MET Cone and Mass Measurement @ LHC

Jing Shao Syracuse University

Base on the work with Jay Hubisz arxiv: 1009.1148

UC Davis LHC Lunch Dec 8 2010

Plan

- Warm-up for Mass Measurement with Missing Energy
- Boosted Decay Chain and Collinearity
- - Definition, analytic solution and endpoints
 - Numerical results
- Test consistency
- ☆ Conclusion

Missing Energy Event

Missing energy event is not unusualneutrino in SM

e.g.
$$W
ightarrow e
u$$

- ★ We are interested in the missing energy from new physics
- □ Dark matter motivation : exist (meta)stable exotic particle
- New symmetry to protect it from decay
- Z2 parity --> pair production of stable exotics at LHC
- SUSY, UED ...

Mass Reconstruction is Important

- Crucial for understanding the underlying physics
 - distinguish different physical models
- ☆ The dark matter connection:
 - the mass of the missing particle determines the relic density

$$\Omega_{\chi}h^2 \propto rac{1}{\langle \sigma v \rangle} \sim rac{m_{\chi}^2}{lpha^2}.$$

Comparison with direct detection and indirect detection

Determine the Dark Matter Mass

Challenging at the LHC

- Two missing particles in each event
- Unknown parton frame leads to less constrained kinematics
- Interpretation of the signal as a particular physics process maybe complicated -- different underlying topologies or a mixture of them

Kinematic Approaches

Demand that at least some particles are sufficiently close to their mass shells that their energy-momentum Lorentz invariant can be used to constrain their masses

Advantage: do not need to know many details of the underlying physical model (gauge group, spin etc)

see a recent review:
Barr and Lester, arXiv:1004.2732

Three main categories:

- Invariant Mass endpoint
- MT2 variable and Kink; variations: subsystem MT2, Mct,
- Polynomial method/Mass relation method

Bachacou, Hinchliffe and Paige Lester and Summers

W.S. Cho, K.Choi, Y.G.Kim, C.B.Park K.Kong, K. Matchev, M.Park

Kawagoe, Nojiri and Polesello Cheng, Gunion, Han & McElrath

.....

General Picture

- Mapping from mass space to observable space

- Consistent regions f(m)
- Boundary of f(m) --> constrain masses

Han, cheng JHEP 0812 (2008) 063

Choose the right observable is important !!

Examples:

- Invariant Mass Endpoint

$$m_{ll} \le \sqrt{(M_Z^2 - M_Y^2)(M_Y^2 - M_X^2)}/M_Y$$

- MT2 Endpoint

$$m_{T2}^{\mathrm{max}}(M_Y,M_X)$$

- They alone can't determine the masses in events with missing energy
- Combine several such observables, or looking for extra structure such as "kinks"

General Picture

- Alternative view: Inverse map from observable space to mass space

Consistent mass regions g(p)

- Han, cheng JHEP 0812 (2008) 063
- For an event sample E, the intersection of g(pi) ideally shrink to a point, but not always.

Polynomial method or Mass relation method

Using On-shell conditions event-by-event

constraints
$$\geq$$
 unknowns $10n$. $4 + 8n$

☆ For n>2, over-constrained system

Kawagoe, Nojiri & Polesello; Cheng, Gunion, Han & McElrath

Require long decay chains -- at least four on-shell particles in each chain

Having multiple methods is crucial

Any new ideas?

Boosted decay is generic

In many new physics models: there are both heavy(~TeV) exotics as well as light(~100GeV) ones.

SUSY little hierarchy

- SUSY example: squark --> q + NLSP -- > q + Z + LSP
- Can we get additional handle if missing particle is approximately collinear with visible particles?

Transverse Plane

New coordinate

Transverse Plane

New coordinate

Transverse Plane

3D View

3D View

MET-cone method

- Based on simple observations:
 - Missing momentum only allowed to vary a narrow region around visible momentum -- "MET-cone"
 - MET-cone boundary is sensitive to the underlying masses
 - This kinematic boundary depends on the visible momenta, need event-by-event analysis
- Different from other methods, we consider the missing transverse momentum as our observables for mass measurement

Collinearity of the decay

Parametrize the opening angle in the lab frame

Narrow range of variation $\beta_0^X < \beta$

$$eta, \gamma$$

 $\beta, \gamma \qquad \text{Velocity \& boost factor of NLSP}$

$$eta_0, \gamma_0$$
 Velocity & boost factor in the rest frame of NLSP

$$0 \le \tan \theta_{\chi_2 X} \le \frac{\beta_0^X}{\gamma \beta} \frac{1}{\sqrt{1 - (\beta_0^X/\beta)^2}} \xrightarrow{\gamma \gg 1} \frac{\beta_0^X}{\gamma} \frac{1}{\sqrt{1 - (\beta_0^X)^2}}.$$

- Two ways to have collinear decay
 - Large boost factor $\gamma \gg 1$
 - Moderate boost factor; decay products are non-relativistic in the rest frame of the decay $\beta_0 \ll 1$

Collinearity of the decay

For a given underlying physics, both boost factor and vary θ_0 according to the matrix element

$$\tilde{q}_L \to \chi_2 q \to \chi_1 Z q$$

Boost factor decrease with increased number of steps in the cascade

Correlation in the magnitude

Boost factors are correlated

$$p_{\chi_1} = \gamma_{\chi_1} \beta_{\chi_1} m_{\chi_1} \qquad \gamma_{\chi_1} = \gamma \gamma_0^{\chi_1} (1 + \beta \beta_0^{\chi_1} \cos \theta)$$

$$p_X = \gamma_X \beta_X m_X. \qquad \gamma_X = \gamma \gamma_0^X (1 - \beta \beta_0^X \cos \theta)$$

$$\gamma_0^{\chi_1} = \frac{m_{\chi_2}^2 + m_{\chi_1}^2 - m_X^2}{2m_{\chi_2}m_{\chi_1}}$$

$$\beta_0^{\chi_1} = \frac{\sqrt{(m_{\chi_2}^2 - (m_{\chi_1} + m_X)^2)(m_{\chi_2}^2 - (m_{\chi_1} - m_X)^2)}}{m_{\chi_2}^2 + (m_{\chi_1}^2 - m_X^2)}$$

- \Rightarrow In the limit $\beta_0 \ll 1$, two boost factors equal
- $\,\,\,$ the ratio mainly depend on θ_0 , mildly dependence on the boost factor γ

Finding MET-Cone boundary

★ For a given visible particle configuration, what is the allowed region of MET?

Given
$$\gamma_a^X, \gamma_b^X, \theta_{ab}^X$$
 $\theta_{\text{beam}}, \phi_{\text{beam}}$ $m_{\chi_1}, m_{\chi_2}, m_X$

No need to know the boost factor of NLSP!

Parameterize MET by the rest frame angles

$$\theta_{a,0}, \theta_{b,0}, \phi_{a,0}, \phi_{b,0}$$

- No analytic formula for the boundary. Need sampling the phase space
- A simple example:

$$\chi_2 \rightarrow \chi_1 Z$$
 $m_{\chi_2} = 200 \text{ GeV}, m_{\chi_1} = 100 \text{ GeV}.$
 $\gamma_{a,b}^X = 5 \quad \theta_{ab}^X = \pi/2 \quad \theta_{\text{beam}} = 0$

MET-Cone: mass dependence

MET cone boundary sensitive to the exotic masses

Shift $\,m_{\chi_2}$ uniformly from 220 to 300 GeV

$$\gamma_a^Z = \gamma_b^Z = 3.0$$
 Z_a
 Z_b
 90
 $(m_{\chi_2}, m_{\chi_1}, m_Z)$
= (220-300, 100, 91)

MET-Cone: mass dependence

MET cone boundary sensitive to the exotic masses

Shift m_{χ_2} uniformly from 220 to 300 GeV, but keep $m_{\chi_2}-m_{\chi_1}$ fixed

$$\gamma_a^Z = \gamma_b^Z = 3.0$$
 Z_a
 Z_b
 90
 $(m_{\chi_2}, m_{\chi_1}, m_Z)$
= (220-300, 120-200, 91)

Reconstructed MET-cone boundary from random events -- Assume correct mass

MET must be inside if the correct masses were used

MET-cone: application for mass measurement

For a set of events and trial masses, the MET-cone boundary can be determined by the Z momenta event-by-event.

The correct masses are those that lead to the smallest MET-cone that enclose all the MET points

$$d_{\min} \to 0$$

More systematically, compare the statistical likelihood of a MET data under different mass hypotheses.

Detailed numerical evaluation of this method is under investigation.

Quick Summary

- MET-cone method is different from other methods; only need information of the visible particles in the final-step decay and MET
- Although motivated from boosted decay chain, the general idea of the method doesn't require boost.
- It should work best in the boosted case

Quick Summary

- MET-cone method is different from other methods; only need information of the visible particles in the final-step decay and MET
- Although motivated from boosted decay chain, the general idea of the method doesn't require boost.
- It should work best in the boosted case

Is there a simple way to access the power of MET-cone?

Quick Summary

- MET-cone method is different from other methods; only need information of the visible particles in the final-step decay and MET
- Although motivated from boosted decay chain, the general idea of the method doesn't require boost.
- It should work best in the boosted case

Is there a simple way to access the power of MET-cone?

Yes, We can construct a variable independent of the X momenta, and has lower and upper endpoints.

A 1D projection of the MET-cone

- Focus on events where MET is in narrow window around y-axis (i.e. the direction of the total X p_T)
- Expect two boundaries, but vary event by event
- \Rightarrow Finite variation in the ratio between total X p_T and total missing p_T
- Rescale x & y coordinates:

3000

A 1D projection of the MET-cone

Focus on events where MET is in narrow window around y-axis (i.e. the direction of the total X p_T)

3000

2500

150

- Expect two boundaries, but vary event by event
- Finite variation in the ratio between total X pt and total missing pt
- Rescale x & y coordinates:

A 1D projection of the MET-cone

Rescaled MET-cone

After rescaling, endpoints are fixed for all events!

Analytic solution of Mtest

- lpha Take the limit $|p_{T,x}/E_T| \to 0$, and use the collinear approx.
- Consider a simple case: X's in the transverse plane.

$$m^{\text{test}} \approx m_{\chi_1} \frac{\gamma_0^{\chi_1}}{\gamma_0^X} \frac{1 + \beta \beta_0^{\chi_1} \cos \theta_{a,0}}{1 - \beta \beta_0^X \cos \theta_{a,0}}$$

Ideal shape (assume flat prior for theta)

$$p_{\chi_1} = \gamma_{\chi_1} \beta_{\chi_1} m_{\chi_1}$$

$$p_X = \gamma_X \beta_X m_X.$$

$$\gamma_{\chi_1} = \gamma \gamma_0^{\chi_1} (1 + \beta \beta_0^{\chi_1} \cos \theta)$$

$$\gamma_X = \gamma \gamma_0^X (1 - \beta \beta_0^X \cos \theta)$$

$$\frac{\gamma_{\chi_1}^b \beta_{\chi_1}^b}{\gamma_X^b \beta_X^b} = \frac{\gamma_{\chi_1}^a \beta_{\chi_1}^a}{\gamma_X^a \beta_X^a} \left(1 + \mathcal{O}(\theta_{a,b})\right).$$

Mtest endpoints

 \Rightarrow There are two endpoints, corresponding to $\theta_0 \dashrightarrow$ 0, Pi

$$\chi_{1} \longrightarrow \chi_{1}$$

$$m_{\min}^{\text{test}} = m_{\chi_{1}} \frac{\gamma_{0}^{\chi_{1}}}{\gamma_{0}^{X}} \frac{1 - \beta \beta_{0}^{\chi_{1}}}{1 + \beta \beta_{0}^{X}} \qquad \gamma_{0}^{\chi_{1}} = \frac{m_{\chi_{2}}^{2} + m_{\chi_{1}}^{2} - m_{X}^{2}}{2m_{\chi_{2}}m_{\chi_{1}}}$$

$$m_{\max}^{\text{test}} = m_{\chi_{1}} \frac{\gamma_{0}^{\chi_{1}}}{\gamma_{0}^{X}} \frac{1 + \beta \beta_{0}^{\chi_{1}}}{1 - \beta \beta_{0}^{X}} \qquad \beta_{0}^{\chi_{1}} = \frac{\sqrt{(m_{\chi_{2}}^{2} - (m_{\chi_{1}} + m_{X})^{2})(m_{\chi_{2}}^{2} - (m_{\chi_{1}} - m_{X})^{2})}}{m_{\chi_{2}}^{2} + (m_{\chi_{1}}^{2} - m_{X}^{2})}$$

Punchline: endpoints only depend on the masses
 --> measure these endpoints experimentally can determine these masses

non-collinear effects

Mtest not invariant under boost -- subjet to non-collinear correction

$$m_{\chi_1}^{\text{test}} \approx m_{\chi_1} \frac{\gamma_0^{\chi_1}}{\gamma_0^X} \frac{1 + \beta \beta_0^{\chi_1} \cos \theta_0^a}{1 - \beta \beta_0^X \cos \theta_0^a} \left(1 - \cot \theta_{ab} \cos \phi_a \theta_a + \frac{\cos \phi_b}{\sin \theta_{ab}} \theta_b \right)$$

- endpoints get smeared;
- ightharpoonup prefer small heta , not too small $heta_{ab}^X$

 \cong If X's not in the transverse plane, extra projection needed -- more complicated in the above θ expansion

Quick Summary

- ☆ MET-cone method
- A simple 1D variable mtest for mass measurement
- How well this works in practice?

Monte Carol simulation

□ Generate 20k events for SUSY squark production, using MadGraph 2-->6 matrix element

$$pp \to \tilde{q}_L \tilde{q}_L \to q \, \tilde{\chi}_1 \, Z \, q \, \tilde{\chi}_1 \, Z$$

- Assume Z's are reconstructed using the leptonic decay. The SM backgrounds is negligible for 4 leptons, 2 jets plus MET
- No detector smearing included-- to be included later.

$$p_T^Z > 50 \text{ GeV} \qquad |\eta^Z| < 3$$

$$|\eta^{Z,\text{tot}}| < 1$$
 $\pi/3 < \theta_{a,b}^Z < 2/3\pi$

two Z's opening angle

$$E_T > 200 \text{ GeV} \qquad |p_{T,x}/E_T| < 0.15$$

Mtest distributions

Model 1 : $M_1=100$, $M_2=200$, $M_Q=1$ TeV. Moderate boost with small β_0

Model 2 : $M_1=100$, $M_2=250$, $M_Q=1.25$ Tev. Moderate boost with larger β_0

True endpoints: Model 1 (54.6, 183.2) GeV; Model 2 (21.6, 463) GeV

- □ Use linear fits
 □
 - Lower endpoint -- expected to be sharp edge, we take half-max point to reduce smearing effects
 - Upper endpoint -- less populated, and we take intercept position

Model	M1	M2
1	106	208
2	110	253

Masses are in GeV

The measured mass is not sensitive to the upper end point, e.g. for Model 2:

vary upper end point 400 - 500 GeV

Better variable by taking logarithm

$$\log(m_{\text{test}}) \sim \log(m_{\chi_1}) + (\beta_0^X + \beta_0^{\chi_1}) \cos \theta_0$$

more symmetric distribution --> easier to determined the endpoint

Better variable by taking logarithm

$$\log(m_{\text{test}}) \sim \log(m_{\chi_1}) + (\beta_0^X + \beta_0^{\chi_1}) \cos \theta_0$$

more symmetric distribution --> easier to determined the endpoint

Is it a boosted decay chain?

 $p \mid p_{T,x}/E_T \mid$ distribution peak towards zero

Sharp endpoints in Mtest distribution

Measure upstream exotica masses, check whether it is consistent

Other Channels?

- $\stackrel{\scriptstyle }{\simeq} \chi_2$ can also decay through slepton --> di-lepton
- ☑ Invariant mass is not fixed, but can select events near the upper endpoint.

$$M_{ll}^{\rm max} \sim m_{\chi_2} - m_{\chi_1}$$

Use CM energy Variable

Reconstruct missing particle momenta using collinear approx.

$$\vec{p}_{\chi_{1},a} = k_{a} \vec{p}_{X,a} \qquad a \qquad \qquad \chi_{1}$$

$$\vec{p}_{\chi_{1},b} = k_{b} \vec{p}_{X,b}$$

$$b \qquad \qquad \chi_{1}$$

$$k_{a} = \frac{p_{X,b}^{y} p^{x} - p_{X,b}^{x} p^{y}}{-p_{X,a}^{y} p_{X,b}^{x} + p_{X,a}^{x} p_{X,b}^{y}}$$

$$k_{b} = \frac{-p_{X,a}^{y} p^{x}_{X,b} + p_{X,a}^{x} p^{y}_{X,b}}{-p_{X,a}^{y} p_{X,b}^{y} + p_{X,a}^{y} p_{X,b}^{y}}$$

- Reconstruct CM energy of the collision $s = \left(\sum_{i} p_i\right)^2$
- lower endpoint provide an estimate of the mass of mother particle

$$\hat{s} \ge 4m_Q^2$$

Use CM energy Variable

□ Use the measured LSP mass and cuts

Lower endpoint ~ 960 GeV

- $p_T > 50 \text{ GeV for jet}$
- $|\eta| < 3$ for jet
- missing E_T cut $E_T^{miss} > 100 \text{ GeV}$ $p_Z > 300 \text{ GeV}$

Summary and Outlook

- * LHC may discovery new physics via large E_T , difficult for mass measurement key information for studying cosmic relic dark matter
- * MET-cone and mtest variable are useful tools for mass measurement in boosted events with E_T .
- Further explore the idea of MET-cone and develop a more general method that can apply for less-collinear events.
- More realistic collider study: include detector effects on MET, initial/final-state radiation etal