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Cosmology as a probe of high
energy phy5|cs

S Particle Phy5|cs Parallels
- Established (cosmological) standard model

S Anomalous results potentially signaling new
fundamental physics

® | . | . .
® New experiments are coming online

S Probes different physics, answers complementary
‘questions



Cosmology

Wealth of cosmdlogical'
data from VWMAP SDSS,
Supernovae
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L miverse decelerating now
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Cosmological Standard Model

© <
® Universe
composition is how
*Tonry et al. . :

2003 - known

™ Riess et al.
2004

©
® Next-gen
0 experiments to go

ele_-

5o further: Planck,
SDSS-III, 21em
experiments




Discrepancies (> 20 excesses)

 Some CMB/cosmology anomalies

© .
® Low | multipoles

®  Low and plalnar quadrapéle

S Alignment
S Cold Spot
® Hemispherical Asymmetries

: |
® Dark Flows



Axis of Evil

Look for preferred
axis for each
- multipole

Align.ment for low |
<=5 |




Cold Spot

eSS TN S 10 degree spot,
T R MR colder by 70 pK,
Seng Tk (R centered at (I, b)
g ~(200°,-56°)

Rl S Potentially due to
/.' A - _’;9-1’ : :

S ~ a large void (ISW)




. Hemispherical Asymmetry

% Observed power
asymmetry along

~axis (I, b) ~

- (225°,-27°)

ILC, 12.8% cut
(Q-band, 36.3% cut

V-band, 36.3% cut

2 Amplitude is
~ modulated by
10%

Direction posterior |




Dark Flow

Using the

©
®

kinematic SZ

effect, discovered
a coherent bulk

flow of

~ 600 km/s
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® Flow points in

direction of pink

ellipse



‘Summary of Anomalies

© e . |
® Anomalies exist, may or may not be
correct

S Effects depend on a dlrectlon on the sky
which are somewhat close

. Abundance of effects pushes for some
new physics explanations which can
~ explain some subset
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Cosmologlcal Colllder

|IJIOF/ of the Universe
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Particle Data Group, LBNL, © 2000. Supported by DOE and NSF
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Early universe
accesses much

~ higher energies than
colliders

® - - % : '
® |nflation a well

known example of
high energy physics
only detectable

through cosmology



Landscape

S String theory
seems to predict
a landscape of

potential vacua
10500

Stable
vacuum

© . .

® Predictions ‘
become Parameterl
cosmological

"The Landscape"” (Picture from Scientific American)
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- Landscape Predictions

Landscape vacua are
populated by eternal
inflation

Freivogel et.al.

High energy vacua
dominate the world
volume

Path is unlikely to be direct... More likely to get stuck in
~another vacua and have to tunnel to ours.

Has to be followed by inflation to produce our universe.
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Coleman-de Luccia Bubbles

® Bubble transition solutions have O(4)
symmetry in Euclidean space

S Expanding bubble interior is described _
by analytic continuation g
€ Inherits O(3,1) symmetry | ng = d§2 4 sinh2§ dQ%
S Described by an open FRW universe

S :
® Scalar field homogenous on Hj slices
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Observable Initial Conditions

® Universe can only be slightly open tod'ay,
need inflation after tunnellng

S WMAP reqmres Qtot_— .02 + 02
amounting to e-fold constraint N > 62

 Observational limit Qw—1 ~ 10745),
requiring N < 66

% CMB power spectrum affect primarily low |
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Another Possibility

©
® Bubbles do not
evolve in isolation

S Colliding bubbles are
a generic prediction
of inflating landscape

16



Our Scenario

@ Study simplest case of
two bubbles colliding

® Do as much
analytically as possible

[ o
® Solve for domain wall
motion, metrics

S Simplify problem to
solve for scalar field

Aguirre

S Extract predicted
deviations for CMB
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Assumptions (

Radiation Domain Wall Radiation

A 7
A 7
A 7
A O D
N\ 7
N\ 4
N\ 4

Left Bubble Right Bubble

Metastable
Vacuum

Diagram of
Collision
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& Thin Wall Limit

S Single radiation shock
~into both bulks

% Domain wall
dominated by tension

% Null Energy
Condition



Metric Solutions

S Collisions of two bubbles have an H,
symmetry (since only O(2, I)CO(3 I) iS

preserved)

® Metrics with cosmological constant and
H, symmetry are completely known

S Act as building block metrics for
~ collision
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e.g. de Sitter Solutions

Perturbed to #+ 0
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e.g. flat on AdS collision

Freivogel,Horowitz, Shenker
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Junction Conditions & Domain Walls

Radiation Domain Wall Radiation

A 7
A 7
A 7
A O D
N\ 7
N\ 4
N\ 4

Left Bubble Right Bubble

Metastable
Vacuum

Diagram of
Collision

 Matching conditions
across radiation
shock and domam
~wall

i _
® Across shocks,
determine to

® :
® Across domain wall,
determines motion
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All Collision Classification

2 For a dS bubble w/ cc of A colliding with
S larger A’, domain WaII moves away
S smalller A’, domain Wall

® moves away if tension? > A — A’

® stationary if tension2 = A — A\’

(] - .
- “ moves toward if tension? < A = A\’
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SPORTS W 3% ¥ FINAL

RUDY RUNAWAY |JuLia’s 30TH BASH

WHAT To D¢

WITH YoUR
MONEY
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Bubble universes like

ours (w/ small cc) are

safe from domain walls
and they don’t crunch

From higher cc

- bubbles, domain wall

automatically moves
away

From AdS bubbles, for
fixed tension, lower dS
cc is preferred



Signals

©

© Due to O(2,1)
symmetry, iISotropy is
broken, effects depend Observer  Radion ok

i

on angle O
® Two effects:

S Propzigation
through perturbed
metric

Bubble Walls

% Deviation of last
scattering surface
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Signal Issues

S |ssues with perturbed metrics
S Unknown for radiation & matter domination
% to/t is estimated to be small

S |ssues with last scattering surface
% Hard to solve scalar in perturbed metric

® Nonanalytic
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Compromise

o x==2 tani ¢ +ar t= —1/t+ 2/t ~1/2
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X=—tan It C

/ I
= +1/t ~7/2 § ‘ .
g | S— x=tan 't =—1/t+m/2
~ .|

X=—tai't =~ 1/t —rt/2

Treat scalar field as a simple pde with boundary condition
Linear potential, so field changes
Bubble Wall has scalar = 0, Domain Wall has scalar = k

Function is continous but not differentiable at shock
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Results

28



 Redshifts

% Normalized redshift
back to reheating
surface (not LSS),
propagated through
nonperturbed RD

® Makes sense: depends
linearly on cosB,
transitions at radiation
shock

S Of order e (N-N%
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Connecting to Observations

 Assuming inflationary perturbations are
unaffected

- T(7) =Ty r(7) [+ 6()
% In the correct frame, redshift only affects m=0

modes, but total effect is a convolution of the
aim of redshift and inflationary perturbations
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Effects on C/’s
/4 degree spot |6 degree spot




Further Possibilities

% Searching in angle space for disks with certain
statistics '

® Form and size of the nongau55|an|t|es appears to
be roughly equilateral -

% Polarization effects expected as well (c.f. Dvorkin
et.al.), correlation can be seen w/ Planck

© . :
® Effects in large scale structure
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Conclusions

2 Cosmology has a tremendous pot.ential as a
probe of high energy physics '

® Can search for the eternal inflation/tunneling
aspects of the landscape

S Metrics & domain wall motion can be solved
analytically, showing that low cc dS bubbles are
“Safe”
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Conclusions (cont.) .

‘5 CMB effects have
been estlmated W|th
a toy deeI

| hemlspherlcal power
-asymmetrles
.expected



