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Motivations

» Fermions are required by supersymmetry and their interactions
could be qualitatively different from those of bosons.

« We will consider the coupling of an arbitrary-spin massless
fermion to a spin-2 gauge field, in flat spacetime with D > 4.

« The latter cannot be the ordinary graviton that obeys principle
of equivalence, since no-go theorems prohibit, in flat spacetime,
minimal coupling to gravity for s > 5/2.

« Non-minimal couplings containing more derivatives do exist.



« \We view our flat space construction as a step towards that in
AdS, where gravitational coupling of higher spins makes sense.

» The ultimate goal is a standard action for the Vasiliev system.

* We use the BRST-BV cohomological methods, which could

also be employed for AdS via the ambient space formulation.
 Search for consistent interactions becomes very systematic.

« Any nontrivial consistent interaction must be noticed. Explicit

off-shell covariant vertices are natural output.

 Higher-order consistency of vertices can be checked easily.



Results

« Cohomological elimination of minimal coupling for s >5/2.
 Number of derivatives In a cubic 2-s-s vertex Is restricted.
 5allowed values: 2n-2, 2n-1, 2n, 2n+1, 2n+2 for s = n+1/2.

 EXxplicit construction of off-shell cubic vertices for arbitrary
spin and presenting them in a very neat form.

1. Non-Abelian (2n-2)-derivative D>4
2. Non-Abelian (2n-1)-derivative D>5
3. Abelian 2n-derivative D>5
4,  Abelian (2n+1)-derivative D>5
5. Abelian (2n+2)-derivative D>4

e Generic obstruction for the non-Abelian cubic vertices.
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Outline

 Gravitational coupling of massless spin 5/2: nontrivial!

« Cohomological reformulation of the free gauge system in order
to employ the BRST deformation scheme to construct consistent
parity-preserving covariant cubic vertices.

» Generalization to arbitrary spin, s = n+1/2, coupled to gravity.
This generalization is surprisingly easy!

» Second-order deformations and issues with locality.

 Concluding remarks.



Prototypical Example:

Massless Spin-5/2 Field
Coupled to Massless Spin 2



Step 0: Free Gauge Theory

» Free theory contains a graviton h,, and a massless spin-5/2
field—symmetric rank-2 tensor-spinor w,,, . The action reads:

Ol = | 0 B4 — G0
RM = S — A gv) _ %77“”8’? S =1 [P0 — 20, WV)}
. It enjoys two Abelian the gauge invariances:

5)\hPW — 28()&/\,,_,)j 5{5%“” = 28@6,,); with ﬁ/: 0.

- Bosonic gauge parameter: 4, fermionic gauge parameter: ¢,



Step 1: Ghosts

«  For each gauge parameter, we introduce a ghost field, with
the same algebraic symmetries but opposite Grassmann parity:

»  Grassmann-odd bosonic ghost: C,
»  Grassmann-even fermionic ghost: ¢,

« The original fields and ghosts are collectively called fields:

O = {h,u,w C,u,a be,u,w g,u}

« Introduce the grading: pure ghost number, pgh, which is

« 1 for the ghost fields
» 0 for the original fields



Step 2: Antifields

 One introduces, for each field and ghost, an antifield @,",
with the same algebraic symmetries but opposite Grassmann

parity. Each antifield has 0 pure ghost number: pgh(#®,")=0.
* 41 % >|< 1% >|<
_ { B 1 | 'S u v u}

» |Introduce the grading: antighost number, agh, which is O for

the fields and non-zero for the antifields:

agh(®%) = pgh(®*) + 1



Step 3: Antibracket

 On the space of fields and antifields, one defines an odd
symplectic structure, called the antibracket:

SRX oLy 6RX oLy
YDA FOY 5D 0B

(X,Y) =

« Here R and L respectively mean right and left derivatives.

« The antibracket satisfies graded Jacobi identity.



Step 4: Master Action

 The master action S, Is an extension of the original action; it
Includes terms involving ghosts and antifields.

S = / P [P N + 5 (RF 4 — DRI
= 20" 0,0y + (V0,8 — G ™)
» Because of Noether identities, it solves the master equation:
(S0,.50) = 0

 Antifields are sources for the “gauge” variations.

 Antighosts source gauge-algebra deformation and are absent.



Step 5: BRST Differential

« S, IS the generator of the BRST differential s of the free theory
sSX = (S()? X)

 Then the free master equation means: S, is BRST-closed.

 Graded Jacobi identity of the antibracket gives:
s° =0

 The free master action S, is trivial in the cohomology of s, In

the local functionals of the (anti)fields and their derivatives.



The BRST differential decomposes into two differentials:
s=I'+4
A4 1s the Koszul-Tate differential.

I' is the longitudinal derivative along the gauge orbits.

Theyobey: I2=A2=0, I'A+A T = 0.
Their action on the (anti)fields are explicitly given.

All I', A4, s increase the ghost number, gh, by one unit, where

gh = pgh —agh



Step 6: Properties of @* & &,

Table 2: Properties of the Various Fields & Antifields (n = 2)

AN VA AZ)  pgh(Z) agh(Z) qgh(Z) €(Z)
hw 20,0 () 0 () 0 0
C, 0 0 1 0 11
h*Hv 0 GH 0 1 —1 1
C*H () —20, h*H 0 2 —2 ()
U 200,60 0 0 0 0 1
& () () 1 4 1 ()
TR RH 0 L -0
£ 0 20, 0 2 —2 1




An Aside: BRST Deformation Scheme

« The solution of the master equation incorporates compactly all
consistency conditions pertaining to the gauge transformations.

* Any consistent deformation of the theory corresponds to:
S=S5y+9S;+0°5,+ O(g°)
where S also solves the master equation: (S , S) = 0.
« Coupling constant expansion gives, up to O(g?):
(S0, 50) = 0.,
(S0, 51) =0,
(S1,51) = —2(Sp, S2).



 The first equation is fulfilled by assumption.

 The second equation says S, Is BRST-closed:

881 = (
e First order non-trivial consistent local deformations:
S,=]a

are in 1-to-1 correspondence with elements of the cohomology of
the s, modulo total derivative d, at ghost number 0.

« One has the cocycle condition:

sa = 0.



One can expand a cubic deformation in antighost number:
a=a,+a,+a,, agh(a)=I
a, IS the deformation of the Lagrangian—the cubic vertex.

a, gives the deformations of the gauge transformations.

a, gives deformations of the the gauge algebra.
The cocycle condition reduces, by s = I' + 4, to a cascade

:__1052 = 0,
ACLQ ——:__‘0)1 — O,

Aal ——:__‘a() = 0.




A cubic vertex will deform the gauge algebra (non-Abelian) if

and only If a, iIs nontrivial in the conomology of I" modulo d.

«  Otherwise, one can always choose a, = 0 and a, = I'-closed

modulo d. The vertex may deform the gauge transformations.

« Ifa,istrivial, the gauge symmetry remains intact, and the

vertex a, Is gauge invariant only up to a total derivative.
 Any Lagrangian deformation a, is 4-closed.

e But trivial interaction terms are 4-exact modulo d.



Step 7: Cohomology of I

« Cohomology of I'" consists of gauge-invariant objects
that themselves are not gauge variation of something else.

* It is Isomorphic to the space of functions of

e The undifferentiated ghosts {C),,¢,}. Also the l-curl of the bosonic ghost €, as

well as the v-traceless part of the 1-curl of the fermionic ghost &,,,.
e The antifields {h**, C*# o* ¢*#} and their derivatives,
o The curvatures {R,, \, ¥ v ox ) and their derivatives,

e The Fronsdal tensor &, and its symmetrized derivatives.



FCLQ

Step 8: Non-Abelian Vertices

* a, Is Grassmann even, parity-even, Lorentz scalar satisfying:

= 0,

ghlaz) =0,

agh(as) = 2 = pgh(as)

« The most general solutions are (for p derivatives in a,)

/

g T o B
|
%) (N p—t

SIS B~
]
A -

1g C*1'E 6
ig C*HE,,E" + hc.
ig C*“zaﬁfmaaﬁ-

g &y, Cy + e,
gg*ﬂ (51/@:;“/ + Oélépﬂ/cy + &27(}165“@:@8) + h.c.
gg*“f}/aaﬁyj@aﬁ + h.c. .



 Half of these candidate a,’s are eliminated immediately since
It IS easy to see that they do get lifted to a,

» The remaining possibilities are:
« Minimal Coupling (with a, = -1, a, = 1/4):
ay = g ("€, + 1€, C" + a7, C,,) + huc.
 Gravitational Quadrupole (with g real)
0y = [ig C* e + hc] + [€uEy"" s + ]

 3-Derivative Coupling

L - X T Apva3
g = —29 C)\ E»pu/ﬁ// f E»Q;'B-



« Minimal coupling is ruled out, as the unambiguous term is

a1 = =2 (g X" P,),C" +hoc.) + DC,, + ..

o = 52, Adr = (2gAx ;W17 + hie) + 240,97
1

» The ambiguity is in the cohomology of I": |'gqy = ()

« Aliftto a, happens if they fulfill
A&l -+ A&l = —PCLO = C’ﬂ&,){“”’ + ...

 But this cannot happen because it leads to a contradiction:

Dt =07 [2g Ax:, % +hee] + 0, (2FAYI) = 9, (Tam)



 For the gravitational quadrupole interaction, one has
a1 = Uigq + 14 + Eih
A1g = ZQ h*wj (ép)\l/)y)\ + 1/31/)\6“)\ — QEALPMAHV — 21LM)\HI/£)\) )

15 = 2§ ((‘:MVXZUA/MW@BLI)QBHU o hMVHcT)—CZUn/MVpaBaaB) + h.c.

« Alift to a, exists only if the couplings are real, and satisfy
~ 1
g = 39

« And the vertex Is given by

oy = 29 (&MQR+MVaBd)y@ + %72}# Rw} %{)y + %hﬂyﬂ)paﬂ)\ ﬁ/upaa@,v)w I-l)aBHﬁ/)



 For the potential 3-derivative coupling we have
a; = —2ighy’ (éwﬂ/)‘“mﬁwam‘g — h.c.) + a4
« This gives rise to the vertex:
ao = ig W’ ( b B g e h;')\) Wi
« With the ambiguity given by

Ady = —1g R0 AVl (%’“/’W“/ﬂ’“S — 2vlepe hﬁ/‘ﬂ) VTR

e This vertex vanishes in D = 4,



To proceed, we note that we have exhausted all possible a, .

Any other possible vertex will not deform the gauge algebra.



Step 9: Abelian Vertices

« If a vertex comes from a, or a, itself, one can always choose:
ap = 1" h,, ['r* =0,
o, " = AM", I'M" = 0.

« The most generic form of the gauge-invariant current is:

T = \IJMO“VA,{N\PN
e The current and the vertex contains at least 4 derivatives.

« If the current contains more than 6 derivatives, a, will always
be A-exact modulo d . The vertex contains at most 6 derivatives.

« T #can be chosen uniquely for given number of derivatives.



The 4-derivative vertex comes with
THY — Zg (@(;LM(IB\I}V)M@B 4 anpv@pa‘aﬁqua\aﬁ)
With fixed « fixed to the value of -1/4.

The vertex has the following forms
_ h 1 h! \j_[J’u’ q:jv)\‘a/ﬁ’
ap — 14 ( pr — 7w ) Alaf
A

~ l T poa3, VT
o ~ —3gyY h;wqucr\'r)\ ﬁ/’( P qjcxﬁ\ﬂ/

For D > 4, we have an Abelian 4-derivative vertex.

This can be made gauge invariant up to a total derivative.



» The 5-derivative vertex corresponds to

T, L<‘_>I/
T = ig Wl O

» The vertex also takes the following form

~ 1 T T Apoaf3 TV
ap ~ 59 h,uz/H)\\Iﬂ po "V " W

T3

e It iIs manifest that the vertex exists in D > 4.

 Also, it does not deform the gauge transformations, since it is
gauge invariant only up to a total derivative.



The 6-derivative vertex has
_ 3 — — — <_)\_>
THY — Zg \Ppa\o;p (8;581/ 4 OHYY — 77‘“/8 8)\) quO"Qi,B
The vertex has the following 3-curvature form

~ T, p0 |3 LV
Ao ~= ZgR;wpcrqu ‘ \ch}:ﬁl

This form of the vertex is strictly gauge invariant.

The vertex exists for all D > 4.



Arbitrary Spin: s =n + 1/2
* The sets of fields and antifields are:
o4 = {h;w:f Cu:f wm---un ; fm---;un—l}
(DZ _ {h*w/j C*PL}&*Ml---,unjg*#l---,un—l}
» Grassmann odd bosonic ghost field C, .

 Grassmann-even rank-(n-1) fermionic ghost field Sttt -1
IS y-traceless. The original fermion is triply p-traceless:

:0; H2 :0

M2 3.



» The vertices are exactly like the spin-5/2 case.

« The non-Abelian ones are

72,2

. n 2 Vo n— v n—2)---
a = ig | Bl RTp m?w e R

(n— oaf3, VA n—1)---
49}-%}4, pUH m/up B, ’Ylb( ) o~

(n—1) Apvaf | Apvaf n—1) - o
L (e At STy R

 The Abelian ones are
p=2n: ap=1g (h L — ﬁ%uh’) R
p=2n+1: ay=19h, ---ﬁ/uay
p=2n+2: ap=1igh,, V" (3u3u 4 apay . 77“”8)\3)0 "



Second-Order Deformation

 Consistent 2nd-order deformation requires (S, S; ) be s-exact:

(Sh Sl) = —2852 — _2AS2 — 2PSQ

* For Abelian vertices this antibracket is zero, so the first-order
deformations always go unobstructed.

« Non-Abelian vertices are more interesting in this respect.

« The underlying assumptions are locality absence of other
dynamical interacting degrees of freedom.



» The antibracket at zero antifields Is required to satisfy:

[(Sla Sl)}(];)j‘qzo =1'N + AM)

N = =2 [SQ]@Z:O and M = —2 [SQ}C;';:O

» This antibracket is simple to compute:

(51, 5)) @*0—2(/%,/@1) z/ |

« Then b must satisfy:

b = I'-exact + A-exact



It Is easy to compute b for 2-5/2-5/2 non-Abelian vertices

c p=2:

b=2ig T", (&) + 0" & — 268 ” — 2 "€ + T") + -+
c p=23:

b —429 TMV (épaﬁ/up(y@fgll)aﬁﬂy — 11),0(7”1/“/“/00@66018) + .-

b’s do not have the required property.

Non-Abelian vertices are obstructed beyond the cubic order.

Additional DoF and/or mild non-locality remove obstruction?



Remarks

« Matching with light-cone results (Metsaev *07) and those from

tensionless limit of open string theory (Sagnotti-Taronna ’10).

» Cubic coupling constants related by higher order consistency.
» Connection with “good” massive theory (Porrati et al *94).

« Bosonic 2-s-s vertices (Boulanger, Leclercq, Sundell °08).
 Flat limit of Fradkin-Vasiliev vertices in (A)dS.

« Reduction of number of vertices in AdS, according to Metsaev
hep-th/0612279, In contrast with the bosonic counterpart recently
explored by Joung-Taronna arXiv:1311.0242 [hep-th].



