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It’s a good time to discover new physics! Where will we find it?

Tevatron LHC

For the purposes of this talk, the new physics to find (or exclude)
is SUSY.

The Tevatron and LHC are still complementary probes of SUSY.
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Intro:
Simplified Models

of Gauge Mediation



GMSB

How is SUSY breaking mediated to the SM?

Precision flavor tests suggest that SUSY breaking respects flavor.

Hidden Sector

mSUSY/ =
√

F

gSM
MSSM

Gauge mediation has the virtues:

1 flavor blind

2 calculable
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Gravitino and collider pheno

Gauge mediation predicts a light gravitino.

m3/2 =
〈F 〉√
3Mp

where
√
〈F 〉 ∼ 104 to 1011 GeV.

The NLSP decays to the gravitino and its superpartner.

ΓNLSP =
m5

NLSP

16πF 2
= (0.1 mm)−1 ×

( mNLSP

100 GeV

)5
(

100 TeV√
F

)4

The identity of the NLSP and its lifetime define the collider
physics.
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MGM

The SUSY spectrum depends on the model.

All experimental searches (pre-2011) have focused on one model:

Minimal Gauge Mediation (Dine, Nelson, Nir, Shirman,...)

W = X φi φ̄i

φi and φ̄i are messengers charged under the SM.

X is a SUSY breaking spurion with VEV: 〈X 〉+ θ2
√

F

At tree-level, φi and φ̄i experience SUSY breaking



MGM

In MGM the spectrum pretty much always looks like,
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NLSP is a bino or right-handed slepton.

heavy colored states

gaugino unification relations, M1 : M2 : M3 ' 1 : 2 : 6.



Beyond MGM

But there are many different realizations of gauge mediation.

The general features are:

flavor symmetric boundary condition

small A-terms

M1, M2, M3 are unconstrained

mQ , mU , mD , mL, mE are subject to sum rules

Tr Y m2 = m2
Q − 2m2

U + m2
D −m2

L + m2
E = 0

Tr (B − L) m2 = 2m2
Q −m2

U −m2
D − 2m2

L + m2
E = 0

Any sparticle can be the NLSP!

These features have been familiar to model builders.

And were recently proved for a wide-class of models, General
Gauge Mediation, (Meade, Seiberg, Shih) where the hidden sector
and SM decouple when gSM → 0.
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NLSP Zoology

The possible NLSPs and signals in MGM are:

NLSP Prompt Displaced

slepton e,µ,τ
displaced vertices,

kinked tracks, CHAMPS, ...

neutralino/
γ,Z ,W ,h

non-pointing photons,
displaced leptons...

The above signals include 6ET carried by the gravitinos.
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kinked tracks, CHAMPS, ...
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non-pointing photons,
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NLSP Zoology

Some recent/ongoing model-independent studies:

NLSP Prompt Displaced

slepton JTR & Shih

neutralino/ Meade, Reece, Shih
Meade, Reece, Shih

chargino JTR, Shih

squark
gluino

sneutrino Katz, Tweedie

This signature space was also surveyed by the SUSY working
group before run II of the Tevatron.



Our Goals

As theorists in the pre-discovery era, we have the goals:

1 identify minimal inclusive signatures for discovery
naturally characterized by NLSP type and lifetime

2 cover full space of gauge mediation, model-independently

3 identify simple parameter spaces (≤ 2d) for experimentalists

4 determine current limits and future Tevatron/LHC reach



Simplified Models

For a given signal we recommend,

choose spectra with as few light particles as possible, and
decouple everything else (melse & TeV).

specify soft parameters at the weak scale, instead of using
parameters of a UV theory

these are simplified models, see also,

Dube, Glatzer, Somalwar, Sood, Thomas
Alwall, Schuster, Toro
Alves, Alwall, Izaguirre, Le, Lisanti, Manhart, Wacker
http://www.lhcnewphysics.org/

Caveat: This approach neglects naturalness, RG evolution of soft
parameters, UV completion, ...

It will be important to address these issues post-discovery.



Slepton NLSPs



Slepton co-NLSPs

Slepton co-NLSP

Slepton co-NLSP corresponds to δm = mẽR
−mτ̃1 . 10 GeV.

Every event has at least two e, µ, or τ , plus MET.

Stau NLSP

ẽR, µ̃R

τ̃1

G̃

M
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LEP limit

LEP looked systematically for
slepton NLSPs.

γ∗/Z∗e−

e+

µ̃−

µ̃+

Some preliminary (2002) results courtesy of the LEP2 SUSY
working group:
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The prompt limit is mẽ,µ̃ > 96 GeV and mτ̃ > 87 GeV.



Sleptons at Tevatron and LHC

Opposite-sign dilepton plus MET is a less promising channel
at the Tevatron and LHC because of large backgrounds from
tt̄ and dibosons (WW , ...).

Stronger limits can be placed on the production of heavier
states that decay to the sleptons, producing extra leptons
along the way,

1 Electroweak production (W̃ , H̃, l̃L) → multileptons + MET
Tevatron has advantage for now

2 Colored production (g̃ , q̃) → multileptons + jets + MET
The LHC already has discovery reach

We will now consider l̃L and g̃ production as examples.
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Electroweak: Wino Production

Wino production, pp̄ → W̃ 0W̃±

W̃±
ντ

τ̃±1

H̃±

W̃ 0

l±, τ±

l̃∓R, τ̃∓1

B̃, H̃0
i

The signal is trileptons plus MET with 1 or 3 tau.

Parameters: mW̃ , ml̃R
, Br(W̃ 0 → τ̃1)
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Tevatron Lepton Searches

Tevatron searched for multileptons in the channels,

1 same-sign dilepton, l±l±

CDF 1 fb−1

2 trileptons, lll

CDF 3.2 fb−1

The backgrounds are small:

leptonic decays of dibosons, ZW ,ZZ

Drell-Yan or tt̄ plus an untagged conversion or fake lepton



Simulating the searches

No Tevatron searches have explicitly set limits on slepton NLSP.

So we estimate limits by simulating the searches ourselves.

Our procedure:

1 Pythia 6 for event generation
↓

2 tuned PGS4 for crude detector sim
↓

3 private Mathematica code for event analysis
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Tevatron Limits
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Colored Production of Slepton NLSPs
For the early LHC lets consider colored production.

The signal is: 4l + jets + MET

Parameters: mg̃ , mB̃ , ml̃R
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Tevatron Limit and Early LHC Reach
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Excess in Same-Sign?

The 1 fb−1 CDF same-sign search saw a mild (∼ 2σ) excess of
events at high MET and high leading lepton pT ,
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Could this excess have been produced by slepton co-NLSPs
consistently with the latest trilepton limit (3.2 fb−1)?

Number of Events (1 fb−1)
channel MET > 80 GeV p1

T > 90 GeV

wino 1.8 0.9
sleptonL + bino 3.9 2.9

gluino 5.6 6.8
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channel MET > 80 GeV p1

T > 90 GeV

wino 1.8 0.9
sleptonL + bino 3.9 2.9

gluino 5.6 6.8
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Neutralino NLSPs

In the MSSM, the bino, winos, and Higgsinos mix, giving 4 neutral
and 2 charged mass eigenstates,

(Ñ1, Ñ2, Ñ3, Ñ4) and (C̃1, C̃2)

General neutralino NLSPs have three possible decays,

Ñ1 → (γ,Z , h) + G̃

with branching ratios that depend on the neutralino mixing angles.

For this talk I’m going to specialize to gauge eigenstates and
consider,

1 bino NLSP

2 wino NLSP

3 higgsino NLSP



bino-like



Bino NLSP

The bino decays to a γ or Z and gravitino,

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

MB
�

B
.R

.

Bino Branching Ratios

Γ

Cos2
ΘW

ZSin2
ΘW

B̃

γ, Z

G̃

Γ(B̃ → γ + G̃ ) = cos2 θW

(
m5

B̃

16πF 2

)

Γ(B̃ → Z + G̃ ) = sin2 θW

(
1− m2

Z

m2
B̃

)4(
m5

B̃

16πF 2

)



Colored Production of Binos

Colored production of binos is a promising scenario for discovery at
the early LHC,
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Tevatron Limit and LHC Search

Tevatron:

LHC:

The strongest limit is by D0 with
6.3 fb −1 (1008.2133).

Nγ ≥ 2
pγT > 25 GeV, |ηγ | < 1.1

6ET > 75 GeV

Ndata=1
σback = 0.3 fb

We will use the example LHC cuts:

Nγ ≥ 2
pγT > 50 GeV, |ηγ | < 1.5

6ET > 100 GeV

The background is dominated by
QCD, which is hard to simulate.

Instead I’ll consider the range
σback = 1− 10 fb.
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Wino co-NLSPs

The neutral wino decays to a Z or γ and gravitino,
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Colored Production of Winos

Colored production of winos can also lead to an easy early
discovery,
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There’s also a contribution from direct wino production,
pp → W̃ 0W̃±.
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Tevatron Limits and LHC Reach

Tevatron:

LHC:

1 γγ from above

2 D0 jets + 6ET, 2.1 fb−1

2,3,4 jet channels requiring
6ET > 100, 175, 225 GeV

3 CDF l + γ search, 0.93 fb−1

increase 6ET cut from 25 to 50
GeV

1 γγ from above

2 l + γ + 6ET

pl
T > 25 GeV and pγT > 80 GeV

6ET > 100 GeV
mT > 100 GeV
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Tevatron Limit and LHC Search

150 200 250 300 350 400 450 500100

200

300

400

500

Mwino �GeV�

M
gl

ui
no
�G

eV
�

Tevatron Limits

ΓΓ �MET
jets �MET

lΓ �MET

200 400 600 800 1000

200

400

600

800

1000

Mwino �GeV�

M
gl

ui
no
�G

eV
�

LHC Reach

TeV

ΓΓ �MET

CMS ΑT

lΓ �MET

35 pb�1

1 fb�1

We used Madgraph to simulate the lγ backgrounds:
W γ, tt̄γ, tt̄ (+ fake e → γ).

Their sum is about σ ∼ 1.4 fb.
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CMS l + γ search

The Rutgers CMS group has searched in the l + γ channel,
motivated by GMSB with wino co-NLSPs.
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MET and αT

The CMS search requires,

αT =
E j2
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Roughly speaking, this amounts to requiring 6ET & 250 GeV.
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In our parameter spaces, this favors heavier winos.

The best sensitivity is for mW̃ ∼ mg̃ , where the jets come entirely
from Z and W .
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Higgsino NLSP

The lightest neutral Higgsino,
H̃1, decays to a Z or h. H̃1

Z, h

G̃

The branching fraction depends on tanβ and sign(µ).

I will highlight a few interesting regimes:

1 Z -rich, tanβ ∼ 2, µ > 0

2 h-rich, tanβ ∼ 2, µ < 0

3 Z/h-mixed, moderate tanβ ∼ 20

Similarly to above, we consider a simplified model with just a
gluino and a Higgsino.



Tevatron Limit and LHC Reach

Tevatron:

LHC:

1 CDF search with 3 fb−1 for
(Z → e+e−) + (W → jj) + 6ET,

2 D0 jets + 6ET, 2.1 fb−1

Z → l+l− + 6ET

pli
T > 20 GeV

mll ∈ (85, 95) GeV
HT > 100 GeV
6ET > 100 GeV

(Z → l+l−)2 + 6ET

CMS αT
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tt̄, σ ∼ 20 fb

dibosons, σ ∼ 7 fb.
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Other Higgsino Varieties

Final states with b-jets are interesting for higgsinos that decay into
higgses,
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It’s possible that the higgs could be discovered, first, in SUSY
cascades!



Higgsino-Bino Admixture

Another interesting possibility is if the NLSP is a higgsino-bino
mixture.

Can be constrained using the final state, γ + 2b + 6ET,
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Take Away Points

Gauge mediation is a promising scenario with distinctive
collider pheno at the Tevatron and LHC

MGM is the mSUGRA of Gauge Mediation
(i.e. there’s a much bigger space of interesting possibilities!)

We suggest using simplified models by choosing parameters at
the weak scale and using spectra with as few light particles as
possible

Tevatron still wins for EW production, and there remains
significant reach for discovery in multilepton channels.

The LHC has covered new ground for colored production, and
will soon cover a lot more!



Backup Slides



Cross-Sections
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Kinematics
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Other Bino Spaces
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CMS Wino Exclusion
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Simplest simplified model

The simplest possibility is a model with only the NLSP
(and gravitino).

For example gluino NLSP,
parameterized by mg̃ and Γg̃ .

Mg̃

Γg̃

g̃

g̃

g

g

G̃

G̃

Depending on the lifetime, the
signal is prompt dijet+MET or
R-hadron production.



A little less-simple simplified models

Sometimes it’s interesting to consider production of a state heavier
than the NLSP,

for a large enough cross-section,
or because particles produced in a

cascade are necessary for discovery,

B̃

g̃ or W̃M

G̃

g̃ or W̃M

l̃L

ν̃

l±

G̃

We’ve gotten a lot of milage in signature space by considering
models with only 1 or 2 light sparticles!
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The Tevatron Searches

Same-sign dileptons were searched for by CDF with 1 fb−1.

the lepton cuts:
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The cuts are inclusive, and pretty soft, but CDF shows the MET
distribution of data and background.

So its easy to infer the limit with a harder MET cut, 6ET > 60 GeV.



Trilepton Search Details
Trileptons were searched for by CDF with 3.2 fb−1.

The lepton cuts:
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2
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T > 15, 5, 5 GeV
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t
T > 15, 5, 10 GeV

|η| . 1
6ET > 20 GeV

CDF optimized for an mSUGRA signal with exactly 3 leptons by
including a number of non-inclusive vetoes,

veto ΣlQ = ±3

jet veto
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The result is a low efficiency for GMSB-type signals.

It would have been better to relax the vetoes and take advantage
of the harder pT and MET spectra of GMSB.
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Electroweak: take II

MGM-like spectrum: left-handed slepton production

Up to six leptons per event.

Parameters: ml̃L
, mB̃ , ml̃R
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Electroweak: take II

MGM-like spectrum: left-handed slepton production

Up to six leptons per event.

Parameters: ml̃L
, mB̃ , ml̃R
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Tevatron Limits
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Here we fix,

Br(W̃ 0 → τ̃1) = 1/3 mB̃ = 1
2(ml̃L

+ ml̃R
)
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