V— m

W =Y (det M — BB) m

Ydet M =1

K Intrilligator and N. Seiberg, “Aspects of 3d N=2 Chern-
Simons-Matter Theories” [arXiv:1305.1633]

O. Aharony, A. Hanany, K. Intrilligator; N. Seiberg and M. |. Strassler

Nucl. Phys. B 499, 67 (1997) [hep-th/9703110]
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3D Dynamics

# flavours Magnetic description 5-Confining

U(1) gauge theory ves  no
N_|_]- W:qu+Yb5—|—V+—|—V— m

W =Y (det M — BB) m

no

Ydet M =1 m

K Intrilligator and N. Seiberg, “Aspects of 3d N=2 Chern-
Simons-Matter Theories” [arXiv:1305.1633]

O. Aharony, A. Hanany, K. Intrilligator; N. Seiberg and M. |. Strassler

Nucl. Phys. B 499, 67 (1997) [hep-th/9703110]
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There Is a pattern. 3D theories with F flavors show a behaviour

similar to 4D theories with F+ | flavors.
\_ Y,

Compactification
v
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Decoupling one flavor

There Is a pattern. 3D theories with F flavors show a behaviour

similar to 4D theories with F+ | flavors.
\_ )

4 dualities

Compacéiﬁcation

3D dualities + Y
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There Is a pattern. 3D theories with F flavors show a behaviour

similar to 4D theories with F+ | flavors.
\_ Y,

Compactification
v

Real mass deformation
v
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Decoupling one flavor

There Is a pattern. 3D theories with F flavors show a behaviour

similar to 4D theories with F+ | flavors.
\_ )

4 dualities

Compacéiﬁcation

3D dualities + Y

Real mass deformation

3D dualities without tree level S.P
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[t can be computed in 3D using real mass deformations.

A necessary condition for a 3D theory to confine
IS:

. VVitten, “Supersymmetric imdex ot three-dimensional gauge
theory” [hep-th/9903005]

Mario Martone, mcm293@cornelledu  UCDAVIS  yc Davis, 10/21/13 @

Tuesday, October 29, 13



mailto:mcm293@cornell.edu
mailto:mcm293@cornell.edu

This condrition s “shifted” by one compared to
the 4D case

[t is only a necessary condition.

K Intrilligator and N. Seiberg, “Aspects of 3d N=2 Chern-
Simons-Matter Theories” [arXiv:1305.1633]
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The dynamical generated super-potential
breaks already the anomalous U(/).

.

~\

‘The “magnetic’’ version has no gauge
symmetry. No instanton configurations
exist.

.
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Dimensional reduction of the 4D
electric theory + nY

(

N+1)

\

(N +1)@O+D; B|\D|1D E] E]H

SU(5 x(E] ) BNDHD
[34

:?E] DH 10+ 0) + 77Y

N
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Dimensional reduction of the 4D
electric theory + nY

4 )

SUN) (N + )OO+ D0; B + NO+ 40; E] | B + 30+ 0)
SU(5) |: + [f]) ; 2B 20440

SU(6) |2

The dynamical generated super-
potential Is not corrected.

‘B 40
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SU(4) with 3 (O40) &

Dynamically generated Super-Potential

Wy — % (T2M3 — 12T HAM, — 24M,M§ — 24HAM, )
)

sU(2) SU@E) SUE) U(1), U(1), U()r
O 1
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= o= O)Ng = =
O Lo Inows |haes [ hes N B = = O
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(SU(ZL) with 3 ( ) &

(

-
As we take the m, — o0 the Moy branch
decouples and the theory develops a quantum
modified constrain.

KT12 det M() — ] \

~\

.
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Exploring the moduli space

The moduli space of an s-confining theory Is smooth. By
exploring the moduli space we can hope to completely
classity s-confining theories in 3D.
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CONCLUSIONS

T = Naive dimensional reduction of 4D dualities does not work. A more
involved procedure is needed to obtain 3D dualities from 4D.

Flowing down to different theories with less flavours or exploring the
moduli space allows to decouple the Y term and flow to S-Confining
theories.

The Witten index provides a precious tool to look for confining
theories. It Is only a necessary condition.

In 4D, exploring the moduli space of 5S-Confining theories provide more
S-Confining dualities. We expect the same to happen in 3D to obtain a
complete classification.
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