



# SUSY searches with b-jets at CMS

Josh Thompson
Cornell University
25 October 2011
UC Davis HEP seminar

J. Thompson, Cornell 25 Oct 2011

#### I don't usually have to travel so far to talk to people from Davis!



#### Outline

- Introduction
  - The LHC and CMS
  - SUSY and b-jets
- Analyses
  - CMS has two 2011 b-tagged SUSY searches
    - MT2+b, MET+b
  - I will cover both but give more detail on MET+b
    - Event selection
    - Background estimation methods
- Results and interpretation

#### CMS at the LHC

J. Thompson, Cornell 25 Oct 2011



J. Thompson, Cornell 25 Oct 201

#### The CMS Detector

- 21m long, 15m in diameter
- 14000 tons



CMS Collaboration:

- ~2500 scientists +
- ~850 students
- 173 institutes
- 40 countries

7m

### A slice of CMS

JINST3:S08004 (2008)

J. Thompson, Cornell 25 Oct 201

Electromagnetic Calorimeter (lead tungstate crystals):  $\sigma(E)/E \sim 3\%/\sqrt{(E)}$  [GeV]  $\oplus$  0.3%

Silicon tracker:

through CMS

 $\sigma(p_T)/p_T \sim 15\%$  at 1 TeV

Hadron calorimeter (brass + scintillator):  $\sigma(E)/E \sim 100\%/\sqrt{(E)}$  [GeV]  $\oplus$  5%

Silicon pixel detector: ~20µm hit resolution Muon Electron Charged Hadron (e.g. Pion) Neutral Hadron (e.g. Neutrøn) Photon Silicon Tracker Muon system (drift tubes, Electromagnetic resistive plate chambers, Calorimeter cathode strip chambers): Hadron Superconducting Calorimeter Solenoid  $\sigma(p_T)/p_T < 1\%$  at 100 GeV  $\sigma(p_T)/p_T < 10\%$  at 1 TeV Transverse slice

## 2011 data-taking at CMS

- >5 fb<sup>-1</sup> delivered so far
  - 2010 dataset now delivered in a few hours
- 1318 bunches colliding in CMS with 50 ns spacing
  - (design is twice as many bunches at 25 ns)
  - Very good emittance (smaller transverse beam size) and bunch intensity
  - Since Sep., β\* lowered to
     1.0m (smaller transverse beam size)
    - Very high pileup
      - At L ~ 3x10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>,
         ~15 interactions/bunch crossing

- Recorded/delivered ~ 90%
- Good / recorded ~ 90%
- ~98% of the detector is working and in the readout



Current lumi uncertainty = 4.5%

## Why Supersymmetry?

- The Standard Model has never\* failed to describe our data, despite our best efforts
- But the observed SM + SM Higgs is not the whole story....
  - e.g. "Hierarchy problem"
    - Higgs mass receives radiative corrections due to quantum loops, proportional to the largest scale in the theory (Planck Mass, 10<sup>19</sup> GeV)
- SUSY adds a partner particle for each SM particle, with the same quantum numbers, except differing by ½ unit of spin; e.g.:
  - Spin ½ quarks → spin 0 squarks (q~)
  - Spin 1 gluons → spin ½ gluinos (g~)
    - This new symmetry neatly cancels the dangerous contributions to the Higgs mass

# Signatures of SUSY

- Common to assume R-parity conservation
  - i.e. SUSY particles produced in pairs and always decay into another SUSY particle
    - Lightest SUSY particle (LSP) is stable
      - · Good dark matter candidate
      - Escapes our detectors unseen→missing energy
- At the LHC, production dominated by gluino-gluino, squark-squark, gluinosquark
  - These are colored objects and so a lot of jets are produced when they decay
- Classic LHC SUSY signature:
  - Jets + Missing transverse energy (MET)
    - Why transverse?
      - remember that we don't know the initial momentum along the beamline, so we can only talk about the momentum balance in the transverse direction



# b jets and SUSY

#### Example signals:

- Models with a light 3<sup>rd</sup> generation of sparticles (b~, t~), with the other squarks heavier
  - e.g.  $g \sim \rightarrow ttX \sim$
- Models with all squarks heavy, but gluinos light
  - e.g. high tan  $\beta$ , high  $m_0$ , low  $m_{1/2}$  in the CMSSM (like "LM9")
  - $g \sim \rightarrow qqX \sim with q=b,t$
- Adding b-tagging also provides an experimentally complementary approach
  - Different mix of backgrounds, different systematics, etc

#### Mass spectrum of CMSSM test point "LM9"



Fraction of events with a b



# Overview of backgrounds

- Signature: jets+MET+b tag
- Main background:
  - ttbar → Wb Wb
    - One W decays to hadrons
    - Other W decays to  $I_{\nu}$ , where  $I=\tau \rightarrow$  hadrons or  $I=e,\mu,\tau \rightarrow e,\mu$  and  $e,\mu$  slips through veto
      - Neutrino provides a source of real MET
- Other backgrounds:
  - QCD
  - W+Jets
  - $^{\circ}$  Z+Jets, with Z $\rightarrow$ vv

## Event selection: jets

- Expect lots of jet production from SUSY
  - Multiple hard jets
    - ≥4 for MT2 analysis
      - $p_T > 20 \text{ GeV}, |\eta| < 2.4$
    - ≥3 for MET analysis
      - $p_T > 50 \text{ GeV}, |\eta| < 2.4$
  - □ Large  $H_T = \Sigma_{jets} |p_T|$ • >650 GeV for MT2
    - >650 GeV for MT2 analysis
    - >350 (500) GeV for Loose (Tight) branch of MET analysis



### Event selection: lepton veto

- ttbar is the largest background
- Reduce it by vetoing events with an isolated e or  $\mu$ , passing the following criteria:
  - □ p<sub>T</sub>>10 GeV
  - $\mid \eta \mid < 2.4$  (plus veto of barrel/endcap transition for electrons)
  - Various quality and isolation requirements
- Remaining ttbar events either have lepton that is outside of the selection above  $(\sim 2/3)$ , or have  $W \rightarrow \tau \rightarrow hadrons (\sim 1/3)$

# Event selection: missing energy

- Weakly interacting particles in SUSY final state → missing transverse energy
  - MET analysis uses MET directly
    - MET > 200 (300) for GeV for Loose (Tight)
  - MT2 analysis uses MT2
    - An extension of the transverse mass concept (commonly used for W→Iv decays) to decay chains with 2 unobserved particles.
    - Largely correlated with MET, but gives better rejection of non-SUSY events

$$(M_{T2})^2 = 2A_T = 2p_T^{vis(1)}p_T^{vis(2)}(1+cos\phi_{12}).$$





#### Signal regions



# Triggers

- How to select this signature online?
  - Use online versions of HT, missing energy
    - These calculations use calorimeter-only quantities (no "particle flow" reconstruction)
    - The missing energy calculation uses only jets ("MHT")
- MT2+b analysis uses HT trigger
  - HT > 550 GeV (computed online)
    - Fully efficient for offline analysis HT cut
- MET+b analysis uses HT+MHT cross-trigger
  - Online thresholds: HT > 300 GeV, MHT > 80 GeV
    - Fully efficient offline HT > 400 GeV
      - Below plateau, correct MC for small inefficiency
    - 99  $\pm$  1% efficient for (PF) MET > 200 GeV

# Event selection: $\Delta \phi$ (jet, MET)

- QCD events can sneak into high MET region when a jet is severely mismeasured
  - Creates fake MET aligned with the jet
- Reject this background with angle  $\Delta \phi$  (jet, MET)
  - In MT2+b, require ∆φ<sub>min</sub>(all jets, MET) > 0.3—
     In MET+b, use a slightly different variable
    - (more on the following slides)



# Motivation for $\Delta \phi_N$ (jet, MET)

- The standard  $\Delta \phi$ (jet, MET) variable is great for rejecting QCD at high MET
  - But it is also highly correlated with MET (and MT2)
- For an event with a very badly measured jet, why is the angle  $\Delta \phi$ (jet, MET) non-zero?

The MET direction is smeared by the small mismeasurements of the  $p_{\mathsf{T}}$  of the other jets in the event



- This smearing becomes less important as the big mismeasurement (hence MET) increases → MET and △φ(jet,MET) are correlated
- we try to model this and construct an uncorrelated variable

J. Thompson, Cornell 25 Oct 2011

#### *MET+b analysis*

# $\Delta \phi_N$ construction

 $\Delta \phi_{
m i}$   $T_{
m i}$   $E_{
m T}^{
m miss}$   $lpha_{
m k}$ 

•  $T_i$  is the component of mismeasurement of other jets that is transverse to the  $\Delta \phi$  jet *i* 

$$T_i^2 \approx \sum_n (\sigma_{pT,n} \sin \alpha_n)^2$$

- Use 10% for jet  $p_T$  resolution  $\sigma_{pT,n}$ 
  - Cross-checks done to show we are not sensitive to this choice
- $\Delta \phi_{N,i} = \Delta \phi_i / \tan^{-1}(T_i / MET)$
- This new variable is  $\Delta \phi_i$  normalized by its resolution



# $\Delta \phi$ versus $\Delta \phi_N$

- Plot the ratio of events passing the  $\Delta \phi$  cut to the ratio failing it, as a function of MET
  - This is a good way to judge the correlation
    - (flat means uncorrelated)



 $\rightarrow$  pass/fail ratio for  $\Delta \phi_N^{min}$  is ~constant for MET>~30GeV and independent of b tagging. Lends itself to a simple background estimate (discussed later)

## Event selection: b tagging

- Both of these analyses use the Simple Secondary Vertex High Purity algorithm
  - Find a secondary vertex in a jet with at least 3 tracks
    - Make a tight selection on the discriminator value with ~50% efficiency and ~0.1% mistag for light jets (higher for charm)
- For signal efficiency evaluation, use data-driven scale factors to correct MC b-tag efficiency
  - $_{\text{\tiny P}}$  p<sub>T</sub> < 240 GeV: centrally provided by the CMS b-tag group
  - 240<p<sub>T</sub><350 GeV: the MET+b analysis performed an evaluation using the ratio of double b-tagged events to single b-tagged events using a 1 lepton (~ttbar) control sample</li>
    - Found scale factors to be the same, with a larger uncertainty
  - $p_T > 350$  GeV: MET+b analysis uses a scale factor of 0 for signal efficiency (conservative for a limit)
    - Not enough statistics (yet) for a proper evaluation of the scale factor in data
- Both analyses use ≥ 1 b tag selections
  - MET+b also uses selections with ≥ 2 b tags

J. Thompson, Cornell 25 Oct 2011

## MC expectations in 1.1 fb<sup>-1</sup>

- After the event selection:
  - Jet multiplicity, HT
    - Lead jet p<sub>T</sub> in MT2 analysis
  - Lepton vetoes (e, μ)
  - $\Delta \phi_{(N)}$  requirement
  - MT2/MET requirement

|                | ttbar | QCD | W+jets | Z(vv)+jets | Total SM | LM9  |
|----------------|-------|-----|--------|------------|----------|------|
| MT2+b          | 10.8  | 0.2 | 2.2    | 1.8        | 15.0     | 42.9 |
| MET ≥1 b Tight | 14.7  | 1.3 | 4.2    | 4.3        | 25.1     | 27.7 |
| MET ≥2b Loose  | 28.9  | 2.5 | 1.2    | 2.2        | 35.7     | 60.0 |

Note that MET analysis has 4 selections: (Loose, Tight)  $x (\geq 1b, \geq 2b)$ The ones shown here are the most powerful for setting limits.

## MT2+b: background methods

#### ttbar

- Use control sample with 1 electron or 1 muon
  - Use MC efficiency numbers to move from 1 lepton → 0 lepton sample
    - Perform this method in control region 100<MT2<150 GeV
      - Compare prediction for 0 lepton sample to MC for 0 lepton sample; level of agreement quantified in the uncertainty
  - Scale from control region to signal region using MC, propagating uncertainties

#### QCD

- Extracted using a ratio of events that pass/fail  $\Delta \phi_{min}$  selection
  - Extrapolated using a exp+c function to model this ratio
- $^{\circ}$  Find 0.8  $\pm$  0.8 QCD events

# MET+b: ttbar+W+t method

- MET shapes in 1 lepton sample are compatible with 0 lepton sample
- Find MET shape in 1 lepton control sample, then normalize to ttbar-dominated region at medium MET (150<MET<200 GeV)</li>

$$N_{SIG}^{top+W} = \frac{N_{SIG-SL}}{N_{SB-SL}} \times (N_{SB} - N_{SB}^{Z \to \nu \overline{\nu}} - N_{SB}^{QCD} - N_{SB}^{other,MC})$$

Subtraction of contamination from other backgrounds (mostly data-driven)

Not discussed here: independent method used as a cross-check



### MET+b: QCD

- $\Delta \phi_N(j,MET)$  variable and MET are ~uncorrelated
  - Therefore an extrapolation can be made from low MET to high MET of the fraction of events that pass the  $\Delta \phi_N(j,MET)$  selection

$$(N_{pass})^{high\ MET} = (N_{pass}/N_{fail})^{low\ MET} \{ (N_{fail})^{high\ MET} - N_{contamination} \}$$
 contamination taken from MC

We make this estimate in 2 different "high MET" regions:

- →150<MET<200 GeV (used in ttbar estimate)
- →Signal Region





#### MET+b: $Z \rightarrow vv$ method

- Use  $Z\rightarrow II$ ,  $I=e,\mu$  control samples
  - □ Treat the event as though you didn't see the leptons and you have a pseudo Z→vv event
  - Correct for:
    - Branching ratio  $Z \rightarrow vv / Z \rightarrow II = 5.95$
    - efficiency to detect the leptons  $\epsilon$

$$\epsilon = \mathcal{A} \cdot \epsilon_{\ell \, \text{reco}}^2 \cdot \epsilon_{\text{trig}} \cdot \epsilon_{\ell \, \text{sel}}^2$$

#### Efficiency factors for the leptons

Acceptance A: sufficient  $p_T$ , in  $|\eta|$  range (MC)

 $\epsilon_{l,reco}$ : reconstruction eff for leptons in the acceptance (from CMS e/ $\gamma$  group)

 $\varepsilon_{trig}$ : trigger efficiency for dilepton control samples (orthogonal trigger in data)

 $\epsilon_{l,sel}$ : efficiency for various quality criteria added for our analysis (tag and probe in data)

#### MET+b: $Z \rightarrow vv$ details

- Must determine the purity of the Z→II samples
  - done by fitting a Z mass peak to samples obtained with somewhat looser selection criteria
- Dilepton control samples usually have no events after the nominal MET, HT selections
  - Do estimates for looser selections, extrapolate using MC
    - MC seems to be reliable
    - Cross-check this procedure several ways, including a method that loosens the btagging instead of the kinematic selections
      - measure (loose b tag)/(nominal b tag) in a data control sample



#### MET+b:

### Main systematics on backgrounds

- QCD
  - closure in MC
    - often driven by high-weight events in MC
    - closure was done in several ways, including a test with the MC reweighted based on the jet multiplicity distribution in data
- ttbar
  - QCD subtraction
  - closure in MC
- $Z \rightarrow vv$ 
  - MC-based scaling to HT, MET tails

### Results in 1.1 fb<sup>-1</sup> of data

Observed events consistent with SM background predictions

|                            | <u>"&gt;=2b Loose"</u><br>HT>350 GeV | <u>"&gt;=1b Tight"</u><br>HT>500 GeV | <u>MT2+b</u><br>HT>650 GeV |
|----------------------------|--------------------------------------|--------------------------------------|----------------------------|
|                            | MET>200 GeV                          | MET>300 GeV                          | MT2>150 GeV                |
|                            | ≥ 2 b                                | ≥ 1 b                                | ≥ 1 b                      |
| QCD                        | $0.0 \pm 0.4^{+5.8}_{-0.0}$          | $0.2 \pm 0.2^{+0.5}_{-0.2}$          |                            |
| top and W+jets             | $24\pm7\pm5$                         | $13 \pm 5 \pm 4$                     |                            |
| top and W+jets cross-chec  | k —                                  | $17.0 \pm 5.7 \pm 2.1$               |                            |
| $Z \to \nu \overline{\nu}$ | $2.6 \pm 2.9 \pm 2.0$                | $5.0 \pm 1.6 \pm 2.0$                |                            |
| Total SM                   | $25.8 \pm 7.4^{+7.8}_{-5.2}$         | $18.2 \pm 5.3 \pm 4.5$               | $10.6 \pm 1.9 \pm 4.8$     |
| Data                       | 30                                   | 20                                   | 19                         |
| SM MC prediction           | $35.7 \pm 1.3$                       | 25.1 ± 1.6                           | 15.0                       |
| LM9 signal                 | $60.0 \pm 2.5$                       | $27.7 \pm 2.2$                       | 42.9                       |

LM9 is eliminated by both analyses

### Signal efficiency systematics

MET+b values shown; MT2+b results similar

Table 17: Systematic uncertainties, in percent, on the efficiency of the LM9 signal. The "Other" category includes the trigger efficiency, the lepton veto, and the anomalous  $E_{\rm T}^{\rm miss}$  terms.

|                               | Loose search region |            | Tight search region |       |
|-------------------------------|---------------------|------------|---------------------|-------|
| Source                        | ≥ 1 b               | $\geq$ 2 b | $\geq 1 b$          | ≥ 2 b |
| Jet energy scale              | 7.7                 | 8.6        | 12.1                | 13.7  |
| Jet energy resolution         | 0.1                 | 0.3        | 3.0                 | 4.2   |
| Unclustered energy            | 2.0                 | 1.6        | 5.7                 | 7.5   |
| Pileup                        | 3.4                 | 3.1        | 4.3                 | 4.2   |
| b-tagging efficiency          | 6.5                 | 15.8       | 7.1                 | 17.2  |
| Parton distribution functions | 11.1                | 11.2       | 11.8                | 12.1  |
| Other                         | 3.5                 | 3.5        | 3.5                 | 3.5   |
| Luminosity                    | 4.5                 | 4.5        | 4.5                 | 4.5   |
| Total uncertainty             | 16.5                | 22.2       | 20.7                | 27.5  |

→JES, unclustered energy, b-tag eff, PDF are evaluated point-by-point across the CMSSM and simplified model planes

→Other uncertainties are fixed to LM9 values.

J. Thompson, Cornell 25 Oct 2011

# Likelihood treatment (for limits)

- Combine background estimates into a RooStats framework that incorporates uncertainties and SUSY contamination
  - Event counts in data get Poisson uncertainties
    - 12 numbers total (11 control regions + signal box)
    - Note that the 5 of the control boxes can be "contaminated" by SUSY and this is treated in a consistent way in the likelihood
  - Other parameters get log normal uncertainties
  - 95% CL upper limits are evaluated using CLs tools built into RooStats

#### Data observables



#### Other Parameters

- systematics on the background estimation methods
  - e.g. closure test results,
    Z→vv efficiency factors, ...
- statistical and systematic uncertainty on signal efficiency

#### Interpretation in the CMSSM





Note: ≥ 1b "Tight" selection gives best expected limit everywhere in CMSSM, so we focus on that result

Note: MT2+b is  $tan\beta=10$  while MET+b is  $tan\beta=40$   $\rightarrow$  ignoring this difference, limits are similar

#### More on MT2+b results in CMSSM



→a key advantage of b-tagged SUSY searches is that they can have looser kinematic selections while maintaining low levels of background

### Interpretation in Simplified Models

- Hard to generalize results in full models like CMSSM
  - Instead look at a simplified model, which is easier for a theorist to use when building new models
  - □ In our case: g~g~ → bbX~ bbX~
    - Exclusive production and decay
  - Set an upper limit on the cross section as function of mg~, mX~

(Also get excluded region based on NLO cross section)



→Similar sensitivity; MET+b does better in regions closer to the diagonal

### Interpretation in Simplified Models

 Note: Region very near the diagonal is very sensitive to initial state radiation (ISR).

At the moment we do not consider a systematic uncertainty due to ISR in these analyses, so we do not show results in this region.



→Similar sensitivity; MET+b does better in regions closer to the diagonal

#### Note on kinematics and selections

- Simplified models have widely varying kinematics by construction
  - Heavy gluino, light LSP gives high p<sub>T</sub> daughters → hard jets and lots of MET
  - Nearly degenerate gluino, LSP → soft jets and little MET
    - Challenging! Favors looser selections
- In MET+b, choose to show the limit at each point as determined by the best expected limit
  - "expected" limit is derived from data-driven background estimates, but without using the observed data counts in the signal region
  - The limit you would expect if your observed data exactly matched your background estimate

#### MET+b: which selection is best



#### Conclusion

- CMS has two b-tagged SUSY searches with 1.1 fb<sup>-1</sup> of data
  - Expect publications with the full 2011 dataset
- Observed data consistent with background
  - Limits placed in CMSSM, 4b simplified model
    - Watch for more simplified models in the future
      - Limits on stop mass are particularly interesting...
- Further information
  - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
    - MT2+b: CMS PAS SUS-11-005
      - http://cms-physics.web.cern.ch/cms-physics/public/SUS-11-005-pas.pdf
    - MET+b: CMS PAS SUS-11-006
      - http://cms-physics.web.cern.ch/cms-physics/public/SUS-11-006-pas.pdf

#### Highest HT event in MET+b signal region

J. Thompson, Cornell 25 Oct 2011

jet pt: 114.5 GeV



CMS Experiment at LHC, CERN

Data recorded: Sun May 29 08:04:05 2011 EDT

Run/Event: 166033 / 716123203

Lumi section: 511

Orbit/Crossing: 133857450 / 515

jet pt: 63.5 GeV

b-jet

jet pt: 126.9 GeV

jet pt: 188.5 GeV

jet pt: 55.8 GeV

PF MET: 387.9 GeV

jet pt: 56.1 GeV

b-jet

jet pt: 92.9 GeV

jet pt: 607.5 GeV

J. Thompson, Cornell 25 Oct 2011

# Extra slides

#### Particle flow reconstruction

 CMS makes heavy use of "particle flow" reconstruction, which combines information from the tracker, calorimeters, and muon systems to reconstruct jets, leptons, MET, etc



#### What is the CMSSM?

- SUSY, even in its "Minimal" MSSM variant, is rather unwieldy
  - Constrained Minimal Supersymmetric Standard Model (CMSSM) is a minimal supergravity (mSUGRA)-inspired model of soft supersymmetry breaking
    - Only 5 parameters!
      - m<sub>0</sub>: scalar mass
      - m<sub>1/2</sub>: universal gaugino mass
      - A<sub>0</sub>: trilinear coupling
      - tan β: ratio of Higgs VEVs
      - sign(μ): sign of the Higgs mixing parameter
    - "It is a matter of some controversy whether the assumptions going into this parameterization are well-motivated on purely theoretical grounds, but from a phenomenological perspective they are clearly very nice." - S.Martin [hep-ph/9709356v6]
      - In practice, even a 2d parameter space is tough to simulate!

#### MET+b analysis

### Cross-check of ttbar+W+t with $\Delta\theta_T$

- For W $\rightarrow$ e, $\mu$ , $\tau$  ( $\tau \rightarrow$ e, $\mu$ ) decays
  - Angular distribution of lepton w.r.t. W,  $\Delta\theta_T$ , depends on W polarization, which is well understood
    - $\Delta\theta_T$  low  $\rightarrow$  lepton is boosted forward, neutrino goes backward $\rightarrow$ lower MET
    - $\Delta\theta_T$  high  $\rightarrow$  lepton softer and neutrino boosted forward  $\rightarrow$  higher MET
- For W $\rightarrow \tau$  ( $\tau \rightarrow$  had) decays
  - Single muon control sample from  $\mu + H_T$  trigger
  - Transform muon into a  $\tau$  jet using a response template taken from MC
- For dileptonic decays
  - Dilepton control sample, scaled by an efficiency ratio taken from MC



J. Thompson, Cornell 25 Oct 2011

*MET+b* analysis

#### ttbar+W+t cross-check:

## Method for decays with e or $\mu$

- Start with single lepton control sample
- Rescale the MET distributions of the SL sample in bins of  $\Delta\theta_T$  using scale factors from MC
- Predicts both the shape and normalization of signal sample MET distribution



*MET+b* analysis

#### ttbar+W+t cross-check:

### MET spectrum predictions

>=1b, Tight (HT>500 GeV) selection



 $\Delta\theta_T$  prediction compared to MC shape



τ→had prediction compared to MC shape



Overall prediction compared to data NB: sizable QCD contribution in lowest bin

Note: cross-check done only for Tight selection because trigger requirements preclude doing Loose selection

J. Thompson, Cornell 25 Oct 201

### Comparison with ATLAS



(Keep in mind that CMS uses slightly more luminosity)

### Interpretation in CMSSM

Observed limits for all four selections



95% CL exclusion using CLs

### MET+b: QCD systematics

#### <u>MC</u>:

vary MC-based subtraction by +/-50%

[this number comes from the >=2 b Tight case. Use it for all cases to be conservative] Closure:

1-N<sub>true</sub>/N<sub>predicted</sub> [in quadrature with its stat error] (use worse of raw MC and jet multiplicity-reweighted MC) LSB range:

vary LSB range by +/-10 GeV and take the larger observed shift  $\rightarrow$  factor of >2 change in statistics with each shift

#### Systematic uncertainties in %

| Selection              | MC | Closure | LSB range | Total |
|------------------------|----|---------|-----------|-------|
| ≥ 1 b, Loose, SB       | 10 | 28      | 2         | 30    |
| ≥ 1 b, Loose, SIG      | 29 | 102     | 2         | 106   |
| $\geq$ 1 b, Tight, SB  | 8  | 71      | 10        | 72    |
| $\geq$ 1 b, Tight, SIG | 73 | 213     | 10        | 225   |
| ≥ 2 b,Loose, SB        | 21 | 69      | 2         | 72    |
| ≥ 2 b,Loose, SIG       | *  | 1156    | *         | *     |
| ≥ 2 b,Tight, SB        | 19 | 199     | 10        | 200   |
| ≥ 2 b,Tight, SIG       | 34 | 370     | 10        | 371   |

NB on >=2, Loose, SIG: Large systematic stems from large stat error on  $N_{true}$  in MC \* reflects the fact that the nominal value is 0, so a % change is ill-defined.

### MET+b: $Z \rightarrow vv$ systematics

- Background subtraction:
  - From the stat uncertainty in the fits to the Z peak
- MC closure:
  - Full lack of closure taken as a systematic
- MC extrapolation:
  - 50% for MC scale factor >0.1; 100% for MC scale factor <0.1</li>
    - These numbers are justified by the spread seen in the cross-checks

Table 7: Systematic uncertainties for the  $Z \rightarrow \nu \overline{\nu}$  background estimate.

|                                           | size (%)                       |                        |  |
|-------------------------------------------|--------------------------------|------------------------|--|
| Contribution                              | $Z \rightarrow \mu^{+}\mu^{-}$ | $Z \rightarrow e^+e^-$ |  |
| Background subtraction                    | 18                             | 20                     |  |
| Acceptance                                | 2                              | 2                      |  |
| Trigger efficiency                        | 3                              | 3                      |  |
| Lepton selection efficiency               | 5                              | 5                      |  |
| MC closure                                | 19                             | 11                     |  |
| MC extrapolation                          | 0 - 100                        | 0 - 100                |  |
| Total without extrapolation               | 27                             | 24                     |  |
| Total with 50% extrapolation uncertainty  | 57                             | 55                     |  |
| Total with 100% extrapolation uncertainty | 104                            | 103                    |  |

# MET+b: ttbar systematic uncertainties

- Closure systematic taken from worse (for each selection independently) of ttbar+W+t closure test and ttbar-only closure test
- Data-driven subtractions varied by their errors
- Small MC-driven subtraction varied by  $\pm$  100%

|                   |                           |     |                            |       | <u>%</u> |  |
|-------------------|---------------------------|-----|----------------------------|-------|----------|--|
|                   | Contamination subtraction |     |                            |       |          |  |
| Selection         | Closure                   | QCD | $Z \to \nu \overline{\nu}$ | Other | Total    |  |
| ≥ 1 b, Loose      | 6                         | 9   | 6                          | 0.4   | 12       |  |
| $\geq$ 1 b, Tight | 17                        | 22  | 7                          | 0.2   | 29       |  |
| $\geq$ 2 b, Loose | 16                        | 8   | 7                          | 0.1   | 19       |  |
| ≥ 2 b, Tight      | 28                        | 30  | 7                          | 0.1   | 42       |  |