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Standard Model Higgs

Responsible for W, Z mass and (charged) fermion masses

mW ! Mpl

Associated hierarchies:

Gauge hierarchy 

Yukawa hierarchy ye ! yt



Yukawa hierarchy 

Technically natural but would still like an explanation

Symmetries (Froggatt Nielsen Models)
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Charge the SM fermions differently



Geography (Extra dimensional models)
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Figure 3: Yukawa coupling: the Gaussian wave functions of the
fermions l and ec overlap only in an exponentially small region, sup-
pressing the effective Yukawa coupling exponentially.

suppressed because the two fields are separated in space. The coupling is

then proportional to the exponentially small overlap of the wave functions.

Note that we did not impose any chiral symmetries in the fundamental

theory to obtain this result: the coupling κ can violate the electron chiral

symmetry by O(1). Even with chiral symmetry maximally broken in the

fundamental theory, we obtain an approximate chiral symmetry in the low

energy, 4-d effective theory.

3.2 Long live the proton

Proton decay places a very stringent constraint on most extensions of the

standard model. Unless a symmetry can be imposed to forbid either baryon

or lepton number violation, proton decay forces the scale of new physics to

be extremely high. In particular one might be tempted to conclude that

proton decay kills all attempts to lower the fundamental Planck scale M∗

significantly beneath the GUT scale, unless continuous or discrete gauge

symmetries are invoked. We now show that these no-go theorems are very

elegantly evaded by separating wave functions in the extra dimensions. Con-

sider for simplicity a one-generation model in five dimensions where the stan-

dard model fermions are again localized in the x5 direction by coupling the

five-dimensional fields to the domain wall scalar Φ. Assume that all quark

fields are localized near x5 = 0 whereas the leptons are near x5 = r as de-
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Arkani-hamed, Schmaltz

Y SM
ij =

∫
dx5 ψi(x5)ψj(x5)h(x5)

Place the SM fermions in different places



Quantum mechanics

Y SM
ij (µ) = Yij(µ0)

(

µ

µ0

)
1

2
(γi+γj+γH)

Nelson, Strassler

•The SM is coupled to a strongly coupled CFT
•SM fields get large anomalous dimensions
•Enters approximate fixed point at scale     and leaves at  
scale  

µ

µ0

SM fermions have different couplings 



•Many clever mechanisms exist but must treat SM 
fermions separately.  

•Convert small differences to large differences

•Example where SM fermions all charged the same 
way but get differences in Yukawas?



Quantum mechanics

Masses are generated through quantum effects

Electron mass from muon mass? Georgi and Glashow, `73

Work in the `80’s, mainly one and two loop mass generation

Babu and Ma, `89



Quantum mechanics

Masses are generated through quantum effects

Electron mass from muon mass? Georgi and Glashow, `73

Work in the `80’s, mainly one and two loop mass generation

Babu and Ma, `89

Naively all masses at approximately the same 
loop order



Babu and Ma, `89
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Top is clearly special

So,

assume only the top has a tree level Yukawa

ytHū3
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R
Q3

L

Charge the top? 



Instead charge Higgs under an extra 

         broken by the vev of a SM singlet    of 
charge -1

φ

Introduce a vector like pair of fermions with 
quantum numbers of left handed quarks, also 
charged under 

U(1)H

U(1)H

U(1)H



φ(−1)

ψL(−1)ψR(−1)

H(−1)

Qi

L(0) u
j
R(0)

c
j

c̃
i

mij ∝ c̃icj

Yukawas:

But lh top and rh top only appear linearly in couplings
Redefine couplings so only one lh and one rh couple

Call these the top

Mass matrix is rank 1

Only the top gets a tree level mass



Chiral symmetries

U(3)Q × U(3)u × U(3)d → U(1)t × U(2)Q × U(2)u × U(3)d

yt != 0

Need to break remaining chiral symmetries

r̃ : (3, 2, +7/6)Introduce a scalar leptoquark
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Chiral symmetries

U(3)Q × U(3)u × U(3)d → U(1)t × U(2)Q × U(2)u × U(3)d

yt != 0

Need to break remaining chiral symmetries

r̃ : (3, 2, +7/6)Introduce a scalar leptoquark

(charge 0 under extra       ) U(1)

Most general interactions:

that differentiates it from the other quarks.

In order to generate the remaining quark masses we introduce (Section 4) some other

scalar fields that couple to the down-type quarks, resulting in b, s and d masses at one,

three and four loops respectively. It is remarkable that this realistic pattern of loop-

induced masses arises without need for any flavor symmetry to differentiate the three

generations. Finally, phenomenological implications of the model are briefly discussed in

Section 5.

2 Loop-induced masses for charged leptons and up-

type quarks

We assume that the electroweak symmetry is spontaneously broken by the vacuum ex-

pectation value of a Higgs doublet H , and that the only nonzero Yukawa coupling of H

to the standard model fermions is

yt u
3
RQ3

L H + H.c. . (2.1)

Here Qi
L is the quark doublet of the ith generation, uj

R is the up-type quark singlet of the

jth generation, and yt is a dimensionless parameter. The above Yukawa coupling breaks

explicitly the [U(3)]3 global symmetry of the quark kinetic terms down to a U(1)t ×

U(2)Q × U(2)u × U(3)d chiral symmetry, where the last three factors represent unitary

transformations acting on Q3
L, Q1,2

L , u1,2
R and the down-type quark singlets dj

R, respectively.

The top quark mass is generated at tree level (mt = ytvH > 0, where vH ≈ 174 GeV),

while the other quarks and leptons remain massless so far.

Let us introduce now a complex scalar field, r, which transforms under SU(3)c ×

SU(2)W × U(1)Y as (3, 2, +7/6). The normalization of hypercharge used here is Y =

Q − T 3, where Q is the electric charge and T 3 is the diagonal SU(2)W generator. The

most general renormalizable interactions of r with the standard model fermions are given

by

λij r u i
RLj

L + λ′
ij r Q

i
Lej

R + H.c. , (2.2)

where i, j = 1, 2, 3 label the generations, Lj
L are the lepton doublets, and ej

R are the

SU(2)W -singlet electrically-charged leptons. The λij and λ′
ij coefficients are dimensionless

complex parameters.
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U(3)Q × U(3)u × U(3)d → U(1)t × U(2)Q × U(2)u × U(3)d

yt != 0

→ U(1)u × U(3)d

λ != 0

λ′ != 0

U(3)L × U(3)e → U(1)L

λ != 0

λ′ != 0

With this breaking of chiral symmetries up type quarks and 
charged leptons can get a mass at some loop order



U(3)Q × U(3)u × U(3)d → U(1)t × U(2)Q × U(2)u × U(3)d

yt != 0

→ U(1)u × U(3)d

λ != 0

λ′ != 0

U(3)L × U(3)e → U(1)L

λ != 0

λ′ != 0

With this breaking of chiral symmetries up type quarks and 
charged leptons can get a mass at some loop order

But what loop order?
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U(2)u × U(3)L transformation is

λ =





λ11 λ12 0
0 λ22 λ23

0 0 λ33



 , (2.3)

where all λij are real and positive. Similarly, using the U(2)Q × U(3)e transformations,

we can write

λ′ =





λ′

11 λ′

12 0
0 λ′

22 λ′

23

0 0 λ′

33



 , (2.4)

with λ′

ij > 0.

Let us now identify the leading loop diagrams that communicate electroweak symmetry

breaking from the top quark to the leptons and the charm quark. The τ mass is induced

at one-loop, as shown in Figure 2, and is given by

mτ " λ33λ
′

33 mt ε
(1)
r̃ , (2.5)

where ε(1)
r̃ is the loop factor, which in the leading logarithm approximation is simply

ε(1)
r̃ "

Nc

16π2
ln

(

Λ2

M2
r̃

)

. (2.6)

L3
L

τRtR Q3
L

r̃

Figure 2: The one-loop diagram responsible for the tau mass. The × represents a top
quark mass insertion.

Q2
L

cRτR L3
LQ3

L tR

r̃

r̃

Figure 3: Charm mass induced by the two-loop “rainbow” diagram involving the r̃ scalar.
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λ22λ
′

22(1 + x) ≈ (1.5)2 for correct             ratio 

as the one in Figure 4:

Me[r̃r̃r̃] =







0 0 0

0 λ′

22λ
′

23λ23λ22 λ′

22λ
′

23 [(λ23)2 + (λ33)2]

0 [(λ′

23)
2 + (λ′

33)
2]λ23λ22 [(λ′

23)
2 + (λ′

33)
2] [(λ23)2 + (λ33)2]






λ′

33λ33 mt ε(3)
r̃

(2.10)

where the three loop factor for the rainbow diagram is

ε(3)
r̃ !

1

Nc

(

ε(1)
r̃

)3
(2.11)

in the leading logarithm approximation. The 33 element of the charged-lepton mass

matrix is dominated by the the one-loop tau mass from Eq. (2.5), so that the muon mass

is approximately given by the 22 element of Me[r̃r̃r̃]:

mµ ! λ′

22λ22 mc ε(1)
r̃ . (2.12)

The mµ/mc ratio at 1 TeV requires λ22λ′

22 ≈ (1.5)2.

The leading contribution to the up quark mass is a four loop rainbow diagram,

Mu[r̃r̃r̃r̃]ij =
∑

a,b,c,d

λ′

iaλ
′

baλ
′

b3λc3λcdλjdλ33λ
′

33mtε
(4)
r̃ (2.13)

where the four loop factor for the rainbow diagram is

ε(4)
r̃ ≈

1

N2
c

(

ε(1)
r̃

)4
(2.14)

The up quark mass is given approximately by the 11 entry of Mu[r̃r̃r̃r̃]:

mu ≈ λ′

12λ12mµ

ε(1)
r̃

Nc

(2.15)

The mu/mµ ratio at 1 TeV requires λ12λ′

12 ≈ (0.6)2.

The mu/me ratio at 1 TeV requires λ11λ′

11 ≈ (2.3)2. Thus if the only source of mass

for the up type quarks and the leptons is loops involving r̃ then a coupling matrix of the

approximate form below would give masses consistent with nature.

λ ∼ λ′ ∼





2.3 0.6 0
0 1.5 3.3
0 0 0.4



 (2.16)
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(1)
r̃ , (2.5)

where ε(1)
r̃ is the loop factor, which in the leading logarithm approximation is simply

ε(1)
r̃ "

Nc

16π2
ln

(

Λ2

M2
r̃

)

. (2.6)
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Figure 2: The one-loop diagram responsible for the tau mass. The × represents a top
quark mass insertion.
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Here Nc = 3 is the number of colors, Mr̃ is the mass of r̃, and Λ is the cutoff scale

where the quark (other than top) and lepton masses vanish. For a cutoff Λ ≈ 10Mr̃ the

loop factor is ε(1)
r̃ ≈ 0.087, and using the mτ/mt ratio at 1 TeV (see Section 1) we find

λ33λ′

33 ≈ (0.36)2.

The charm quark mass is induced at two loops, through the “rainbow” diagram shown

in Figure 3. The contributions to the up-type quark mass matrix from this type of diagram

are given by
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
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 λ′
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(2)
r̃ . (2.7)

where ε(2)
r̃ is the result of doing the two loop integral:

ε(2)
r̃ "

1

Nc

(

ε(1)
r̃

)2

. (2.8)

Given that the tree level top mass represents a large contribution to the 33 element of the

up-type quark mass matrix, the charm mass is approximately given by the 22 element of

Mu[r̃r̃]:

mc " λ′

23λ23 mτ

ε(1)
r̃

Nc

. (2.9)

Assuming that there are no other contributions to the charm mass, the mc/mτ ratio at 1

TeV requires λ23λ′

23 ≈ (3.3)2 for Λ ≈ 10Mr̃.

Now that the charm quark has a mass it will generate a muon mass and an up quark

mass in the same way that the top lead to tau and charm masses.

The leading contributions to the muon mass arise at three loops. The charged-lepton

mass matrix gets the following contributions from diagrams involving three r̃ lines, such
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λ22λ
′

22(1 + x) ≈ (1.5)2 for correct             ratio 

as the one in Figure 4:

Me[r̃r̃r̃] =







0 0 0

0 λ′

22λ
′

23λ23λ22 λ′

22λ
′

23 [(λ23)2 + (λ33)2]

0 [(λ′

23)
2 + (λ′

33)
2]λ23λ22 [(λ′

23)
2 + (λ′

33)
2] [(λ23)2 + (λ33)2]






λ′

33λ33 mt ε(3)
r̃

(2.10)

where the three loop factor for the rainbow diagram is

ε(3)
r̃ !

1

Nc

(

ε(1)
r̃

)3
(2.11)

in the leading logarithm approximation. The 33 element of the charged-lepton mass

matrix is dominated by the the one-loop tau mass from Eq. (2.5), so that the muon mass

is approximately given by the 22 element of Me[r̃r̃r̃]:

mµ ! λ′

22λ22 mc ε(1)
r̃ . (2.12)

The mµ/mc ratio at 1 TeV requires λ22λ′

22 ≈ (1.5)2.

The leading contribution to the up quark mass is a four loop rainbow diagram,

Mu[r̃r̃r̃r̃]ij =
∑

a,b,c,d

λ′

iaλ
′

baλ
′

b3λc3λcdλjdλ33λ
′

33mtε
(4)
r̃ (2.13)

where the four loop factor for the rainbow diagram is

ε(4)
r̃ ≈

1

N2
c

(

ε(1)
r̃

)4
(2.14)

The up quark mass is given approximately by the 11 entry of Mu[r̃r̃r̃r̃]:

mu ≈ λ′

12λ12mµ

ε(1)
r̃

Nc

(2.15)

The mu/mµ ratio at 1 TeV requires λ12λ′

12 ≈ (0.6)2.

The mu/me ratio at 1 TeV requires λ11λ′

11 ≈ (2.3)2. Thus if the only source of mass

for the up type quarks and the leptons is loops involving r̃ then a coupling matrix of the

approximate form below would give masses consistent with nature.

λ ∼ λ′ ∼





2.3 0.6 0
0 1.5 3.3
0 0 0.4



 (2.16)
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Four loop up quark mass

Three loop
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Five loop electron mass

If only source of electron mass will determine λ11λ
′
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r̃ : (3, 2, +7/6)Only input:

that differentiates it from the other quarks.

In order to generate the remaining quark masses we introduce (Section 4) some other

scalar fields that couple to the down-type quarks, resulting in b, s and d masses at one,

three and four loops respectively. It is remarkable that this realistic pattern of loop-

induced masses arises without need for any flavor symmetry to differentiate the three

generations. Finally, phenomenological implications of the model are briefly discussed in

Section 5.

2 Loop-induced masses for charged leptons and up-

type quarks

We assume that the electroweak symmetry is spontaneously broken by the vacuum ex-

pectation value of a Higgs doublet H , and that the only nonzero Yukawa coupling of H

to the standard model fermions is

yt u
3
RQ3

L H + H.c. . (2.1)

Here Qi
L is the quark doublet of the ith generation, uj

R is the up-type quark singlet of the

jth generation, and yt is a dimensionless parameter. The above Yukawa coupling breaks

explicitly the [U(3)]3 global symmetry of the quark kinetic terms down to a U(1)t ×

U(2)Q × U(2)u × U(3)d chiral symmetry, where the last three factors represent unitary

transformations acting on Q3
L, Q1,2

L , u1,2
R and the down-type quark singlets dj

R, respectively.

The top quark mass is generated at tree level (mt = ytvH > 0, where vH ≈ 174 GeV),

while the other quarks and leptons remain massless so far.

Let us introduce now a complex scalar field, r, which transforms under SU(3)c ×

SU(2)W × U(1)Y as (3, 2, +7/6). The normalization of hypercharge used here is Y =

Q − T 3, where Q is the electric charge and T 3 is the diagonal SU(2)W generator. The

most general renormalizable interactions of r with the standard model fermions are given

by

λij r u i
RLj

L + λ′
ij r Q

i
Lej

R + H.c. , (2.2)

where i, j = 1, 2, 3 label the generations, Lj
L are the lepton doublets, and ej

R are the

SU(2)W -singlet electrically-charged leptons. The λij and λ′
ij coefficients are dimensionless

complex parameters.
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Down quark masses

U(3)d × U(1)u × U(1)L

Need to break the remaining chiral symmetries

Have choices diquarks, leptoquarks...

q̃ : (3, 2, 1/6)

d̃6 : (6̄, 1,−1/3)

d̃ : (3, 1,−1/3)

H8 : (8, 2,−1/2)



New field content

Up quarks and leptons Down quarks

4 Loop-induced down-type quark masses

With the fields and interactions introduced in the previous sections the chiral symmetry

of the Lagrangian is U(3)d×U(1)u ×U(1)L. This must be further broken before the down

type quarks can acquire a mass. This is achieved with the introduction of the extra scalars

shown on the right hand side of Table 4. These are: a vector-like pair of color octet scalars

Φ8, Φ′
8 which transform under SU(3)c × SU(2)W × U(1)Y × U(1)H as (8, 2,±1/2, 1), a

color triplet scalar Φ3 transforming as (3, 2,−1/6, 0) and r′ similar1 to r except that it

has charge 2 under U(1)H .

φ ψL, ψR H r r′ Φ8 Φ′
8 Φ3

SU(3) 1 3 1 3 3 8 8 3
SU(2) 1 2 2 2 2 2 2 2
U(1)Y 0 1/6 1/2 7/6 7/6 1/2 −1/2 −1/6
U(1)H −1 −1 1 0 2 1 1 0

Table 1: Charges of fields, those on the left are responsible for up type quark and charged
lepton masses, those on the right are responsible for down type quarks masses. Note that
r′ is one of several alternatives, as outlined in the text.

At the renormalizable level the allowed couplings between the octet scalars and SM

fermions are,

κi Φ8 ui
RΨL + κ′ Φ′

8 d
3
RΨL. (4.1)

Just as the SM Higgs couples to only one linear combination of up type quarks Φ′
8 couples

to only one linear combination of down type quarks, which we choose to be the bottom

quark. The right handed up type quarks may be redefined in order to simplify the

couplings of Φ8 but would alter the form of (2.3).

The SM fermions have one other renormalizable interaction,

ηij Φ3 L
i
Ld j

R + h.c. (4.2)

With the interactions shown above in (4.1) and (4.2), and the most general interactions

amongst the scalars, the chiral symmetry is broken down to U(1)L×U(1)Q, corresponding

to lepton and quark number respectively. As before we write the couplings in a convenient

form that maximises the number of zero entries. Without altering the previous discussion

1The r′ field is necessary to generate higher dimensional scalar couplings, here we have made a choice
amongst several viable alternatives.
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U(3)d × U(1)u × U(1)L → U(1)L × U(1)Q

Most general couplings

break the remaining chiral symmetries

4 Loop-induced down-type quark masses

With the fields and interactions introduced in the previous sections the chiral symmetry

of the Lagrangian is U(3)d × U(1)u × U(1)L. This must be further broken before the

down type quarks can acquire a mass. This is achieved with the introduction of the extra

scalars shown on the right hand side of Table 4. These are: a vector-like pair of color octet

scalars Φ8, Φ′

8 which transform under SU(3)c×SU(2)W ×U(1)Y ×U(1)′ as (8, 2,±1/2, 1),

a color triplet scalar Φ3 transforming as (3, 2,−1/6, 0) and r′ similar to r except that it

has charge 2 under U(1)′.
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fermions are,

κi Φ8 ui
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8 d
3
RΨL. (4.1)

Just as the SM Higgs couples to only one linear combination of up type quarks Φ′
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to only one linear combination of down type quarks, which we choose to be the bottom

quark. The right handed up type quarks may be redefined in order to simplify the

couplings of Φ8 but would alter the form of (2.3).

The SM fermions have one other renormalizable interaction,

ηij Φ3 d
i

RLj
L + h.c. (4.2)

With the interactions shown above in (4.1) and (4.2), and the most general interactions

amongst the scalars, the chiral symmetry is broken down to U(1)L×U(1)Q, corresponding

to lepton and quark number respectively. As before we write the couplings in a convenient

form that maximises the number of zero entries. Without altering the previous discussion

the most general couplings will have 3 non-zero entries in κi and one zero entry in ηij

which we choose to be η13;

η =





η11 η12 0
η21 η22 η23

η31 η32 η33



 (4.3)

Without loss of generality κ′, all the entries of κ and the diagonal entries of η may be

made real and positive. The bottom quark acquires a mass at one loop from the diagram

shown in Figure 6,

mb =
cRcLκ3λ88′φφκ′

16π2
〈φ〉3〈H〉

f(m8′, m8) + f(mψ, m8′) + f(m8, mψ)

(m2
8′ − m2

8)(m
2
ψ − m2

8)(m
2
ψ − m2

8′)
(4.4)

where f(ma, mb) ≡ m2
am

2
b log m2

a

m2

b
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to lepton and quark number respectively. As before we write the couplings in a convenient
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which we choose to be η13;

η =





η11 η12 0
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

 (4.3)
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made real and positive. The bottom quark acquires a mass at one loop from the diagram
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mb =
cRcLκ3λ88′φφκ′

16π2
〈φ〉3〈H〉
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2
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8)(m
2
ψ − m2
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(4.4)

where f(ma, mb) ≡ m2
am

2
b log m2

a

m2

b
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κ = (κ1, κ2, κ3)

Without altering up type and leptons have the 
freedom to rotate such that,the most general couplings will have 3 non-zero entries in κi and one zero entry in ηij

which we choose to be η31;

η =





η11 η12 η13

η21 η22 η23

0 η32 η33



 (4.3)

Without loss of generality κ′ and the diagonal entries of η may be made real and positive.

Now that the couplings have been put in their simplest possible form we may identify

the diagrams that contribute to the down quark masses. The bottom quark acquires a

mass at one loop from the diagram shown in Figure 8. It is given by,

mb = Nc κ3κ
′cmt

[

1 +

(

yφ〈φ〉

MΨ

)2
]1/2

(

〈φ〉

MΨ

)2

I(MΨ, M8, M8′) (4.4)

where

I(MΨ, M8, M8′) = M2
Ψ

∫

d4k

(2π)4

1

(k2 − M2
Ψ) (k2 − M2

8 ) (k2 − M2
8′)

(4.5)

=
M2

Ψ

16π2

M2
8′ M

2
8 log

(

M2

8′

M2
8

)

+ M2
Ψ M2

8′ log
(

M2
Ψ

M2

8′

)

+ M2
8 M2

Ψ log
(

M2
8

M2
Ψ

)

(M2
8′ − M2

8 ) (M2
Ψ − M2

8 ) (M2
Ψ − M2

8′)

and c is the quartic scalar coupling. Taking the limit M8 ≈ M8′ % MΨ, where the

two octet scalars are degenerate and lighter than the vector like fermions the diagram of

Figure 8 shrinks to become very similar to that of Figure 2. Similarly the integral of (4.5)

becomes

I(MΨ, M8, M8′) =
1

16π2
log

(

M2
Ψ

M2
8

)

(4.6)

As before, this mass is a finite effect with the logarithm being cutoff by the mass of the

massive fermion.

The strange quark mass is generated at 3 loops by the diagram shown in Figure 9.

The generation of the strange mass relies on the existence of the quartic scalar coupling

(denoted by & in the diagram) which naively appears to violate the global U(1)H . However,

there is a U(1)H preserving higher dimension coupling,

c′ Φ†
3 r† H H

(

φ

Mr′

)2

+ h.c., (4.7)

induced after integrating out the extra scalar r′. Once the SM singlet φ gets a vev the

effective quartic coupling shown in Figure 9 is present. As mentioned above our choice of
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Diagonal entries can be made real and positive
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The generation of the strange mass relies on the existence of the quartic scalar coupling

(denoted by & in the diagram) which naively appears to violate the global U(1)H . However,

there is a U(1)H preserving higher dimension coupling,
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One loop bottom mass

Q3
L bRQ3

L tR

d̃

Figure 5: The one-loop diagram responsible for the bottom mass.

Q2
L Q2

L e3
R Q3

L tR L3
L

cR sR

r̃

r̃

d̃

Figure 6: The three-loop “rainbow” diagram responsible for the strange quark mass.

The charm to strange mass ratio at 1 TeV requires κ22κ′

22 ≈ (1.0)2.

Finally the down quark gets a mass at 4 loops, from the “bug” diagram shown in

Figure 9,

Md[d̃d̃r̃r̃]ij =
∑

a,b,c,d

κaiλ
′

abλ
′

cbλ
′

c3κ
′

3dκ
′∗

jdλ
′

33κ
′∗

33mtεbug (3.9)

with

εbug ≈
1

Nc

(ε)4 (3.10)

The down mass is given approximately by the 11 entry of (3.9):

md ≈ κ11λ
′

12λ
′

22λ
′

23κ
′

31κ
′∗

11λ
′

33κ
′∗

33mt

1

Nc

ε4 (3.11)

Obtaining the correct down mass determines the combination κ11κ′

31

4 Putting everything together

Other than the top mass all masses are generated once d̃ or r̃ are integrated out. In order

to compare our results to the spectrum of the SM we will need to know the masses of the

9

mb ≈ Ncκ3κ
′c mt

(

〈φ〉

MΨ

)2
1

16π2
log

(

M2
Ψ

M2
8

)



One loop bottom mass

mb ≈ Ncκ3κ
′c mt

(

〈φ〉

MΨ

)2
1

16π2
log

(

M2
Ψ

M2
8

)



One loop bottom mass

φ ψL, ψR H r r′ H8 H ′

8 Φ3

SU(3) 1 3 1 3 3 8 8 3
SU(2) 1 2 2 2 2 2 2 2
U(1)Y 0 1/6 1/2 7/6 7/6 1/2 −1/2 −1/6
U(1)′ −1 −1 1 0 2 1 1 0

Table 1: Charges of fields, those on the left are responsible for up type quark and charged
lepton masses, those on the right are responsible for down type quarks masses.

Q3
L ΨR ΨL bR

tR ΨL

H

φ

φ φ

Φ8 Φ′

8

Figure 6: One loop bottom mass generation.

The strange quark mass is generated at 3 loops by the diagram shown in Figure 7.

The generation of the strange mass relies on the existence of the quartic scalar coupling

in the diagram which naively appears to violate the global U(1). However, there is a U(1)

preserving higher dimension coupling,

Φ3 r H H

(

φ

mr′

)2

, (4.5)

induced after integrating out the extra scalar r′. Once the SM singlet φ gets a vev the

effective quartic coupling shown in Figure 7 is present. The strange mass is a finite effect mention

here or

elsewhere

that there

are choices

the logarithmic divergence one expects from power counting is cutoff by the mass of r′.
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mb ≈ Ncκ3κ
′c mt
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〈φ〉
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16π2
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Ψ
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Three loop strange mass
Finally the down mass is generated at four loops.

Q3
L

τR Q3
L tR L3

L
sR

H

H

r

r

Φ3

•

•

Figure 7: Three loop strange mass generation.

4.0.1 Putting everything together

Other than the top mass all masses are generated once d̃ or r are integrated out. In order

to compare our results to the spectrum of the SM we will need to know the masses of the

quarks and the leptons at the scale µ = mr ≈ md̃ ∼ 1 TeV.

After the inclusion of d̃ there is another two loop contribution to the charm quark

mass, Figure 10.

mu
ij = κi3κ33κ

′

33(κ
′

3j)
∗mtε

(2)

d̃
=





κ13(κ′

31)
∗ κ13(κ′

32)
∗ κ13κ′

33

κ23(κ′

31)
∗ κ23(κ′

32)
∗ κ23κ′

33

κ33(κ′

31)
∗ κ33(κ′

32)
∗ κ33κ′

33



 κ33κ
′

33mtε
(2)

d̃
(4.1)

11

Integrate out r’

φ ψL, ψR H r r′ H8 H ′

8 Φ3

SU(3) 1 3 1 3 3 8 8 3
SU(2) 1 2 2 2 2 2 2 2
U(1)Y 0 1/6 1/2 7/6 7/6 1/2 −1/2 −1/6
U(1)′ −1 −1 1 0 2 1 1 0

Table 1: Charges of fields, those on the left are responsible for up type quark and charged
lepton masses, those on the right are responsible for down type quarks masses.
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L ΨR ΨL bR

tR ΨL

H

φ

φ φ

Φ8 Φ′

8

Figure 6: One loop bottom mass generation.

The strange quark mass is generated at 3 loops by the diagram shown in Figure 7.

The generation of the strange mass relies on the existence of the quartic scalar coupling

in the diagram which naively appears to violate the global U(1). However, there is a U(1)

preserving higher dimension coupling,

Φ3 r H H

(

φ

mr′

)2

, (4.5)

induced after integrating out the extra scalar r′. Once the SM singlet φ gets a vev the

effective quartic coupling shown in Figure 7 is present. The strange mass is a finite effect mention

here or

elsewhere

that there

are choices

the logarithmic divergence one expects from power counting is cutoff by the mass of r′.
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Four loop down masses

The down has a 4 loop mixed diagram 
(exercise for reader)



Q1
L

µR Q3
L τR Q3

L cR L2
L dR

Φ′
8

Φ8

H

r
r

r

Φ3

""

""

Figure 10: Down-quark mass induced at four loops. The " represents a vertex involving
〈φ〉. The r lines do not intersect each other (this is a nonplanar diagram).

Q2
L τR Q3

L cR

r

H

r
Φ′

8

Φ8

•

φ

φ

φ

Figure 11: Charm-quark mass induced at two loops. The • indicates a dimension-5 vertex
obtained by integrating out the Ψ fermion.

for the quarks are qRMqL with the mass matrices heuristically given by,

Mu ≈ mt





ε4 ε2 ε2

ε4 ε2 ε2

ε4 ε2 1



 Md ≈ mt





ε4 ε4 ε4

ε4 ε3 ε3

ε4 ε3 ε



 (4.13)

where ε ≈ 1
16π2 log M2

1

M2
2

≈ 0.1 denotes the loop suppression associated with each entry. We

have suppressed all the coefficients and parameter dependence; some of which is complex.

Finding the CKM is now a matter of finding the rotations of the left handed fields that

diagonalise the mass matrix, i.e. we need the eigenvectors of M †M . For the up-type

quarks and down-type quarks respectively these are given by,

Ru =





1 ε2 0
−ε2 1 ε2

0 −ε2 1



 Rd =





1 − ε2 ε − ε3 ε3

−ε + ε3 1 − ε2 ε2

ε3 −ε2 1



 (4.14)

15



There are also corrections to some of the states 
that have mass:

“Cross Talk”

Charm gets a two loop correction

Up gets a four loop correction

Muon gets a three loop correction

Electron gets a five loop correction
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Figure 10: Down-quark mass induced at four loops. The " represents a vertex involving
〈φ〉. The r lines do not intersect each other (this is a nonplanar diagram).
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Figure 11: Charm-quark mass induced at two loops. The • indicates a dimension-5 vertex
obtained by integrating out the Ψ fermion.

for the quarks are qRMqL with the mass matrices heuristically given by,

Mu ≈ mt


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

 Md ≈ mt
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ε4 ε3 ε



 (4.13)

where ε ≈ 1
16π2 log M2

1

M2
2

≈ 0.1 denotes the loop suppression associated with each entry. We

have suppressed all the coefficients and parameter dependence; some of which is complex.

Finding the CKM is now a matter of finding the rotations of the left handed fields that

diagonalise the mass matrix, i.e. we need the eigenvectors of M †M . For the up-type

quarks and down-type quarks respectively these are given by,

Ru =





1 ε2 0
−ε2 1 ε2

0 −ε2 1



 Rd =





1 − ε2 ε − ε3 ε3

−ε + ε3 1 − ε2 ε2

ε3 −ε2 1



 (4.14)

15

Charm gets a two loop correction

•Different parameter dependence
•Different number of logs
•Changes (lowers) certain couplings

Here Nc = 3 is the number of colors, Mr̃ is the mass of r̃, and Λ is the cutoff scale

where the quark (other than top) and lepton masses vanish. For a cutoff Λ ≈ 10Mr̃ the

loop factor is ε(1)
r̃ ≈ 0.087, and using the mτ/mt ratio at 1 TeV (see Section 1) we find

λ33λ′

33 ≈ (0.36)2.

The charm quark mass is induced at two loops, through the “rainbow” diagram shown

in Figure 3. The contributions to the up-type quark mass matrix from this type of diagram

are given by

Mu[r̃r̃] =





0 0 0
0 λ′

23λ23 λ′

33λ23

0 λ′

23λ33 λ′

33λ33



 λ′

33λ33 mt ε
(2)
r̃ . (2.7)

where ε(2)
r̃ is the result of doing the two loop integral:

ε(2)
r̃ "

1

Nc

(

ε(1)
r̃

)2

. (2.8)

Given that the tree level top mass represents a large contribution to the 33 element of the

up-type quark mass matrix, the charm mass is approximately given by the 22 element of

Mu[r̃r̃]:

mc " λ′

23λ23 mτ

ε(1)
r̃

Nc

. (2.9)

Assuming that there are no other contributions to the charm mass, the mc/mτ ratio at 1

TeV requires λ23λ′

23 ≈ (3.3)2 for Λ ≈ 10Mr̃.

Now that the charm quark has a mass it will generate a muon mass and an up quark

mass in the same way that the top lead to tau and charm masses.

The leading contributions to the muon mass arise at three loops. The charged-lepton

mass matrix gets the following contributions from diagrams involving three r̃ lines, such

L2
L

cR L3
L tR Q3

L
τR Q2

L
µR

r̃

r̃

r̃

Figure 4: Muon mass induced by the three-loop “rainbow” diagram involving the r̃ scalar.

5

Doesn’t change loop counting
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CKM

mu ≈ mt





ε
4

ε
2

ε
2

ε
4

ε
2

ε
2

ε
4

ε
2 1



 md ≈ mt





ε
4

ε
4

ε
4

ε
4

ε
3

ε
3

ε
4

ε
3

ε





VCKM ≈





1 − ε2 ε ε3

−ε 1 − ε2 ε2

ε3 ε2 1





Resulting in

Still to think about phases...



The model contains extra fermions and scalar 
Leptoquarks

(Alternative realisation contains 
diquarks - easier to see at LHC 

than TeVatron)



Mass scales

mf ≈ parameters × mt ×

[

1

16π2
log

(

M2

M ′ 2

)]n

Only determines ratio of masses

Works at all scales, what is the lowest?



Tree level exchange of leptoquark can lead to flavour changing 
processes e.g.

Constraints

µ → e conversion

τ
+
→ K

0
e
+

π
+
→ e

+
ν versus π

+
→ µ

+
ν

Mr̃
>
∼

5 − 50 TeV

K+
→ µ+e−π+ BR < 10

−11



Dipole moments 

Usually loop suppressed

∼

1

16π2

mf
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e

But for us mass is already a loop effect so no additional loop 
suppression

∼
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Conclusions

•Fermions have complicated mass hierarchy
•Many attempts exist to explain it
•Top is probably special, perhaps only top mass has a tree 
level Yukawa 
•With extra scalars coupling to fermions top mass is 
communicated at loop level
•Interesting structure of fermion mass spectrum arises
•Predicts flavour changing processes
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•With extra scalars coupling to fermions top mass is 
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•Project X?




