TRIGGERING ON LONG LIVED NEUTRAL PARTICLES IN ATLAS

DANIEL VENTURA
UNIVERSITY OF WASHINGTON, SEATTLE

OUTLINE

- Overview of ATLAS
- Long-lived particles
- Signatures of displaced decays to jets
 - Decays in the Muon Spectrometer
 - Decays in the Calorimeter
 - Decays in the Inner Detector
 UC Davis Seminar
 8/18/2008

ATLAS INNER DETECTOR

2T magnetic field

3 Pixel Layers (5cm - 12cm)

4 Silicon Layers (30cm - 51cm)

50cm of Transition Radiation Tracker (TRT) straw tubes (55cm - 110cm)

ATLAS CALORIMETERS

Electromagnetic Calorimeter (ECAL)

Lead accordion with with liquid argon scintillator

Hadronic Calorimeter (HCAL)

Iron with plastic scintillator

ATLAS MUON SPECTROMETER

Three Layers of Drift Tubes
RPC (TGC) trigger chambers in the Barrel (Endcap)

ATLAS TRIGGER SYSTEM

ATLAS TRIGGER

• Level 1:

- Course granularity of Calorimeter and Muon System
- No tracking
- Identifies Region of Interest (RoI) to be processed at Level 2

• Level 2:

- Full granularity inside of the RoI
- Tracking available, all tracks required to connect to the IP
- Only 1 track reconstructed per muon RoI

LONG LIVED PARTICLES

- Many models predict particles that are NEUTRAL and LONG-LIVED
 - gauge mediated SUSY, RPV SUSY, inelastic dark matter, split SUSY, hidden valley, exciting dark matter (XDM), Asymmetric Dark Matter (ADM)
- To investigate ATLAS's ability to detect (and trigger on) long-lived neutral particles, we have simulated a Hidden Valley model

HIDDEN VALLEY MODELS

- "Hidden Valley" (HV) models are a general class of these models
- Hidden Valley and SM only communicate through mediator particles (**higgs**, Z', neutralino, ...)
- All valley-particles (v-particles) are NEUTRAL under the SM
- The lightest v-particles, "v-pions" (π_v 's) are stable in the v-sector, but can decay back to the SM with long lifetimes

[†] M. Strassler, K. Zurek Echoes of a Hidden Valley at Hadron Colliders Phys. Lett. B651 (2007) 374 Arkani-Hamed, et al. LHC signals for a SuperUnified Theory of Dark Matter arXiv:0810.0713

HIGGS DECAY TO LONG-LIVED PARTICLES

• Using benchmark model of Higgs decaying to non-interacting pseudo-scalars[†] (π_v)

• π_v is NEUTRAL under the SM and long-lived

- Ideal sample (signal only)
- Signal with pileup
 - pileup for L=10³²cm⁻²s⁻¹
 - 4.1 collisions / crossing
 - 450ns bunch spacing
- Parameters:
 - $E_{CM} = 10 \text{ TeV}$
 - $m_h = 140 \text{ GeV}$
 - $m_{\pi v} = 40 \text{ GeV}$
 - $c\tau_{\pi v} = 1500 \text{ mm}$ (arbitrary choice)
- Events simulated using PYTHIA

[•] We use 2 samples to study trigger strategies for this process:

[†] see: M. Strassler & K. Zurek, Phys Lett B 661 (2008) 263-267

S. Chang et al. arXiv:hep-ph/0511250

L. Carpenter et al. arXiv:hep-ph/0607204

DECAY POSITIONS

Hidden Valley events are characterized by highly displaced decays leading to jets appearing throughout the volume of ATLAS

- Probability for π_v from gg fusion to decay in the 4 detector regions vs ct for $|\eta| < 2.5$ (Inner Detector coverage)
- Event Signatures are different for each of the regions
 - Inner Detector
 - EM Calorimeter
 - Hadronic Calorimeter
 - End of HCAL to 1^{rst} muon trigger plane

HIGGS DECAY TO LONG-LIVED PARTICLES

• Event with one π_v decay in the Muon System (A) and another π_v decay in the Hadronic Calorimeter (B)

STANDARD ATLAS TRIGGERS

- ATLAS Level-2 muon trigger has 2 stages:
 - Stand-Alone tracking (muFast)
 - Matching with an ID track (muComb)
- Jet triggers: Events with Higgs decays to π_v 's are characterized by several low E_T jets
 - Low energy jets are rejected by the Level-2 trigger due to large QCD backgrounds

STANDARD ATLAS TRIGGERS

- Standard ATLAS triggers are Interaction Point (IP) centric
- Neutral states decaying far from the IP lead to many challenges for the trigger:
 - Muons from displaced vertices do not have reconstructed tracks in the inner detector and fail the standard ATLAS level-2 muon trigger
 - Jets from late decays may not have normal energy deposition and could punch through
 - Depending on where the decay occurs (Inner Detector, Calorimeter, Muon Spectrometer), different approaches are required

Need SIGNATURE DRIVEN TRIGGERS

DECAYS IN THE MUON SYSTEM

Little/No energy deposited in the_ calorimeter

Decays in the muon system are characterized by a large number of charged tracks and a cluster of "muon" RoIs

TRIGGER TIMING DECAYS IN THE MUON SYSTEM

- Trigger will delayed by the arrival time difference, Δt , between the π_v and a β =1 particle
- From H8 test beam, window of 100% BCID efficiency is $\Delta t < 6$ ns
- Probability for the π_v to associated with the correct bunch crossing is > 90% for $m_{\pi v} < m_h/3$

DECAYS IN THE MUON SYSTEM

- Average number of L1 muon RoIs contained in a cone of ΔR =0.4 centered around the π_v line of flight versus the π_v radial decay distance
- For π_v decays between the Hadronic Calorimeter (4m) and 1^{rst} trigger plane (7m), the event is characterized by greater than 3 L1 muon RoIs in a small (η, ϕ) region

DECAYS IN THE MUON SYSTEM

- We define a Level 2 trigger using these signatures as:
 - A cluster (≥3) of Level 1 muon RoIs
 - Isolation wrt jets and Inner Detector tracks

DECAYS IN THE MUON SYSTEM EFFICIENCY FOR TRIGGERING

>70% Efficient for decays in the Barrel Muon Spectrometer

Efficiency is still high (25%) in the endcap region where UE and pileup can spoil the isolation requirements

- Decays in the Hadronic Calorimeter (HCAL) are characterized by narrow jets with:
 - Large deposit of energy in the HCAL
 - No energy in the ECAL

Jets with no reconstructed tracks (with $p_T > 1$ GeV) in the Inner Detector

TRIGGER TIMING DECAYS IN THE CALORIMETER

- Current simulation of calorimeter trigger correctly handles signals from late decays
- For time shifts of $\Delta t \le 3$ ns, the effect on E_T is < 1% at Level-2

Can correct the energy
measurements for late (> 3ns)
decays by fitting the calorimeter
line shape during offline
processing

- Jets from decays in the HCAL produce very narrow jets
 - Energy is contained in a cone of $\Delta R = 0.1$ as compared to standard jets of size 0.4
- The narrow jet allows us to use a Level-1 τ trigger to select these decays

- Jets originating inside the ID/ECAL have the "standard" $Log_{10}(E_{HAD}/E_{EM}) \sim 1$
- Jets from π_{v} 's decaying in the HCAL have Log₁₀(E_{HAD}/E_{EM}) ~1.5

- We define a Level 2 trigger using these signatures as:
 - $Log_{10}(E_{HAD}/E_{EM}) > 1$
 - Isolation wrt Inner Detector tracks

EFFICIENCY FOR TRIGGERING

>60% Efficient for decays in the Barrel HCAL

DECAYS IN THE INNER DETECTOR

- Decays in the Inner Detector are the hardest to trigger on
- Characterized by 1-2 low energy jets that look QCD like to the trigger
- To reduce backgrounds, we require the event to pass a level 1 muon (p_T ≥6 GeV) trigger

8/18/2008

DECAYS IN THE INNER DETECTOR

- ATLAS Level 2 tracking algorithms require hits in 4 of the first 5 tracking layers --> decays beyond r~12 cm will not have reconstructed tracks
- Displaced decays are then characterized by "trackless" jets
- Trigger object: "trackless" jet that contains a muon inside the jet cone

8/18/2008

DECAYS IN THE INNER DETECTOR

- Low absolute efficiency is due to requiring the muon in the event
- The Level 2 trigger is ~22% efficient wrt Level 1
- Work is on-going to define a more efficient trigger (possibly) using backtracking and jet substructure in the ECAL

OUTLOOK

Systematics not included!

- Assuming a branching fraction of 100% and a lifetime of 1.5m (20m) we expect ~400 (200) events per 100 pb⁻¹ of 10 TeV data
- Trigger algorithms have been implemented and included in the trigger menu

Cross section/event yield is calculated assuming 100% branching fraction for $h \rightarrow \pi_v \pi_v$

CONCLUSIONS

• Signature driven trigger objects have been defined for selection of long lived neutral particles decaying to jets (decays from higgs, Z', SUSY, ..., mediated events)

• High efficiency (60-80%) for selecting decays in the

HCAL and Muon Spectrometer

 Triggers have been implemented and included in the 2009/2010 trigger menu

BACKUP

BACKGROUNDS

- Tested trigger algorithms on 10 TeV minbias and QCD di-jet samples
 - 0 out of 3M minbias events pass the trigger
- di-jet background gives acceptable rates (at $\mathcal{L}=10^{32}$ cm⁻² s⁻¹) for the level 2 trigger

	35 - 70 GeV		70 - 140 GeV	
Trigger	Events	Rate (Hz)	Events	Rate (Hz)
Muon Cluster	21	0.4	22	0.03
ID-jet+muon	21	0.4	71	0.10
E_{HAD}/E_{EM}	5	0.1	10	0.01