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Discovering Hierarchies

SPS: W,Z --> gauge hierarchy
LEP: no light Higgs --> little hierarchy
Tevatron: top --> Yukawa hierarchy

LHC: no light SUSY --> squark mass hierarchy
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Minimal Composite SSM
can resolve all these 
hierarchy problems
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two constructions. In the first, all the MSSM SU(2)L doublets arise as dual “magnetic
quarks”, while the SU(2)L singlets arise as mesons. The addition of elementary versions of
the right-handed SM fermions that mix with their composite relatives will allow a realistic
Yukawa structure to be obtained. In the second variant of the model all the light fermions
are elementary, which corresponds to a supersymmetric RS-type model like [12]. They
can acquire mass through coupling to an elementary Higgs fields that, in turn, couples to
composite Higgses in an analogy with the construction of [13, 14] (see also [15]). The new
feature of our models is that in addition to Higgses the gauge fields as well as (some of) the
SM fermions are also partially composite (or “fat”), similar to [16].

The paper is organized as follows. In section 2 we argue that one would not expect to
be able to find a model with fully composite W and Z that can reproduce the properties
of the SM. We discuss a fully composite toy model in section 3. In section 4 we discuss
modifications necessary to make the model realistic. Of special interest is the scenario where
the compositeness scale is low. We show that this can be achieved if composite gauge bosons
are mixed with elementary ones. As a result the W and Z are only partially composite. In
section 5 we introduce the minimal model where light SM fermions are elementary, the top
and Higgs are composite, while the W and Z are partially composite. We summarize our
results in section 6.

2 Composite W and Z?

In this section we argue that the properties of the SM W and Z are not generically expected
to be reproduced in a fully composite model, like the Abbott-Farhi model, the original RS1 or
a straight Seiberg duality.1 The gauge coupling of the SU(2)L at the weak scale is g ⇠ 0.65.
However, the coupling of a composite gauge boson at the compositeness scale is expected
to be strong. According to Naive Dimensional Analysis (NDA) [17] expectations one should
have g ⇠ 4⇡/

p
N . Phenomenologically for the ⇢ of QCD one finds g ⇠ 6 ⇠ 4⇡/

p
3. Thus one

would need a very large logarithmic running in order to reduce the coupling to the observed
level.

As an example consider the case of interest involving Seiberg duality (this case was also
explored in [9]). Here “magnetic” gauge bosons will play the role of the W and Z while
“magnetic quarks” will correspond to SU(2)L doublets. Thus we are considering an SU(N)
“electric” theory with F = N + 2 flavors although the following discussion is more general.
For general F and N , the matching of dynamical scales (strong interaction scale, or in the
case of IR free dual, Landau pole) is given by [3]
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1We thank Markus Luty for focusing our attention on this issue.
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Dual Gauge Coupling
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Yukawas
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CP Even Scalars
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Composites
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Composite
Soft SUSY Breaking
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Composite
Soft SUSY Breaking
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Hierarchy of
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Conclusions
SUSY Composite Models

solve the four hierarchy problems:
gauge, Yukawa, little, and squark mass

they predict a sparse superpartner 
spectrum with a very light stop


