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Cosmology as a probe of high 
energy physics

Particle Physics Parallels

Established (cosmological) standard model

Anomalous results potentially signaling new 
fundamental physics

New experiments are coming online

Probes different physics, answers complementary 
questions
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Cosmology
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                                                    SDSS

Wealth of cosmological 
data from WMAP, SDSS, 

Supernovae



Cosmological Standard Model
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Universe 
composition is now 
known

Next-gen 
experiments to go 
further:  Planck, 
SDSS-III, 21cm 
experiments 

J. Dalcanton



Discrepancies (> 2σ excesses)

Some CMB/cosmology anomalies

Low l multipoles

Low and planar quadrapole

Alignment

Cold Spot

Hemispherical Asymmetries

Dark Flows
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Axis of Evil
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Land and Magueijo

Look for preferred
axis for each 

multipole

Alignment for low l 
<= 5



Cold Spot

10 degree spot, 
colder by 70 μK, 
centered at (l, b) 
~ (200˚,-56˚)

Potentially due to 
a large void (ISW)
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Hemispherical Asymmetry

Observed power 
asymmetry along 
axis (l, b) ~ 
(225˚,-27˚)

Amplitude is 
modulated by 
10%
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Eriksen et.al. 2008
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Fig. 1.— Posterior distributions for the dipole modulation am-
plitude, marginalized over direction and CMB power spectrum.

TABLE 1

Data (lbf, bbf) Abf ∆ logL ∆ log E P

ILCa (225◦ ,−27◦) 0.114 6.1 1.8 ± 0.2 0.991
ILCb (208◦ ,−27◦) 0.125 6.0 1.8 ± 0.2 0.991
Q-bandb (222◦ ,−35◦) 0.124 5.5 1.5 ± 0.2 0.987
V -bandb (205◦ ,−19◦) 0.127 5.6 1.5 ± 0.2 0.990
W -bandb (204◦ ,−31◦) 0.121 5.2 1.3 ± 0.2 0.985

Note. — Modulation model results. The listed quantities
are the marginal best-fit dipole axis (second column) and
amplitude (third column); the change in likelihood at the
posterior maximum, ∆ logL = logLmod − logLiso, between
the modulated and the isotropic model (fourth column); the
Bayesian evidence difference, ∆ log E = log Emod − log Eiso
(fifth column); and the frequentist probability for obtaining
a lower maximum-likelihood modulation amplitude than the
observed one, computed from isotropic simulations (sixth col-
umn).
a Liberal 12.8% sky cut imposed.b Conservative 36.3% sky
cut imposed.

level results in a signal-to-noise ratio of unity at ! = 40,
and strong noise domination at the Nyquist multipole of
! = 47.

We use two different sky cuts for our analyses. First,
given that the galactic plane is clearly visible in the sin-
gle frequency data, our first mask is conservatively de-
fined. This cut is created by expanding the Kp2 mask
Hinshaw et al. (2007) by 9◦ in all directions, and then
manually removing all near-galactic pixels for which any
difference map between two channels are clearly larger
than noise. In total, 36.3% of all pixels are rejected by
this cut (see figure 2). Second, we also adopt the directly
downgraded Kp2 cut used by the WMAP team that re-
moves 12.8% of all pixels. We use this mask for the ILC
map only.

The noise covariance matrix is given by the uniform
noise only, Nij = σ2

nδij . For completeness, we have also
computed the noise covariance from the smoothed instru-
mental noise for the V -band data, but we find that this
has no effect on the final results, since its amplitude is
far below the CMB signal. It is therefore omitted in the
following.

As an additional hedge against foreground contamina-
tion, we marginalize over a set of fixed spatial templates,
ti, through the covariance matrix Fi = αitit

T
i , αi ! 103.

Fig. 2.— Posterior distribution for the dipole modulation axis,
shown for the ILC map and 36.3% sky cut, and marginalized over
power spectrum and amplitude parameters. Grey sky pixels in-
dicate pixels outside the 2σ confidence region. The dots indicate
the axis 1) reported by Eriksen et al. (2004) in white; 2) for the
ILC map with a 12.8% sky cut in green; 3) for the Q-, V -, and
W -bands in red, blue and yellow, respectively. The axis reported
by Spergel et al. (2007a) coincides with the W -band axis.

Monopole and dipole terms are always included, and one
or more foreground templates. For the V -band and ILC
maps, we follow Hinshaw et al. (2007) and adopt V –ILC
as our foreground template. For the Q-band data, we
marginalize over a synchrotron (Haslam et al. 1982), a
free-free (Finkbeiner 2003), and a dust (Finkbeiner et al.
1999) template individually. Finally, for the W -band
data, we use the W–ILC difference map. However, we
have tried various combinations for all maps, and there
is virtually no sensitivity to the particular choice, or in-
deed, to the template at all, due to the conservative sky
cut used.

4. RESULTS

The results from the analysis outlined above are sum-
marized in Table 1. For each map, we report the best-fit
dipole axis and amplitude, as well as the maximum log-
likelihood difference and Bayesian evidence difference for
the modulated versus the isotropic model. The errors on
the evidence are estimated by performing eight indepen-
dent analyses for each case, and computing the standard
deviation (Mukherjee et al. 2006). We also compute the
probability of obtaining a smaller modulation amplitude
than the observed one by analyzing 1000 isotropic Monte
Carlo simulations.

Starting with the first case in Table 1, the ILC map
cut by a 12.8% mask, we see that the best-fit modula-
tion axis points toward (l, b) = (225◦,−27◦), and the
corresponding modulation amplitude is 0.114. The raw
likelihood improvement is ∆ logL = 6.1. The probabil-
ity of finding such a high modulation amplitude in in-
trinsically isotropic simulations is ∼ 1%, and, finally, the
improvement in Bayesian evidence is ∆ logE = 1.8.

Further, these results are not sensitive to data set or
sky coverage: Even the Q-band map, which presum-
ably is the least reliable with respect to residual fore-
grounds, yields a modulation amplitude which is high at
the 98.7% (frequentist) confidence level, and a Bayesian
log-evidence improvement of 1.5. This frequency inde-
pendence is further illustrated in Figure 1, where we show
the marginalized posterior distributions for the modula-
tion amplitudes for each data set. The agreement among
data sets is very good.

In Figure 2 we show the dipole axis posterior distri-
bution for the ILC map and 36.3% sky cut. Superim-
posed on this, we have also marked the first-year asym-
metry axis reported by Eriksen et al. (2004b) [(l, b) =



Dark Flow

Using the 
kinematic SZ 
effect, discovered 
a coherent bulk 
flow of               
~ 600 km/s  

Flow points in 
direction of pink 
ellipse

9

Kashlinsky et.al. 



Summary of Anomalies

Anomalies exist, may or may not be 
correct

Effects depend on a direction on the sky 
which are somewhat close

Abundance of effects pushes for some 
new physics explanations which can 
explain some subset
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Cosmological Collider

11

Early universe 
accesses much 
higher energies than 
colliders

Inflation a well 
known example of 
high energy physics 
only detectable 
through cosmology  



Landscape

String theory 
seems to predict 
a landscape of 
potential vacua 
10500

Predictions 
become 
cosmological

12



Landscape Predictions
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Freivogel et.al.
Landscape vacua are
populated by eternal
inflation

High energy vacua
dominate the world
volume

Path is unlikely to be direct...  More likely to get stuck in
another vacua and have to tunnel to ours.
Has to be followed by inflation to produce our universe. 



Coleman-de Luccia Bubbles

Bubble transition solutions have O(4) 
symmetry in Euclidean space

Expanding bubble interior is described 
by analytic continuation

Inherits O(3,1) symmetry

Described by an open FRW universe

Scalar field homogenous on H3 slices

ds2
CdL = −dτ2 + a(τ)2dH2

3

dH2
3 = dξ2 + sinh2 ξ dΩ2

2
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Observable Initial Conditions

Universe can only be slightly open today, 
need inflation after tunneling

WMAP requires Ωtot = 1.02 ± .02, 
amounting to e-fold constraint N > 62

Observational limit Ωtot−1 ~ 10-(4-5), 
requiring N < 66

CMB power spectrum affect primarily low l

Freivogel et.al.
Garriga et.al.

...
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Another Possibility

Bubbles do not 
evolve in isolation

Colliding bubbles are 
a generic prediction 
of inflating landscape

16

False Vacuum



Our Scenario
Study simplest case of 
two bubbles colliding

Do as much 
analytically as possible

Solve for domain wall 
motion, metrics

Simplify problem to 
solve for scalar field 

Extract predicted 
deviations for CMB

17

Aguirre



Assumptions (following Freivogel, Horowitz, Shenker)

Thin Wall Limit

Single radiation shock 
into both bulks

Domain wall 
dominated by tension

Null Energy 
Condition
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Metastable
Vacuum

Radiation Domain Wall Radiation

B C

A D

Right BubbleLeft Bubble

Figure 7: Schematic of a typical bubble collision event. The dashed lines represent radiation
emitted into the two bubbles by the collision. After the collision a domain wall forms that
separates the two bubbles. For future reference, we have labeled the different regions A, B,
C, and D. The left (right) bubble is comprised of sections A and B (C and D).

bubble before the collision has occured and thus must be sections of the unperturbed flat,
dS, or AdS solutions. Therefore we should consider metrics for which M, t0 = 0. Since the
bubble is expanding, the region of bubble nucleation must occur in a part of the spacetime
where all future directed timelike geodesics have expanding H2 radii.

For flat or dS bubbles this confines the bubble nucleation to occur in the upper half
plane of Fig. 1(b) and Fig. 3(a) with Bousso wedge ∧. (Note that this also determines
that the bubble collision takes place in this region.) For AdS bubbles, as seen from Fig. 4,
the nucleation occurs in the lower triangle with Bousso wedge ∧, but the collision point can
now occur in two regions. If the AdS bubble is the bubble on the left, the expansion of its
bubble wall to the right either stays in the region with Bousso wedge ∧ or goes into the
region outside of the horizon with Bousso wedge >. Thus, for AdS bubbles there are two
regions where the collision can occur.

3.1 Matching across the radiation shells

We can match across the null shells and the domain wall as follows [22, 23, 16, 15]. The
metric is continuous across the junction for the transverse dimensions, which sets equal the
radii of curvature of the H2 hyperboloids, so t or r is continuous across the junctions. Then
the energy momentum at the junction determines the discontinuity in the extrinsic curvature.

For the case of the null radiation shells in our thin shell approximation, the energy
momentum tensor is

T µν = σ lµlνδ(shell), (3.1)

where lµ is a generator for the null line. The junction conditions impose the condition across
the shell from the unperturbed metric (below) to one with nonzero M, t0 (above),

∆k ≡
(

habkab

)

below
−

(

habkab

)

above
= 8πGσ, (3.2)

10

Diagram of  
Collision



Metric Solutions

Collisions of two bubbles have an H2  
symmetry (since only O(2,1)⊂O(3,1) is 
preserved)

Metrics with cosmological constant and 
H2 symmetry are completely known

Act as building block metrics for 
collision

19



e.g. de Sitter Solutions

20

ds2 = − dt2

g(t)
+ g(t)dx2 + t2 dH2

2

g(t) = 1 +
t2

!2
− t0

t
Λ =3 /!2

Unperturbed t0 = 0

Perturbed t0 ≠ 0



e.g. flat on AdS collision

21

Freivogel,Horowitz, Shenker

Collision 
Diagram

Building 
Blocks



Junction Conditions & Domain Walls

Matching conditions 
across radiation 
shock and domain 
wall

Across shocks, 
determine t0

Across domain wall, 
determines motion

22

Metastable
Vacuum

Radiation Domain Wall Radiation

B C

A D

Right BubbleLeft Bubble

Figure 7: Schematic of a typical bubble collision event. The dashed lines represent radiation
emitted into the two bubbles by the collision. After the collision a domain wall forms that
separates the two bubbles. For future reference, we have labeled the different regions A, B,
C, and D. The left (right) bubble is comprised of sections A and B (C and D).

bubble before the collision has occured and thus must be sections of the unperturbed flat,
dS, or AdS solutions. Therefore we should consider metrics for which M, t0 = 0. Since the
bubble is expanding, the region of bubble nucleation must occur in a part of the spacetime
where all future directed timelike geodesics have expanding H2 radii.

For flat or dS bubbles this confines the bubble nucleation to occur in the upper half
plane of Fig. 1(b) and Fig. 3(a) with Bousso wedge ∧. (Note that this also determines
that the bubble collision takes place in this region.) For AdS bubbles, as seen from Fig. 4,
the nucleation occurs in the lower triangle with Bousso wedge ∧, but the collision point can
now occur in two regions. If the AdS bubble is the bubble on the left, the expansion of its
bubble wall to the right either stays in the region with Bousso wedge ∧ or goes into the
region outside of the horizon with Bousso wedge >. Thus, for AdS bubbles there are two
regions where the collision can occur.

3.1 Matching across the radiation shells

We can match across the null shells and the domain wall as follows [22, 23, 16, 15]. The
metric is continuous across the junction for the transverse dimensions, which sets equal the
radii of curvature of the H2 hyperboloids, so t or r is continuous across the junctions. Then
the energy momentum at the junction determines the discontinuity in the extrinsic curvature.

For the case of the null radiation shells in our thin shell approximation, the energy
momentum tensor is

T µν = σ lµlνδ(shell), (3.1)

where lµ is a generator for the null line. The junction conditions impose the condition across
the shell from the unperturbed metric (below) to one with nonzero M, t0 (above),

∆k ≡
(

habkab

)

below
−

(

habkab

)

above
= 8πGσ, (3.2)
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All Collision Classification

For a dS bubble w/ cc of Λ colliding with 

larger Λ′, domain wall moves away

smaller Λ′, domain wall

moves away if tension2 > Λ − Λ′
stationary if tension2 = Λ − Λ′
moves toward if tension2 < Λ − Λ′

23

SC et.al.
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Aleksandra Mir

Bubble universes like 
ours (w/ small cc) are
safe from domain walls 
and they don’t crunch

From higher cc 
bubbles, domain wall 
automatically moves 
away

From AdS bubbles, for 
fixed tension, lower dS 
cc is preferred 
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Signals
Due to O(2,1) 
symmetry, isotropy is 
broken, effects depend 
on angle θ
Two effects: 

Propagation 
through perturbed 
metric

Deviation of last 
scattering surface

Bubble Walls

Sur
fa

ce

Reh
ea

tin
g
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Radiation Shock

!

dS

Observer

RD

t

D
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ain W
all

Figure 2: Sketch of the collision scenario. Due to the domain wall, the shape of the reheating
surface deviates from that of the no collision case (displayed in the long dashed line).

the initial period of inflation the universe reheats and transitions to radiation domination.
We model this transition as sharp, matching the metrics and Hubble constant across the
reheating surface. We ignore matter domination in calculating the effects of the collision on
the CMB, and further assume that the effects on the surface of last scattering are related
to the effects on the reheating surface simply by the redshift along “free-streaming” null
geodesics. In other words, we assume the angular dependence of the redshift to the last
scattering surface due to the effects of the collision is given by the angular dependence of the
redshift to the modified reheating surface. This modulates the standard inflationary pertur-
bations at last scattering by a function dependent on the angle to the collision direction. We
sketch the scenario in Fig. 2.

We work in the thin wall approximation throughout, treating the transition between the
two parts of the sky (corresponding to the regions of last scattering which are inside and
outside the collision lightcone) as sharp. It would be interesting to extend the present work
to thick wall systems as effects such as the finite thickness of the domain walls and the shell
of radiation emitted from the collision point could play interesting roles.

In a standard Robertson-Walker open universe, reheating occurs on a surface of almost
constant density that is SO(3, 1) invariant (i.e., hyperbolic 3-space). During inflation the
surfaces of constant energy density are also surfaces of constant value for the inflaton field,
and the reheating surface corresponds to the point in the inflaton potential where slow roll
comes to an end. This surface defines a preferred reference frame, since the radiation and
matter fluids will be at rest on average with respect to it. In our scenario, the collision
and domain wall break this symmetry. There is no longer a preferred frame and thus the
standard notion of “comoving” no longer holds. There remains a remnant of this symmetry:
a two-dimensional set of comoving observers related to each other by transformations which
leave the two-dimensional hyperboloids invariant. Observers outside this plane are no longer

7



Signal Issues

Issues with perturbed metrics

Unknown for radiation & matter domination

t0/t is estimated to be small

Issues with last scattering surface

Hard to solve scalar in perturbed metric

Nonanalytic 

26
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Compromise

Treat scalar field as a simple pde with boundary condition

Linear potential, so field changes

Bubble Wall has scalar = 0, Domain Wall has scalar = k

Function is continous but not differentiable at shock

SC et.al.

!!x=tan
!1t !1/t+"/2

t c !! 2/t cx=!2 tan!1 +tan!1t !1/t+ #"/2

!!x=!tan!1t 1/t#"/2

t cx=!tan!1

+1/tc!! #"/2

(t  , x  )c c

II

I

Figure 4: Sketch of the collision scenario with the null lines labeled and approximate solutions
for late times.

and the collision point is at (tc, xc) = (tc,
1
tc
− π

2 ). The geometry and causal structure are
summarized in Fig. 4. Note that region I is outside the lightcone of the collision, and the
geometry can effectively be described in H3 coordinates up to the radiation line.

3.3 General Solutions For The Scalar Field

In this subsection we’ll find the general solutions to the scalar field equation (with a linear
potential) in the regions before and after the collision. Let’s begin by looking at region I.
Here we can make use of the H3 coordinates. We have

!φ = −
1

sinh3 τ
∂τ

(

sinh3 τ∂τφ(τ)
)

= µ, (3.8)

where µ is the coefficient of the linear term in the potential. We require that φ and its
derivative vanish along the bubble walls at τ = 0. The general solution satisfying these
boundary conditions is

φ(τ) =
µ

3

[

ln
4eτ

(1 + eτ )2
−

1

2
tanh2 (τ/2)

]

. (3.9)

At large and small τ this becomes

φ(τ " 1) ≈ −
µ

3
ln sinh τ ≈ −

µ

3
ln(t cosx) (3.10)

φ(τ $ 1) ≈ −
µτ 2

8
≈ −

µ

4

(√
1 + t2 cosx − 1

)

, (3.11)

where we have used the coordinate transformations (2.4).

12
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Results
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Figure 5: Plot of surfaces of constant φ at late times for N∗ = 60, α = 0.3, tc = 1, µ = 1,
and k = 0. The blue lines are the surfaces if no collision had occurred, while the red lines
are the actual surfaces. Black lines are the bubble walls (projected forward as if there were
no collision) and the green line is the domain wall. This plot is in the same coordinates as
Fig. 1.

In region II we solve for φ using the H2 coordinates, as it is in these coordinates that the
boundary conditions on the domain wall and collision lightcone are simple. Since the field
is constant on the H2 we have

!φ = −
1

t2
∂t

[

t2(1 + t2)∂tφ
]

+
1

1 + t2
∂2

xφ = µφ. (3.12)

The general solution is

φ(t, x) = f(x − tan−1 t) −
1

t
f ′(x − tan−1 t) + g(x + tan−1 t) +

1

t
g′(x + tan−1 t)

−
µ

6
ln(1 + t2), (3.13)

where f and g are arbitrary functions and the primes denote derivatives with respect to the
argument of the respective function. At large t, this is given by

φ(t, x) ≈ f(x + 1/t) −
1

t
f ′(x + 1/t) + g(x − 1/t) +

1

t
g′(x − 1/t) −

µ

3
ln t. (3.14)

3.4 Matching Solutions

We have the general solution for the scalar field in the H2 symmetric background, as well
as the solution in region I (3.10), before the collision. To find the particular solution for
φ in region II we make use of two boundary conditions: the field must be continuous at
the radiation line, and it must equal a constant at the domain wall, φ|domain = k. Since
reheating occurs after inflation we can use the late time approximations to the general
solutions. Carrying out these steps is somewhat technical; the details are in appendix A.

In Fig. 5 we draw an example with N∗ = 60, tc = 1, α = 0.3, µ = 1, and k = 0. The
presence of the domain wall causes the surfaces to “curl up”, eventually going null and then
timelike. That part of the spacetime is very strongly perturbed by the collision—inflation
and reheating will not occur there, and the linear techniques used in this paper do not apply.
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Figure 6: Plot of surfaces of constant φ at late times for N∗ = 60, α = 0.3, k = 0, µ = 1,
and tc = 3. The blue lines are the surfaces if no collision had occurred, while the red lines
are the actual surfaces. Black lines are the bubble walls (projected forward as if there were
no collision) and the green line is the domain wall.
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Figure 7: Plot of surfaces of constant φ at late times for N∗ = 60, α = 0.5, tc = 1, µ = 1,
and k = −1. The blue lines are the surfaces if no collision had occurred, while the red lines
are the actual surfaces. Black lines are the bubble walls (projected forward as if there were
no collision) and the green line is the domain wall.

Since these regions are highly perturbed away from a standard cosmology, the effects would
be in drastic conflict with current observations, and thus we will assume that this region is
well outside our horizon.

We can make some other general statements. Increasing the collision time tc pushes the
difference between the actual surface and that of no collision farther out in x. In Fig. 6 we
draw the same scenario as in Fig. 5 except with tc = 3. The smaller α is, the more rapidly
the surfaces curl up. Taking α → 1 in the case k = 0 removes the effects of the collision
entirely (which is a good check of our numerics).

For k < 0 we find that the reheating surface bends down relative to the surface of the
no collision scenario. In Fig. 7 we draw a case with N∗ = 60, tc = 1, α = 0.5, k = −1, and
µ = 1. Increasing tc causes less of the sky to be covered by the collision, while the smaller α
gets the more pronounced and closer to the observer the effects are. Taking k > 0 is similar
to the scenarios with k = 0 except that the repulsion from the domain wall will be increased.

14
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Redshifts Normalized redshift 
back to reheating 
surface (not LSS), 
propagated through 
nonperturbed RD

Makes sense: depends 
linearly on cosθ, 
transitions at radiation 
shock

Of order e-(N-N*)
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Figure 8: Normalized redshift versus cosθ for the scenario (tc = 1, α = 0.5, N −N∗ = 5, k =
0, µ = 1).
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Figure 9: Normalized redshift versus cosθ for the scenario (tc = 1.05, α = 0.1, N − N∗ =
3, k = −1, µ = 1).

We can make some general observations about the redshift. The modified reheating
surface leads to bluer photons when k ≥ 0, the bluest coming from the angle closest to the
domain wall. This makes sense, as the reheating surface is closer to the observer than it
would be without the collision. However, the doppler shift from the motion of the reheating
surface with respect to the observer also plays a role. The effect is primarily a dipole, but
only on the range of angles for which null geodesics intersect the modified reheating surface.
Once we are viewing angles which correspond to parts of the reheating surface outside the
future lightcone of the collision, the redshift is r0. The smaller α is, the more pronounced the
effects of the collision are, as the domain wall is closer to the observer and accelerating away
more slowly. Raising tc means less of the sky is within the future lightcone of the collision.
Thus, there are a wide range of values for both the maximum blueshift and the angular size
of the part of the sky affected by the dipole piece. If tc is much larger than 1 in Hubble units
the COM observer is likely not within the future lightcone of the collision (as we mentioned
in Sec. 2.3).

If we look at scenarios where k < 0 we see that the modified reheating surface will lead
to slightly redder photons, again the reddest coming from the angle closest to the collision

18
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We can make some general observations about the redshift. The modified reheating
surface leads to bluer photons when k ≥ 0, the bluest coming from the angle closest to the
domain wall. This makes sense, as the reheating surface is closer to the observer than it
would be without the collision. However, the doppler shift from the motion of the reheating
surface with respect to the observer also plays a role. The effect is primarily a dipole, but
only on the range of angles for which null geodesics intersect the modified reheating surface.
Once we are viewing angles which correspond to parts of the reheating surface outside the
future lightcone of the collision, the redshift is r0. The smaller α is, the more pronounced the
effects of the collision are, as the domain wall is closer to the observer and accelerating away
more slowly. Raising tc means less of the sky is within the future lightcone of the collision.
Thus, there are a wide range of values for both the maximum blueshift and the angular size
of the part of the sky affected by the dipole piece. If tc is much larger than 1 in Hubble units
the COM observer is likely not within the future lightcone of the collision (as we mentioned
in Sec. 2.3).

If we look at scenarios where k < 0 we see that the modified reheating surface will lead
to slightly redder photons, again the reddest coming from the angle closest to the collision
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Connecting to Observations

Assuming inflationary perturbations are 
unaffected

In the correct frame, redshift only affects m=0 
modes, but total effect is a convolution of the 
alm of redshift and inflationary perturbations

30

T (!n) = T ′
0 r(!n) [1 + δ(!n)]



Effects on Cl’s
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Figure 12: Cl/C
(0)
l vs. l for the scenario M − 1 = 2 × 10−5, xT = 0.8

A more useful object is the 2-point function. We have

〈a∗

lmal′m〉 = δm0a
∗

l0al′0,

〈b∗lmbl′m〉 = δll′C
bb
l , (5.15)

〈a∗

lmbl′m〉 = a∗

lm〈bl′m〉 = 0.

Cbb
l is the two point function in the absence of a collision. We’ll discuss this in a bit.

Squaring (5.10) and taking ensemble averages using the above rules we get

〈t∗lmtl′m〉 = δm0a
∗

l0al′0 + f 2δll′C
bb
l + f 2

∑

l1

Rl1l′

lm Cbb
l′ + (l ↔ l′) + f 2

∑

ll2l′
1

Rl1l2
lm R

l′
1
l2

l′mCbb
l2 . (5.16)

This determines the two-point function in terms of Cbb
l and the collision redshift function.

As a first approximation we can assume that Cbb
l comes from primordial fluctuations that

are unaffected by the collision. We use a spectrum generated with CMBFAST code [32, 33]
using concordance cosmology values from WMAP [34, 35].

5.1 Results

In this section we will present our results for a few simulations of our toy model. The effects
are predominantly on large angular scales, so we focus on the lowest set of l modes. We will
look at two examples, one where the collision takes up most of the sky, and another where it
covers only a small fraction. For each scenario we present two figures. One will display the
power in each l mode compared to a scenario where no collision occurs, the other the power
asymmetry as a function of l between the two hemispheres defined by the collision direction.

The Cl’s are

Cl =
1

(2l + 1)

m=l
∑

m=−l

〈t∗lmtlm〉. (5.17)
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Figure 13: C left
l /Cright

l vs. l for the scenario M − 1 = 2 × 10−5, xT = 0.8

Due to the fact that the alm’s only contribute to the m = 0 mode of each multipole, these
terms gain more power from the collision than the modes with m #= 0 do. This is due to the
fact that the effects of the collision are azimuthally symmetric.

We compute the power asymmetry between the left and right hemispheres using a crude
version of the Gabor transform method [36] with a top hat window function centered in
either hemisphere. There will be effects due to ringing from the edges of the top hat, but
these don’t greatly affect the lower multipoles.

For our first example, we choose parameters M−1 = 2×10−5 and xT = 0.8. The angular
radius of the collision is 143 degrees. Note that the total temperature difference between the
two poles is well below the dipole due to the Earth’s peculiar motion. In Fig. 12 we plot
Cl/C

(0)
l for this scenario. As expected, since the collision takes up a large portion of the sky,

the lowest multipoles are the most affected. In Fig. 13 we show the hemispherical power
asymmetry.

In our second scenario the collision takes up only a small part of the sky, and the collision
causes a redshift within the disk. We choose M − 1 = −7.3 × 10−6 and xT = −0.99, giving
an angular radius of about θT = 180◦− cos−1 xT = 7◦ . With these parameters our sky has a
cold spot, with the coldest point about 20µK cooler than the average and the effect falling off
with radius from the center. We have chosen the angular radius and the temperature profile
to approximate the WMAP cold spot smoothed over a scale of ∼ 5◦ [17, 18, 19, 20, 21].

In Fig. 14 one can see that the power is shifted slightly towards higher multipoles, with
a first peak in excess power around l = 17. There will be a smaller secondary peak at the
first harmonic. The quadrapole receives only a small boost in power, reducing it relative to
nearby multipoles.

In Fig. 15 we show the hemispherical power asymmetry, which is nearly identical to
the previous figure (since the effects of the collision are now localized wholly in the left
hemisphere). We see that collisions of this type can lead to measurable hemispherical power
asymmetries.

We have presented results for two specific choices of parameters. The results for general
parameters all have certain features in common: most of the excess power is in the m = 0
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Figure 14: Cl/C
(0)
l vs. l for the scenario M − 1 = −7.3 × 10−6, xT = −.99.
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Figure 15: C left
l /Cright

l vs. l for the scenario M − 1 = −7.3 × 10−6, xT = −.99.

modes, the temperature function is monotonic with angle within the affected disk, the power
spectra are affected primarily in the l modes corresponding to the size of the disk and its
harmonics, and there is a hemispherical power asymmetry with a magnitude that depends
on the size and intensity of the disk.

Non-Gaussianities: The effects of the bubble collision induce sizable non-Gaussianities
in the CMB temperature map. However, at least for the two examples presented here the
non-Gaussianity is significant only at low l. In particular, f local

NL is very small, and f equilateral
NL is

strongly dependent on l: it oscillates in sign, reaches a maximum near the l corresponding to
the disk size, and damps rapidly (with an envelope similar to the plots of the excess power in
the 2-point function). We suspect that an analysis of the WMAP data would not constrain
these models significantly. We will mention a better statistical test in the conclusions.

6 Conclusions

In this paper we have computed the effects of a cosmological bubble collision on the cosmic
microwave background, using a variety of approximations. Previously we focused on a range

25

5 10 15 20 25 30 35

1.0001

1.0002

1.0003

1.0004

Figure 14: Cl/C
(0)
l vs. l for the scenario M − 1 = −7.3 × 10−6, xT = −.99.

5 10 15 20 25 30 35

1.0001

1.0002

1.0003

1.0004

Figure 15: C left
l /Cright

l vs. l for the scenario M − 1 = −7.3 × 10−6, xT = −.99.
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on the size and intensity of the disk.

Non-Gaussianities: The effects of the bubble collision induce sizable non-Gaussianities
in the CMB temperature map. However, at least for the two examples presented here the
non-Gaussianity is significant only at low l. In particular, f local

NL is very small, and f equilateral
NL is

strongly dependent on l: it oscillates in sign, reaches a maximum near the l corresponding to
the disk size, and damps rapidly (with an envelope similar to the plots of the excess power in
the 2-point function). We suspect that an analysis of the WMAP data would not constrain
these models significantly. We will mention a better statistical test in the conclusions.

6 Conclusions

In this paper we have computed the effects of a cosmological bubble collision on the cosmic
microwave background, using a variety of approximations. Previously we focused on a range
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Further Possibilities

Searching in angle space for disks with certain 
statistics

Form and size of the nongaussianities, appears to 
be roughly equilateral

Polarization effects expected as well (c.f. Dvorkin 
et.al.), correlation can be seen w/ Planck

Effects in large scale structure
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Conclusions

Cosmology has a tremendous potential as a 
probe of high energy physics

Can search for the eternal inflation/tunneling 
aspects of the landscape

Metrics & domain wall motion can be solved 
analytically, showing that low cc dS bubbles are 
“safe”
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Conclusions (cont.)

CMB effects have 
been estimated with 
a toy  model

Hot/cold spots & 
hemispherical power 
asymmetries 
expected
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