Discriminating Spin Through Quantum Interference

Matthew Buckley
U.C. Berkeley
with H. Murayama, William Klemm, and
Vikram Rentala
(in preparation)

Outline

- Motivation
- Spin measurements and quantum interference
- Scalar vs. Spinor measurements
- Spinor vs. Vector measurements
- Spin at the LHC?
- Conclusions

Beyond the SM

- Naturalness and hierarchy problems
 - \odot Suggest some new physics at \sim 1 TeV

Supersymmetry? Technicolor? Extra Dimensions?

Solutions often propose partners to Standard Model particles

$$W^{\pm}, Z, A \to \tilde{W}^{\pm}, \tilde{Z}, \tilde{A} \; (\tilde{\chi}_i^{\pm}, \tilde{\chi}_i^0) \qquad \qquad \text{(SUSY)} \ \to W_1^{\pm}, Z_1, A_1, W_2^{\pm}, Z_2, A_2, \dots \; \text{(UED)}$$

SUSY vs. UED

- Both specta contain 'copies' of SM
 - UED has tower of KK modes
- New particles have similar interaction strengths:

Spin measurements may be the defining experimental difference.

Minimal UED

- ${\it \odot}$ One extra dimension of radius R, compactified to S^1/Z_2
 - Quantized 5th dimension momentum provides tree level mass for KK modes:

$$m_n^2 = \frac{n^2}{R^2} + m_0^2$$

- @ Requiring ψ_R , A_5 odd and ψ_L even under the Z_2 provides chiral fermions in the KK=0 level.
- $\ensuremath{\text{@}}$ Flavor universal boundary terms set to zero at scale Λ
- lacktriangle Lightest KK=1 state stable: LKP (usually B_1)

Minimal UED

- Minimal UED model needs 3 parameters specified:
 - lacktriangle Radius of extra dimension R
 - \odot Scale Λ
 - Higgs mass

- $m{\circ}$ Can compare total cross sections: $\sigma_{SUSY} < \sigma_{UED}$
 - Need to have a model in mind
 - Not a measurement of spin
- Can look for KK>1 towers
 - © Could be too heavy for colliders, could be seeing non-minimal SUSY states
 - Again, not a spin measurement
- Threshold scans at ILC
 - $m{ ilde{o}}$ Both spinors and vector bosons have $\sigma \propto eta$

- At ILC, reconstruct production angle:
 - ullet Scalar production $\propto \sin^2 heta$
 - ullet Spinor production (away from thres.) $\propto 1 + \cos^2 heta$
 - T-channel creates forward peak: model dependence

- Decay of polarized spinor to spinor/scalar
 - Model dependent assumptions of chiral couplings.
- Decay of vector boson

to spinors

to bosons

- Charge asymmetry: $ilde{q}_L o ilde{\chi}_2^0 q_L o ilde{\ell}_R^\pm \ell^\mp q_L o \ell^\pm \ell^\mp q_L ilde{\chi}_1^0$ far $\hat{m} \equiv m_{\ell q}^{near}/(m_{\ell q}^{near})_{max} = \sin heta^*/2$
 - Spinor $ilde{\chi}_2^0$ has $\sigma \propto \hat{m}^3$ compared to $\sigma \propto \hat{m}$ for phase space.
 - $m{\varnothing}$ Signal polluted by $ar{ ilde{q}}_L$ decays, and cannot distinguish near/far leptons
 - $oldsymbol{\circ}$ Signal survives in charge asymmetry of $\dfrac{d\sigma}{dm_{\ell^{\pm}q}}$
- $\ensuremath{\mathfrak{O}}$ Model dependent assumption of $\tilde{\chi}_2^0$ chiral couplings.

Spin and Quantum Interference

- $footnote{\circ}$ Decay of particle with helicity h:
 - Rotations about z-axis of decay plane imply

$$\mathcal{M} \propto e^{iJ_z\phi}$$

$$J_z = \frac{(\vec{s} + \vec{x} \times \vec{p}) \cdot \vec{p}}{|\vec{p}|}$$

$$= \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} = h$$

Spin and Quantum Interference

If particle produced in multiple helicities with approximately equal probabilities, then

$$\sigma \propto \left| \sum_{prod.} \mathcal{M}_{prod.} \mathcal{M}_{decay} \right|^{2}$$

$$\mathcal{M}_{decay} = e^{ih\phi} \mathcal{M}_{decay}(h, \phi = 0)$$

If we can measure the ϕ dependence of cross section, we can determine what helicities contributed to the interference.

Spin and Quantum Interference

Vector Boson Decay:

$$\mathcal{M}_{+} \propto e^{i\phi_{1}}$$
 $\mathcal{M}_{0} \propto 1$
 $\mathcal{M}_{-} \propto e^{-i\phi_{1}}$

Spinor Decay:

$$\mathcal{M}_{\uparrow} \propto e^{i\phi_1/2}$$
 $\mathcal{M}_{\downarrow} \propto e^{-i\phi_1/2}$

$$\left| \sum \mathcal{M} \right|^2 = A + B\cos\phi_1 + C\cos 2\phi_1 \qquad \left| \sum \mathcal{M} \right|^2 = A + B\cos\phi_1$$

$$\left|\sum \mathcal{M}\right|^2 = A + B\cos\phi_1$$

Scalar Decay:

$$\left|\sum \mathcal{M}\right|^2 = A$$

Coherent Sums and Kinematics

Scalar vs. Spinor at ILC

$$e^{-}e^{+} \to \tilde{\mu}_{R}^{+}\tilde{\mu}_{R}^{-} \to \mu^{+}\mu^{-}\tilde{\chi}_{0}^{1}\tilde{\chi}_{0}^{1}$$

$$e^{-}e^{+} \to \mu_{1R}^{+}\mu_{1R}^{-} \to \mu^{+}\mu^{-}B_{1}B_{1}$$

Scalar decay:

$$\sigma \propto |\mathcal{M}|^2 = A$$

Spinor decay:

$$\sigma \propto |\mathcal{M}_{\uparrow} + \mathcal{M}_{\downarrow}|^2$$
$$= A + B\cos\phi_i$$

Reconstruct $\phi_{1/2}$ distributions and measure $A,\ B$ parameters

Reconstruction of $\phi_{1/2}$

 $m{\circ}$ Assume masses of $\mu /\!\! B$ partners known.

4+4 unknown LSP/LKP momenta

- -4 measured p
- -4 mass relations
- system specified up to a 2fold ambiguity
- Use both solutions: true and false $\vec{p}_{\tilde{\mu}_R}$ to derive true and false values for ϕ_i

Reconstruction Algorithm

$$c_1 = \frac{1}{2} (m_{\tilde{B}}^2 - m_{\tilde{\mu}_R}^2 + 2E_b p_1^0)$$

$$c_2 = -\frac{1}{2} (m_{\tilde{B}}^2 - m_{\tilde{\mu}_R}^2 + 2E_b p_2^0)$$

$$t_1 = \frac{(\vec{p}_2 \cdot \vec{p}_2)c_1 - (\vec{p}_2 \cdot \vec{p}_1)c_2}{(\vec{p}_2 \cdot \vec{p}_2)(\vec{p}_1 \cdot \vec{p}_1) - (\vec{p}_2 \cdot \vec{p}_1)^2}$$

$$t_2 = \frac{(\vec{p}_1 \cdot \vec{p}_1)c_2 - (\vec{p}_2 \cdot \vec{p}_1)c_1}{(\vec{p}_2 \cdot \vec{p}_2)(\vec{p}_1 \cdot \vec{p}_1) - (\vec{p}_2 \cdot \vec{p}_1)^2}$$

$$y = \sqrt{\frac{E_b^2 - m_{\tilde{\mu}_R}^2 - (t_1^2(\vec{p}_1 \cdot \vec{p}_1) + t_2^2(\vec{p}_2 \cdot \vec{p}_2) + 2t_1t_2(\vec{p}_2 \cdot \vec{p}_1)}{|\vec{p}_1 \times \vec{p}_2|^2}}$$

$$\vec{p}_{\tilde{\mu}_R} = t_1 \vec{p}_1 + t_2 \vec{p}_2 \pm y (\vec{p}_1 \times \vec{p}_2)$$

Mass Measurements at ILC/LHC

- Reconstruction assumes no mass/momentum measurement errors.
- Tracking resolution at ILC expected to have error $\Delta p_T/p_T = 5 \times 10^{-5} (p_T/{\rm GeV})$

	$\Delta m_{cont.} ({\rm GeV})$	$\Delta m_{thres} \; ({\rm GeV})$
\tilde{e}_R	0.2	0.05
$ ilde{e}_L$	0.2	0.18
$ ilde{ u}_e$	0.1	0.07
$ ilde{\chi}_1^0$	0.1	0.05

Backgrounds

Depending on spectrum and beam energy:

$$W^{-}W^{+} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu} \quad \tilde{\chi}^{-}\tilde{\chi}^{+} \to \mu^{+}\mu^{-}\tilde{\nu}_{\mu}\bar{\tilde{\nu}}_{\mu}$$
$$\tilde{\mu}_{L}^{-}\tilde{\mu}_{L}^{+} \to \mu^{+}\mu^{-}\tilde{\chi}^{0}\tilde{\chi}^{0} \quad ZZ \to (\mu^{+}\mu^{-})(\nu\bar{\nu})$$

 \upsigma BUT: requiring successful reconstruction i.e. that $y\in\mathbb{R}$, and assuming that the decaying particle is a $\tilde{\mu}_R$ cuts $\sim 99\%$ of background.

Scalar vs. Spinor at ILC

- Assume $\sqrt{s} \leq 1 \text{ TeV, } L = 500 \text{ fb}^{-1}$
- Take two possible spectra: a typical SUSY and a typical MUED spectrum.
 - Since mass of SM partners assumed known, we 'fake' a MUED model with SUSY spectrum, and vice versa.

SUSY SPS3

m_0	90 GeV
$m_{1/2}$	$400 \; \mathrm{GeV}$
A_0	0
$\tan \beta$	10
μ	> 0

MUED

R^{-1}	$300 \; \mathrm{GeV}$
Λ	$20R^{-1}$
m_H	120 GeV

Event Generation

- Differential cross sections calculated using HELAS with narrow-width approx.
 - Cross-checked with MadGraph/CalcHEP where applicable
 - MUED spectrum calculated using Matchev et. al. CalcHEP model
- Monte Carlo implemented with BASES

- HELAS: FORTRAN 77 subroutines to calculate helicity amplitudes.
- BASES: adaptive Monte-Carlo FORTRAN 77 subroutines
- MadGraph: publicly available Monte Carlo using HELAS to calculate parton-level amplitudes
 - Does not have UED implimented
- CalcHEP: publicly available Monte Carlo. Implements UED, but slow for 2->4 processes

SPS 3 Analysis

- Assuming 500 fb⁻¹ of luminosity, have several thousand to several 100k's of events.
- ${\it o}$ Cut on successful reconstruction of $\tilde{\mu}_R$ and make pseudo-rapidity cuts on leptons and missing energy:

$$\eta \leq 2.5$$

$\tilde{\chi}_1^0/B_1$	161 GeV
$\tilde{\mu}_R/\mu_{1R}$	181 GeV
$ ilde{\mu}_L/\mu_{1L}$	289 GeV

Azimuthal Distributions

 $m{\circ}$ Sum ϕ_1 and ϕ_2 distributions.

$$\sqrt{s} = 370 \text{ GeV}$$

UED distribution

SUSY distribution

Azimuthal Distributions

- Rapidity cuts and false solutions cause high frequency oscillations in the distribution.
 - \bullet Fit to $A+B\cos\phi+C\cos2\phi$
- ${\it o}$ Overall scaling depends on total ${\it o}$, parameter of interest is B/A

Error Calculations

- lacktriangledown Fit A,B,C using method of least squares
 - 95% confidence interval for each variable after marginalizing over the other 2

$$\chi^{2} = \sum_{n=1}^{20} \frac{(t_{n} - \int_{bin} A + B\cos\phi + C\cos2\phi)^{2}}{s_{n}^{2}}$$

Azimuthal Distributions SPS3 spectrum

MUED Spectrum

$\tilde{\chi}_1^0/B_1$	301.5 GeV
$ ilde{\mu}_R/\mu_{1R}$	$303.3~\mathrm{GeV}$
$ ilde{\mu}_L/\mu_{1L}$	$309.0~\mathrm{GeV}$

Azimuthal Distributions MUED spectrum

Spinor vs. Vector Boson at ILC

Spinor azimuthal distribution

$$\left|\sum \mathcal{M}\right|^2 = A + B\cos\phi_i$$

Vector boson distribution

$$\left| \sum \mathcal{M} \right|^2 = A + B\cos\phi_i + C\cos 2\phi_i$$

For C to be large, need equal production of all 3 polarizations.

Effect of Cuts

- $\ensuremath{\mathfrak{O}}$ Distributions develop $\cos2\phi$ dependence due to cuts on rapidity.
- ${f o}$ False solutions also have $\cos 2\phi$ dependence.
- In $\mu_{1R}^+\mu_{1R}^- \to \mu^+\mu^-B_1B_1$ this may cause confusion between spinor/vector.

Effects of Cuts on

$$e^-e^+ \to \mu_{1R}^+\mu_{1R}^- \to \mu^+\mu^-B_1B_1$$

Subtract off effect of cuts on flat distribution to correct for detector effects:

MUED uncorrected

0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 300 350 Beam Energy (GeV)

MUED corrected

Charged W's at ILC

$$e_{L}^{-}e_{L}^{+} \to \tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{+} \to \ell^{\pm}\ell^{\mp}\tilde{\nu}\bar{\tilde{\nu}}$$

$$e_{L}^{-}e_{L}^{+} \to W_{1}^{-}W_{1}^{+} \to \ell^{\pm}\ell^{\mp}\nu_{1}\bar{\nu}_{1}$$

SPS3 spectrum

$W_1^{\pm}/\tilde{\chi}_1^{\pm}$	306 GeV
$ u_1/ ilde{ u}$	276 GeV

Major backgrounds

$$W^-W^+ \to \ell^{\pm}\ell^{\mp}\nu\bar{\nu} \qquad \tilde{\ell}^-\tilde{\ell}^+ \to \ell^{\pm}\ell^{\mp}\tilde{\chi}_1^0\tilde{\chi}_1^0$$

Again can be greatly reduced by requiring successful reconstruction of $\tilde{\chi}_1^{\pm}$

MUED

SUSY

MUED Adjusted

SUSY Adjusted

Charged W's at ILC

Statistics limited:

$$\sigma_{UED} \times BR = 87.7 \text{ fb}$$

 $\sigma_{SUSY} \times BR = 2.9 \text{ fb}$ $(\sqrt{s} = 650 \text{ GeV})$

- $\ensuremath{\circ}$ Requires $\sim 1~{\rm ab}^{-1}$ to distinguish UED vector bosons true solution from spinors.
- Poor understanding of false distribution
- \bullet Flat distribution in θ_i, ϕ_i does not capture effect of cuts on non-trivial distributions.

Full Reconstruction of Events

 $oldsymbol{\circ}$ If masses of $ilde{\chi}_2^0, ilde{\chi}_1^0, ilde{\ell}^\pm$ known then

4+4 unknown LSP/LKP momenta

- -4 measured p
- -6 mass relations
- Near/far ambiguity potential problem, but with precision mass & momentum knowledge, this can be overcome.

$$\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0} \rightarrow (\mu^{\pm}\tilde{\mu}^{\mp})(e^{\pm}\tilde{e}^{\mp}) \rightarrow (\mu^{\pm}\mu^{\mp}\tilde{\chi}_{1}^{0})(e^{\pm}e^{\mp}\tilde{\chi}_{1}^{0})
W_{1}^{3}W_{1}^{3} \rightarrow (\mu^{\pm}\mu_{1}^{\mp})(e^{\pm}e_{1}^{\mp}) \rightarrow (\mu^{\pm}\mu^{\mp}B_{1})(e^{\pm}e^{\mp}B_{1})$$

- © Can reconstruct using either $\mu^{\pm}\mu^{\mp}/e^{\pm}e^{\mp}$ combined momentum or just near μ^{\pm}/e^{\pm}
- Now have near/far ambiguity. Demanding agreement between the two methods eliminates false solutions.
- Statistics limited, cross section at ILC only:

$$\sigma_{UED} \times BR \sim 1 \text{ fb}$$

 $\sigma_{SUSY} \times BR \sim 0.1 \text{ fb}$

Top Spin at the Tevatron

$$t \to bW^+$$

- Can completely reconstruct top momentum in semi-leptonic decays
- $\ensuremath{\mathfrak{O}}$ With known bottom and W spin, top spin can be either 1/2 or 3/2
 - Fit azimuthal distribution to

$$\sum_{n=0}^{3} A_i \cos(n\phi)$$

Spin at LHC

- Lose two constraints: center of momentum frame and $\sqrt{\hat{s}}$
 - Still can reconstruct up to two-fold ambiguity

4+4 unknown LSP/LKP momenta

- -2 measured p_T
- -6 mass relations

Much higher statistics available; $\sigma \sim 1 \text{ pb}$

Mass measurements at LHC

- Cheng, Gunion et. al. 0707.0030
- Fit unknown masses (i.e. $m_{\tilde{g}}, m_{\tilde{q}}, m_{\tilde{\chi}}$), require real solutions to the reconstruction
 - Solutions describe 3D volume in parameter space
 - With detector effects included, real masses correspond to values where the # of real solutions to data changes rapidly

2900 events \rightarrow

$$m_{\tilde{\chi}_2} = 252.2 \pm 4.3, m_{\tilde{\mu}} = 130.4 \pm 4.3, m_{\tilde{\chi}_1} = 86.2 \pm 4.3 \text{ GeV}$$

Conclusions

- Quantum interference between helicity/ polarization states can serve as a fully model independent probe of spin in an event
 - A linear collider is capable of distinguishing scalars from higher spins
 - Distinguishing vector and spinor may be possible with higher luminosity and a better understanding of cuts and false solutions.

Conclusions

- Method utilizes reconstruction of event up to two-fold ambiguity; longer decay chains may remove this ambiguity and allow for better discrimination of spin.
 - Investigated chains all suffer from poor statistics
- At LHC, similar events would allow for 2-fold reconstruction, and with large # of events, allow for direct spin measurements