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Main Idea

AdS/CFT ⇒
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Main Idea

better

⇒
Solution

Generating
Algebra

(or “Almost Riemannian Geometry”♦)
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Describing the Boundary

M = bulk

(M, [g ]) = conformal manifold

gµν ∼ Ω2(x)gµν

Σ = boundary

inherits conformal class of metrics
(Σ, [gΣ])

To say where the boundary is introduce an almost everywhere

positive function σ(x).

Σ is the zero locus of σ.
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The Scale
Along Σ, the function σ encodes boundary data, in the bulk it is a spacetime

varying Planck Mass/ Newton Constant.

The scale σ(x) is the gauge field for local choices of units

σ(x) ∼ Ω(x)σ(x)

The double equivalence class [gµν , σ] = [Ω2gµν ,Ωσ] determines a
canonical metric g 0 AWAY FROM Σ

[gµν , σ] = [g 0
µν , 1]

in units κ = 1.

Example: AdS

ds2
0 =

dx2 + h(x)

x2
, σ0 = 1 ,

but along Σ should use

ds2 = dx2 + h(x) , σ = x ,

well defined at the boundary Σ = {x = 0}.
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The Normal Tractor
Along Σ, ∇σ encodes the normal

vector n and ∇.n the mean curvature H

Introduce scale and normal tractors

I =

 σ
∇σ

− 1
d (∆σ + σJ)

 , N =

 0
n̂
−H

 ,

d := dimM , Rµνρσ := Wµνρσ + (gµρPνσ ± 3 more) , J := Pµµ

Theorem (Gover)

I 2 = 1 ⇒ I |Σ = N

Away from Σ the scale tractor controls bulk geometry,

along Σ it carries boundary information.
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Tractors
Probably not surprising that to describe conformal geometry, one should use

6-vectors rather than 4-vectors! Spacetime remains 4-dimensional.

Weight w tractors are defined by their gauge transformation w.r.t.
conformal transformations

T M :=

T +

T m

T−

 7→ Ωw

 Ω 0 0

Υm δm
n 0

− 1
2Ω Υ2 − 1

Ω Υn
1
Ω


T +

T n

T−

 =: Ωw UM
NT N ,

Here Υµ := Ω−1∂µΩ and UM
N ∈ SO(d , 2).

Tractors give a tensor calculus for conformal geometry♦.

Example: T 2 := 2T +T− + T mTm is a conformal invariant
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♦ T.N.Bailey, M.G.Eastwood, A.R.Gover, Thomas’s structure bundle for conformal, projective and related structures, Rocky
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Parallel Scale Tractors
The tractor bundle is physically very interesting because parallel tractors

correspond precisely to Einstein metrics.

The tractor covariant derivative on weight zero tractors

∇µT M :=

 ∂µT + − Tµ

∇µT m + Pm
µ T + + eµ

mT−

∂µT− − Pm
µ Tm

 7→ UM
N∇µT N .

Theorem (Sasaki; Bailey, Eastwood, Gover; Nurowski)

(M, [g ]) conformally Einstein ⇔ (M, [g ]) admits a parallel scale tractor.

Proof.
Call IM = (ρ, nm, σ) and study

∇µI M = 0⇔


∂µσ − nµ = 0

∇µnν + Pµνσ + gµνρ = 0

∂µρ− Pµνnν = 0
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Physics Dictionary♦

No physics depends on local choices of unit systems⇒ express any theory in tractors. Unification a lá 3→ 4-vectors!

Einstein–Hilbert action S [g , σ] =
∫ √−g

σd I 2 .

I M parallel ⇒ I 2 = constant; this is the cosmological constant!

Replace derivatives by Thomas D-operator; unifies Laplacian and gradient!

DM :=

w(d + 2w − 2)
(d + 2w − 2)∇
−∆− wJ

 , DMDM = 0 .

Weights of tractors = masses; Breitenlohner–Freedman bounds for free!

Wave equations for tractor tensors I · D T = 0

Example T = ϕ, weight w scalar, σ = 1,

I · Dϕ = −
[
∆− 2J

d
w(d + w − 1)

]
ϕ

Mass—Weyl-weight relationship m2 = −2J
d

[(
w + d−1

2

)2
− (d−1)2

4

]
.
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Tractor Maxwell Theory

Maxwell Tractor, V M , weight w with gauge invariance

δV M = DMξ = (d + 2w)

(w + 1)ξ

∇ξ
?


DMV M is gauge inert so impose

D · V = 0 , determines V−.

Get gauge transformations of Stückelberg-massive Proca system

δV + = (d + 2w)(w + 1)ξ , V m = (d + 2w)∇mξ .

Tractor Maxwell Field Strength

F MN = DMV N − DNV M , gauge invariant.

Equations of motion by coupling to scale

JN = IMF MN = 0 , Proca Equation
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For w = −1, V + decouples, get standard massless Maxwell.

For w = 1− d
2 , scale tractor decouples!

In four dimensions 1− d
2 = −1 so this says Maxwell is Weyl invariant.

In d 6= 4, get Weyl invariant Deser–Nepomechie theory

∆Aµ −
4

d
∇ν∇µAν +

d − 4

4

(
2 PµνAν − d + 2

2
Aµ
)

= 0 .
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Unify Massive, Massless and Partially Massless Theories

Example

Tractor Gravitons hMN with

δhMN = DMξN + DNξM , DMhMN −
1

2
DNhM

M = 0 ,

Tractor Christoffels 2ΓMNR = DMhNR + DNhMR − DRhMN

GMN = I RΓMNR = 0 , massive gravitons

Examine gauge transformations
δh++ = (d + 2w)(w + 1)ξ+

δhm+ = (d + 2w)
[
wξm +∇mξ+

]
δhmn = (d + 2w)

[
∇mξn +∇nξm + 2J

d η
mnξ+

]
.

w = 0, massless gravitons
w = −1, partially massless gravitons

δhmn = (d − 2)
[
∇m∇n +

2J

d
ηmn

]
ξ+ .
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Boundary Problems

Problem

Given a boundary tractor TΣ, find a tractor T on M such that

T |Σ = TΣ and I · D T = 0 .

In a given Weyl frame, this is a Laplace type problem, so could just choose coordinates and study the resulting PDE.

Method

Boundary data

Extend TΣ arbitrarily to T0 with T0|Σ = TΣ

Iteratively find T (1),T (2), . . . approaching solution T , with
T (l)|Σ = TΣ

Check solution T is independent of original choice of extension T0.
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Boundary Calculus

Observe that because T |Σ = TΣ = T0|Σ

T = T0 + σS , for some S .

This suggests to search for an expansion in the scale!

T (l) = T0 + σT1 + σ2T2 + · · ·+ σl Tl .

Need algebra of I · D and σ, remarkably

[I · D, σ] = (d + 2w)I 2

Or calling x := σ, h := d + 2w , y = − 1
I 2 I · D we have the sl(2) solution

generating algebra

[x , y ] = h , [h, x ] = 2x , [h, y ] = −2y
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The Solution

Example

Given weighted tractor hT = h0T and T = T0 + xT1 + x2T2 + · · · then

yT = yT0 − (h0 − 2)T1 + x
(
yT1 − 2(h0 − 3)T2

)
+ · · · ,

so

T = T0 +
1

h0 − 2
x yT0 +

1

2(h0 − 2)(h0 − 3)
x2y 2T0 + · · · .

All order solution given by solution generating operator

T = : K (z) : T0

with

K (z) = z
h0−1

2 Γ(2− h0)J1−h0(2
√

z) = 1+ 1
h0−2

z+ 1
2(h0−2)(h0−3)

z2+···

and z = xy with normal ordering

: zk : = xk y k .
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Tangential Operators
We call a bulk operator O tangential if

Oσ = σO′ , for some O′

Example

The tangential derivative ∇T := ∇− n∇n

The solution generating operator : K : obeys

: K : x = 0

for same reason that y : K : = 0.

The holographic GJMS operator

y k , k ∈ 2N
acting on tractors with weight h0 = k + 1, because
[x , y k ] = y k−1k(h − k + 1) .

When bulk operators are tangential they define boundary operators since
OT |Σ is independent of how TΣ is extended to T .
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Obstructions and Anomalies
When h0 = 2, 3, . . ., so w + d

2 = 1, 3
2 , 2, . . ., the recurrence

Tk =
1

k(h0 − k − 1)
yTk−1 fails for Th0−1 .

N.B., usually Tk ∼ y k T0, so the operator y k is the obstruction.

For conformally Einstein bulk and h0 = 2, 4, 6, . . ., y k vanishes.

For h0 = 3, 5, 7, . . . the tangential operator y k is a holographic
formula for the GJMS operator

P2k = ∆k + curvatures .

Conformally invariant boundary operators corresponding to conformal
anomalies.

Acting on log densities1 y d−1 yields Branson’s Q-curvature

Q =
1

((d − 2)!!)2
y d−1U|Σ .

Holographic anomalies of Henningson–Skenderis.
1Under conformal transformations U 7→ U + log Ω.
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Log solutions
Using [y , xk ] = −xk−1k(h + k − 1) we learn

y : K (z) : = :
(

zK ′′(z) + K ′(z)(2− h) + K (z)
)

: y ,

Operator problem now an ODE—Bessel type-equation solvable by

Frobenius method:

Second solution = zh0−1
(
first solution h0 → 2− h0

)
h0 ∈ N, Log solution =

(
degree h0 − 2 polynomial

)
+ zh0−1 log z ×

(
second solution

)
+ “finite terms”

Log solution requires second scale τ , at definite weight only log(σ/τ)
can appear. τ |Σ 6= 0

log z is completely formal because z = xy , but log τ can play rôle
of “log y”.

Algebra of log x ,

[y , log x ] = − 1
x (h − 1)

Must also require solution generating operator to be tangential.
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The Solution
Remarkably, can solve to all orders at log weights

T = OT0 , solves I · D T = 0

O = : Fh0−2(z) : − : zh0 B(z) :
(h0−1)!(h0−2)!

−
xh0−1 log x : Kh0

(z) : yh0−1 − xh0−1 : Kh0
(z) :
[

log τ yh0−1
]

W
(h0−1)!(h0−2)!

Fh0−2=1+··· is the standard solution up to orders before
obstruction—“infinities”.

log terms multiply second solution Kh0 = 1+···

careful Weyl ordering of operators y and log τ ensures tangentiality
Ox = 0.

B = 1+··· are non-log finite terms. Explicit formulae for all terms.

Solution of wave equation boundary problem for arbitrary tensors in any
curved bulk.
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Ambient Tractors

Flat model for conformal manifold

M
~

Q

M
ξ

Ambient space M̃ = Rd+1,1

Lightcone Q = {X MXM = 0}
Conformal manifold M = {lightlike rays}
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Momentum Cone

Tractors are equivalence classes of weighted ambient tensors T (Gover,
Peterson, Čap)

T ∼ T + X 2S , X M∇MT = wT .

Tractor operators respect equivalence classes

OX 2 = X 2O′

Fundamental operators ↔ momentum space representation of the ambient
conformal group (Gover, AW)

Canonical Tractor X M

Weight w = ∇X

Double D-operator DMN = XN∇M − XM∇N

Thomas D-operator DM = ∇M(d + 2∇X − 2)− XM∆
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Curved Cone
Metric on curved ambient space (M̃, gMN):

gMN = ∇MXN

where X is now hypersurface orthogonal homothetic vector field.

Consequences:

LX gMN = 2gMN , ∇[MXN] = 0 , XM = ∇M
1

2
X 2 , gMN =

1

2
∇M∂NX 2 .

So X 2 is homothetic potential and defines a curved cone.

Define tractors as before ⇒ arbitrary curved space.

Remarkably have an sl(2) ∼= sp(2) algebra from operators (GJMS)

Q =

(
X 2 ∇X + d+2

2

∇X + d+2
2 ∆

)
, [Qij ,Qkl ] = εkj Qik + (3 more)
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Two Times Physics
Itzhak Bars:

H → Qij , Rd−1,1 → Rd ,2

because Howe dual pair

sp(2)⊗ so(d , 2) ⊂ sp
(
2(d + 2)

)
Particle action

S =

∫
dt
[
PM Ẋ M−λij Qij

]
, Q =

(
X 2 X .P

X .P P2

)
⇔



relativistic particle
AdS particle
H-atom
Harmonic Oscillator

...

Bars proposed

Gravity↔
{

triplets of Hamiltonians in 2(d + 2) dimensional phase space
obeying sp(2) algebra

}
Confirm this proposal using tractors! (Bonezzi, Latini, AW)
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Gravity{
[Qij ,Qkl ] = εkj Qil + εki Qjl + εlj Qik + εli Qjk

QΨ = 0

Symplectic Gauge Invariance

Q 7→ Q + [Q, ε] , Ψ 7→ Ψ + εΨ

Expand Q, ε in powers of operator ∇ → infinitely many fields

Solve sp(2) conditions

Q =

 X MGMNX M X M(∇M + AM) + d+2
2

X M(∇M + AM) + d+2
2 (∇M + AM)GMN(∇N + AN)

 ,

ε = α + ξM(∇M + AM) ,

with GMN = ∇MXN , X MFMN(A) = 0.
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Many Actions

Lagrange multipliers for Hamiltonian constraints

S(GMN ,AM ,Ψ,Ω,Θ,Λ) =

∫ √
G
(

Ω∇̃2 + Θ
[
X .∇̃+

d + 2

2

]
+ ΛX 2

)
Ψ

Θ fixes weight ∇X Ψ = (w − d
2 − 1)Ψ

Λ says Ψ = δ(X 2)φ so φ ∼ φ+ X 2χ

⇒ S =
∫ √

Gδ(X 2)T (G ,A,Ω, φ)

T = φ
(
∇+ A

)2
Ω must be a tractor: in Maxwell gauge X .A = w

T = φ
( 1

w
AMDM −

1

d − 2
(DMAM) + A2

)
Ω

T tractor ⇒ d-dimensional action S =
∫ √
−gT

Residual SO(1, 1) gauge invariance

δΩ = αΩ , δφ = −αφ , δAM =
1

d − 2
Dmα
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Singlet Ωφ =: ϕ2 is gauge invariant.

Integrate out AM leaves only ϕ and metric

S =

∫ √
−gϕ

[
∆− d − 2

2
J
]
ϕ

CONFORMALLY IMPROVED SCALAR

In terms of scale
ϕ = σ1− d

2

Tractor Einstein–Hilbert action

S =

∫ √
−g

σd
I 2

Weyl invariant

Choose σ = 1,

S =

∫ √
−gR .
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Conclusions and Outlook

Transversal tensors.

Ubiquity of I · D, harmonic Weyl tensor → I . /DWMNRS = 0 for Weyl
tractor.

Global solution?

Correlator calculus.

Two times and dualities.
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