

Event from last night when beams were circulating in the LHC

Testing Top Topologies

(The T³ strategy)

Testing Top Topologies

(The T³ strategy)

This talk is a" food-for-discussion" presentation. Many of the items can be developed for the Tevatron and the LHC settings. First tests of the principle can be performed at the Tevatron...

The obvious

The LHC is developed to search for new physics phenomena...

The key point

Understanding our machine, our detector, our simulation, our reconstruction, our background, ...

The struggle

To be confident that we belief in the outcome of the goodness-of-fit tests to test the consistency of the Standard Model in the Top Quark sector...

How to characterize the top topology?

- Minimize the set of "T³ variables"
- The kinematics of the events can be projected into few variables
- Develop a criteria to define the "best" minimal set of variables
- Add the "extra multiplicity" variables (eg. # extra jets, # btags, # extra lepton, ...)
- Add differences between decay channels...
- Add differences between top and anti-top (eg. CPT symmetry)
- Apply a basic event selection...

Optimal reconstruct of these T³ variables

- Standard reconstruction techniques aren't always the most optimal strategy to look for new physics phenomena
- To first order we need the highest efficiency and the highest purity in the relevant range of our T³ variables, together with the best resolution
- When testing the Top Topology, how to deal with different reconstruction methods for different variables?
- How to deal with different reconstruction methods for one variable?

Phase 1: simple blind goodness-of-fit test

- First phase in a step-by-step T³ strategy
- Take into account the correlations between the variables (rotation techniques)
- Perform a simple goodness-of-fit (test with pseudo-experiments)
- Take the QCD & Z & W background from control regions (eg. ABCD methods)
- In a next step, take the top expected shape/level from a control region
- Basis for detector understanding relevant in the top quark sector and for Monte-Carlo tuning

Phase 2: rank the events (still general)

- With more detector/simulation understanding
- Rank the events according to general new physics phenomena sensitivity (eg. the kinematic probability to be a ttbar topology via Matrix Elements)
- Perform this transformation with the least possible bias to a BSM model
- Apply goodness-of-fit methods on the cumulative distribution
- Example: new physics to appear at high H_T and high MET, hence rank the events according to the transformation $P = H_T + MET$

Phase 3: model dependent goodness-of-fit

- Take a model and transform the T3 space accordingly
- Scan the parameter space for this model via dedicated goodness-of-fit or hypothesis tests
- Eg. Mttbar and Collins-Soper angle

Frederix & Maltoni, arXiv:0712.2355v3

Phase 4: zoom in...

- Apply a specific event selection to enhance the new physics signal in these top topologies
- Repeat the goodness-of-fit (or hypothesis) testing
- Include the information from discoveries on other channels...

- Top Quark physics is the key topic for the Tevatron and will be the key physics topic for 2-10TeV LHC collisions
- An understanding on the full process, from production over properties to decays, has still to arise
- Goodness-of-fit techniques can be developed and tested at the Tevatron, in order to be applied with confidence at the LHC
- The "T³ strategy" involves lots of work from both the Tevatron and the LHC side

TOP2010 Conference

30th of May - 5th of June 2010 Brugge, Belgium

CP3 - IIHE

http://www.top2010.be/