Economically Deflected Anomaly Mediation

Nobuchika Okada

Theory Division, High Energy Accelerator Research Organization (KEK)

In collaboration with

Rabindra Nath Mohapatra (University of Maryland)

Hai-Bo Yu (University of Maryland → UC, Irvine)

In preparation

UC, Davis, Sep. 24, 2007

1. Introduction

We need New Physics!

The Standard Model: hierarchy problem

Instability of Electroweak scale

← quadratic divergence of Higgs mass^2

(Cold) Dark Matter: WMAP data

← No candidate in SM

Some New Physics around "1 TeV" can solve these problems:

Stabilize the EW scale \rightarrow New Physics scale O(1 TeV)

Reasonable DM relic density -> WIMP hypothesis

$$m_{WIMP} = 100 \text{GeV} - 1 \text{TeV}$$

$$\sigma \sim 1/(1 \text{TeV})^2$$

$$\Omega_{DM} h^2 = 0.1$$

More interestingly....

O(1 TeV) is accessible to future collider experiments

 Large Hadron Collider (LHC)
 High discovery potential

 → find New Physics

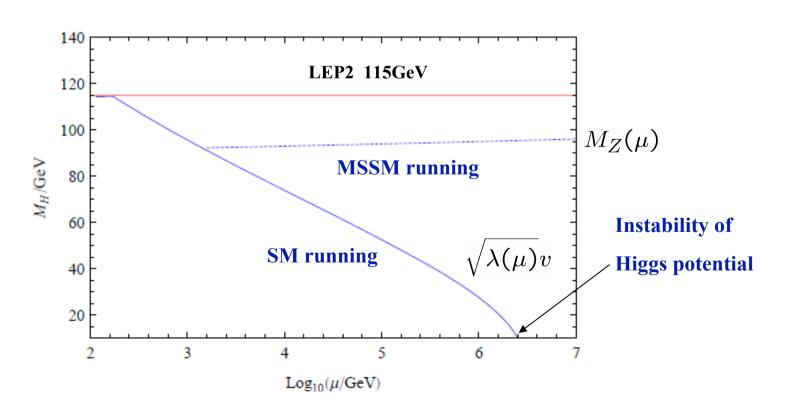
 International Linear Collider (ILC)
 precision measurements

→ <u>discriminate</u> New Phys. Models

Weak Scale Supersymmetry

SUSY Standard Model with O(1 TeV) soft SUSY breaking terms

The most promising candidate: sparticles around O(1TeV)


neutralino LSP as the DM candidate

And more...

SUSY field theories → easier than non-SUSY field theory controllable quantum corrections

"stable" in UV

no quadratic divergence non-renormalization theorem, ...

Important issues in SUSY models

SUSY should be broken at low energies

→ What is the origin of SUSY breaking?

the mechanism of SUSY breaking mediation?

Current experiments:

No observation of sparticles

No significant FCNC & CP violation more than SM contributions

→ <u>Clever mediation mechanism</u> is necessary

not to cause SUSY FCNC & CP problems

but provide sparticle masses around 100GeV -1 TeV

Many scenarios have been proposed:

```
gauge mediation,
anomaly mediation,
gaugino mediation,
radion mediation,
modulus mediation,
mixed modulus-anomaly mediation,
```

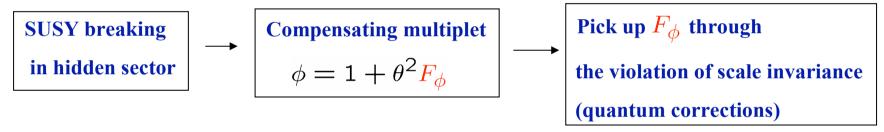
Each scenario provides typical sparticle mass spectrum

What we will do with LHC & ILC

Discovery of SUSY!

Then, sparticle mass spectroscopy

→ understand which is correct


SUSY breaking mediation through superconformal anomaly

flavor blind sparticle mass spectrum

UV insensitive soft SUSY breaking terms

In supergravity

→ model independent

$$M_{i} = -\frac{\beta(g_{i}^{2})}{2g_{i}^{2}} F_{\phi} = \frac{\alpha_{i}(\mu)}{4\pi} b_{i} F_{\phi}$$

$$m_{i}^{2}(\mu) = -\frac{\dot{\gamma}(\mu)}{4} |F_{\phi}|^{2} = 2c_{i} \left(\frac{\alpha_{i}(\mu)}{4\pi}\right)^{2} b_{i} |F_{\phi}|^{2}$$

Unfortunately, fatal problem: tachyonic slepton problem

For slepton mass^2
$$\rightarrow b_i < 0 \rightarrow m_{\tilde{L}}^2, m_{\tilde{e}^c}^2 < 0$$

Many efforts to solve this problem

New contributions which make slepton mass^2 positive

tree level: D-term contributions

Jack, Jones; Arkani-Hamed, Kaplan, Murayama, Nomura;

Kitazawa, Maru, N.O.;

quantum level: new threshold corrections

Katz, Shadmi, Shirman; Chacko, Luty, Maksymyk, Ponton; Chacko,

Luty, Ponton, Shadmi, Shirman; Allanach Dedes; Kaplan, Kribs;

Chacko, Luty; Chacko, Ponton; Nelson, Weiner; N.O.; Luty, Hsieh;

Deflected anomaly mediation (Pomarol & Rattazzi, '99)

Introduction of the messenger sector

new threshold contributions by the messengers

→ slepton mass^2 positive at low energy

2. Deflected anomaly mediation

Pomarol & Rattazzi, '99, Generalization → N.O. '02

Introduction of the messenger sector

$$W_{mess} = S \; \overline{\Psi}_i \; \Psi^i$$

Ex) $\overline{\Psi}_i$, Ψ^i : 5+5* representation under SU(5)_SM

$$\langle S \rangle = S + \theta^2 F_S$$

- **→**Gauge mediation contributions
- → soft mass RGEs are deflected from AMSB trajectories

However,

SUSY breaking in the messenger sector originates from AMSB

$$\frac{F_S}{S} = d F_{\phi}$$
 d: deflection parameter

$$|d|\lesssim 1$$

$$|d|\lesssim 1$$
 $\begin{cases} d=-1 & ext{Pomarol \& Rattazzi, '99,} \ d>0 & ext{N.O. '02} \end{cases}$

How to get "d' of O(1)

In the superconformal framework of SUGRA

$$\mathcal{L} = \int d^4\theta \, \phi^{\dagger} \phi \, S^{\dagger} S + \left\{ \int d^2\theta \, \phi^3 W(S) + h.c. \right\} \quad \text{with } \phi = 1 + \theta^2 F_{\phi}$$

$$V = |F_S|^2 - S^{\dagger} S |F_{\phi}|^2 - 3F_{\phi} W(S) - 3F_{\phi}^{\dagger} W(S)^{\dagger}$$

with
$$F_S = -\left(rac{\partial \mathcal{K}}{\partial S^\dagger}F_\phi + rac{\partial W^\dagger}{\partial S^\dagger}
ight)$$
 from E.O.M

$$\frac{\partial V}{\partial S} = 0 \rightarrow \frac{F_S}{S} = -2F_\phi \frac{\frac{\partial W}{\partial S}}{S\frac{\partial^2 W}{\partial S^2}} \longrightarrow d = -2\frac{\frac{\partial W}{\partial S}}{S\frac{\partial^2 W}{\partial S^2}}$$
N.O. '02

To get O(1) "d" \rightarrow SUSY mass of S should be light $\lesssim F_{\phi}$

3. Soft mass spectrum in deflected AMSB

Soft mass can be extracted from

Giudice & Rattazzi '98

Arkani-Hamed, Giudice, Luty & Rattazzi '98

SUSY wave function renormalization coefficients

$$\frac{M_i}{\alpha(\mu)} = \frac{F_{\phi}}{2} \left(\frac{\partial}{\partial \ln \mu} - \frac{\partial}{\partial \ln |S|} \right) \alpha^{-1}(\mu, S)$$

$$m_i^2(\mu) = -\frac{|F_{\phi}|^2}{4} \left(\frac{\partial}{\partial \ln \mu} - \frac{\partial}{\partial \ln |S|} \right)^2 \ln Z_i(\mu, S)$$

For N pairs of (5+5*) messengers

$$\alpha^{-1}(\mu, S) = \alpha^{-1}(\Lambda_{cut}) + \frac{b - N}{4\pi} \ln\left(\frac{S^{\dagger}S}{\Lambda_{cut}^{2}}\right) + \frac{b}{4\pi} \ln\left(\frac{\mu^{2}}{S^{\dagger}S}\right) ,$$

$$Z_{i}(\mu, S) = Z_{i}(\Lambda_{cut}) \left(\frac{\alpha(\Lambda_{cut})}{\alpha(S)}\right)^{\frac{2c_{i}}{b - N}} \left(\frac{\alpha(S)}{\alpha(\mu)}\right)^{\frac{2c_{i}}{b}}$$

Sign of "d" is important!

For the first 2 generations (neglecting Yukawa coupling)

$$M_i(\mu) = \frac{\alpha_i(\mu)}{4\pi} F_{\phi}(b_i + dN)$$

$$\tilde{m}_i^2(\mu) = 2c_i \left(\frac{\alpha_i(\mu)}{4\pi}\right)^2 |F_{\phi}|^2 b_i G(\mu, S)$$

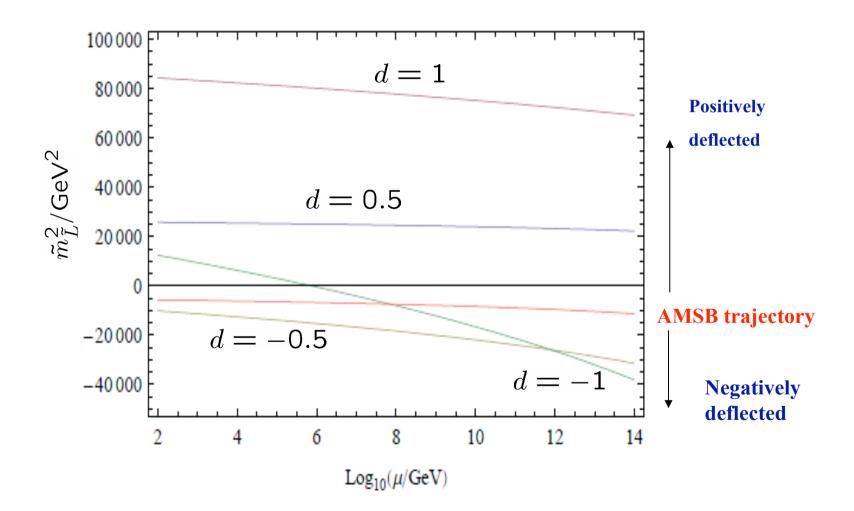
$$G(\mu, S) = \left(\frac{N}{b_i}\xi_i^2 + \frac{N^2}{b_i^2}(1 - \xi_i^2)\right) \frac{d^2 + 2\frac{N}{b_i}d + 1$$

$$\xi_i \equiv \frac{\alpha_i(S)}{\alpha_i(\mu)} = \left[1 + \frac{b_i}{4\pi}\alpha_i(\mu)\ln\left(\frac{S^{\dagger}S}{\mu^2}\right)\right]^{-1}$$

Slepton mass @ messenger scale

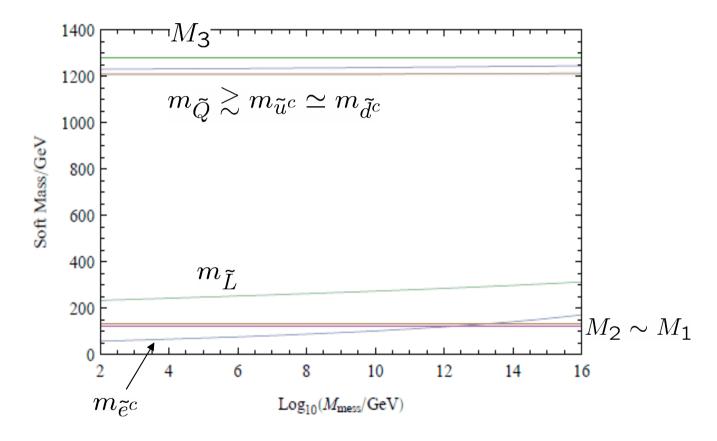
$$\tilde{m}_i^2(S) = 2c_i \left(\frac{\alpha_i(S)}{4\pi}\right)^2 |F_{\phi}|^2 \left[Nd^2 + 2Nd + b_i\right]$$

GMSB: positive


Negative: d < 0

pure AMSB: negative

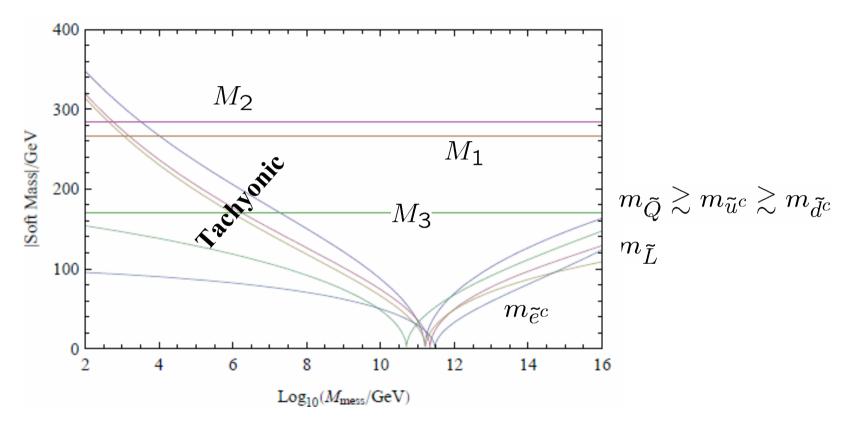
Positive: d >0


Example:

$$F_{\phi}=$$
 20 TeV $\langle S \rangle=$ 10¹⁴ GeV $N=4$

Example:
$$F_{\phi} = 25 \text{ TeV} \quad N = 3$$
 $d = 1$

Soft mass spectrum @ EW scale as a function of Messenger scale



Long running is necessary for B-ino LSP

Messenger scale in the intermediate

Example:
$$F_{\phi} = 25 \text{ TeV}$$
 $N = 4$ $d = -1$

Soft mass spectrum @ EW scale as a function of Messenger scale

Long running is necessary for slepton mass^2 > 0
Slepton LSP → cosmologically disfavored
Very characteristic mass spectrum

4. Economical scenario

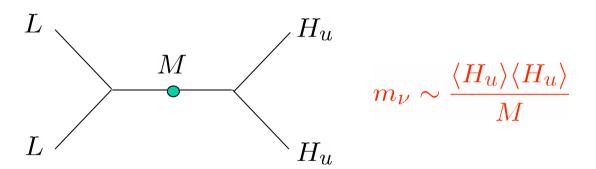
```
Model dependence: d?

messenger scale?

representation of the messenger?
```

General discussion:

 $d > 0 \rightarrow B$ -ino LSP is possible (cosmologically favored)


Messenger scale is around intermediate scale or higher

To make slepton mass^2 positive → no need colored messenger

Intermediate scale → the scale of <u>See-Saw mechanism</u>

Can the messenger play an important role in see-saw model?

Yes, in type II see-saw
$$W = L\Delta L + H_u\overline{\Delta}H_u + M\overline{\Delta}\Delta$$

$$\overline{\Delta} \qquad 3 \qquad -1$$

$$\Delta \qquad 3 \qquad +1$$

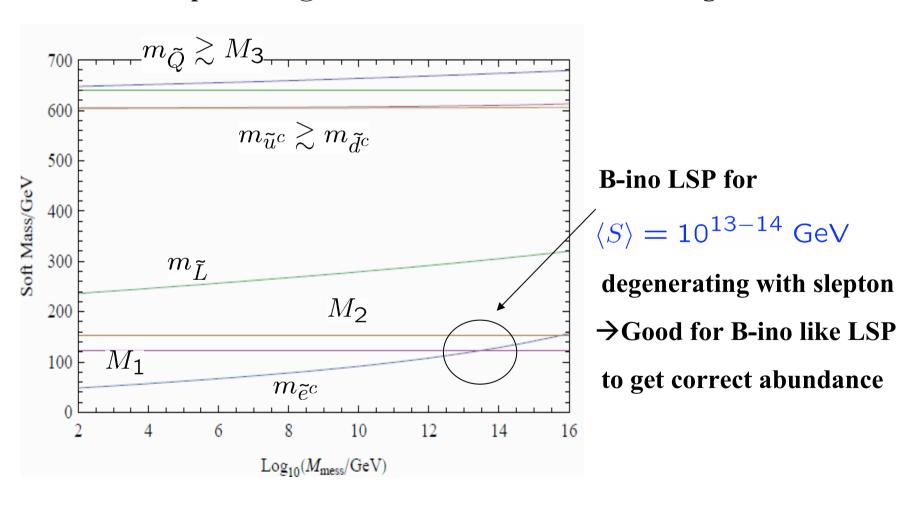
 $M = 10^{12-14}$ GeV gives the right scale for light neutrino mass

We can use $\overline{\triangle}$, \triangle in the messenger in the deflected anomaly mediation scenario!

$$W_{mess} = S\overline{\Delta}\Delta$$

How to naturally generate the intermediate scale? $\langle S \rangle = M$

Simple model:
$$W(S) = -mS^2 + \lambda \frac{S^4}{M_{Pl}}$$



For fixed m, M_Pl

$$\langle S
angle \sim \sqrt{m M_{Pl}} \sim F_\phi M_{Pl}$$
 $d_{max} \simeq 0.82$

$$\begin{cases} d = d_{max} = 0.82 \ F_{\phi} = 25 \text{ TeV} \ \text{Messengers: } \overline{\Delta}, \ \Delta \end{cases}$$

Soft mass spectrum @ EW scale as a function of Messenger scale

5. Conclusion

We have discussed the so-called <u>deflected AMSB</u>, in which "tachyonic slepton" problem in pure AMSB scenario can be cured through threshold corrections by the messenger fields.

We propose an <u>economical setup</u> of this scenario with a <u>positive deflection parameter</u> and <u>SU(2) triplet messenger fields</u>.

The messenger fields play another important role in <u>the type II see-saw mechanism</u>.

With the messenger scale being the reasonable see-saw scale,

B-ino is the LSP degenerating with sleptons, so that its co-annihilations with sleptons would result in reasonable relic density.