
Some results from full 2+1 flavor
simulations of QCD

Urs M. Heller

American Physical Society & BNL

Particle Physics Seminar

UC Davis, Davis CA, May 15, 2007

Full 2+1 flavor QCD ..., Davis, May 2007. U.M. Heller – p. 1/50



Collaborators

MILC Collaboration (Jan
2004): E. Gregory, C. Aubin,
R. Sugar, UMH, J. Hetrick,
S. Gottlieb, C. Bernard, C. De-
Tar, J. Osborn, D. Toussaint

not shown: L. Levkova,
F. Maresca, D. Renner

+ Fermilab, HPQCD & UKQCD Col-

laborations:

C. Davies, M. Di Pierro,
A.X. El-Khadra, E.D. Freeland,
A. Gray, J. Hein, A.S. Kronfeld,
G.P. Lepage, P.B. Mackenzie,
Q. Mason, D. Menscher,
M. Nobes, M. Okamoto
J. Shigemitsu, J. Simone,
H. Trottier, M. Wingate

Full 2+1 flavor QCD ..., Davis, May 2007. U.M. Heller – p. 2/50



Outline

Simulation Choices & Ensemble of Configurations

Result Highlights/Summary

Pseudoscalar decay constants, quark masses, etc.

Baryons

Heavy-light decay constants

Semileptonic B/D decays

Summery and Outlook

Full 2+1 flavor QCD ..., Davis, May 2007. U.M. Heller – p. 3/50



Simulation Choices

To carry out a simulation we must select certain physical
parameters:

lattice spacing (a) or gauge coupling (β)

grid size (N3
s × Nt)

quark masses (mu,d = ml, ms)

To control systematic error we must

take continuum limit, a → 0

take infinite volume limit

extrapolate to physical light quark mass;
we can work at physical s quark mass, or interpolate to it
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Simulation Choices

We also must choose an action and a simulation algorithm.

The gauge action is a 1-loop improved Lüscher-Weisz
action, with O(α2

sa
2) discretization errors.

The fermion action is a tree-level improved staggered action
with a “fat” link to suppress taste violations of the staggered
fermions. It has O(αsa

2) discretization errors.

The algorithm is the Hybrid Molecular Dynamics
R-algorithm, with the det1/4 trick to eliminate the extra
tastes.

Recently, switched to exact RHMC algorithm

Whether the det1/4 trick induces non-localities in the interacting
theory is an open question. Our results, so far, show no sign of a
problem.
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Taste violations

The taste splittings are independent of mq, and vanish in the
continuum limit, as expected, i.e. as α2

sa
2.

This is consistent with detDstag → (det D1f )4 as a → 0.
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Ensemble of Configurations

MILC has been generating three flavor configurations to allow
control of these errors:

most results are based on three lattice spacings, 0.121 fm,
0.086 fm, and 0.06 fm, kept fixed for different quark masses;
some use also 0.176 fm and ∼ 0.15 fm.

mostly Vs ∼ (2.4 fm)3, with one ∼ (3.4 fm)3, to check for
finite volume effects; except 1 set: mπL > 4.

several mu,d = m̂′ to extrapolate to physical light quarks;
use two m′

s (at a = 0.12 fm) to interpolate to physical strange
quark mass

The ensembles of configurations are available to others through
the NERSC Gauge Connection.
Some new configurations generated with USQCD resources.
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MILC Ensembles
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MILC Ensembles
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Ratio Plot
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Ratio Plot

By sharing with FNAL, HPQCD and UKQCD:
C.T.H. Davies et al., PRL 92 (2004) 022001 [hep-lat/0304004]
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Chiral perturbation theory ( χPT)

For extrapolation in quark mass use chiral perturbation theory
(χPT), an effective field theory based on symmetry
considerations – and its breaking:

LχPT =
f2

8
Tr

(

∂µΣ∂µΣ†
)

−1

4
µf2Tr

(

MΣ + MΣ†
)

+O(p4, mp2, m2) ,

where Σ = exp(iφata/f) (φa = π0, π±, K0,K
0
, K±, η). One finds,

m2
π

2mq
= µ

{

1 +
1

16π2f2

[

2

3
(2µmq) log

(

2µmq

Λ2

)

+ ”p4 − terms”

]}

,

fπ = f

{

1 +
1

16π2f2

[

−3(2µmq) log

(

2µmq

Λ2

)

+ ”p4 − terms”

]}

,

for 3 degenerate flavors. The low energy parameters (f , µ, . . . )
are to be determined from the lattice simulations.
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Light pseudoscalar sector

Have precise measure-
ments for mass and de-
cay constants

Continuum χPT fit
to both fπ and mπ

at a = 0.12 and
0.09 fm
simultaneously

Does not work:
CL = 10−250

Could first extrap-
olate to continuum
and then make
χPT fit; but loose
information
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Staggered chiral perturbation theory (SχPT)

Extend the effective field theory concept to include symmetry
breaking terms particular to the staggered lattice regularization:

LSχPT = LχPT + a2V .

Because of the four-fold doubling, each meson field has now 15
partners, e.g. π+ → π+

A , A = 1, . . . , 16. At tree level, the new term
parametrizes the taste symmetry breaking,

m(0)2
πA

= 2µmq + a2∆A .

At 1-loop, this softens the chiral logs, generically as

2µmq log(2µmq/Λ2) → 1

16

∑

A

m(0)2
πA

log(m(0)2
πA

/Λ2) .
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Improved fits

We can do better:

use SχPT (Aubin & Bernard), i.e. with taste violation O(a2)
effects; include NNLO and NNNLO corrections

fit coarse and fine lattices together: allow O(a2) corrections
to physical χPT parameters

apply finite volume corrections from finite volume χPT

After fit, we:

extrapolate fit parameters to continuum

show difference between m′
s (simulation strange mass) and

ms (correct value)

see C. Aubin et al., PRD 70 (2004) 114501 [hep-lat/0407028]

major differences: (i) Second m′
s on coarse lattice.

(ii) Lower ml on fine lattice. (iii) Finer lattice with a = 0.06 fm.
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Fit of fπ

Fit partially
quenched fπ (and,
simultaneously,
mπ) with taste
violation terms and
O(a2) corrections
to physical χPT
parameters
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Fit of fπ

Extrapolate fit
params to
continuum, i.e., set
O(a2) terms to
zero

Go to “full QCD:”
Set m̂′

sea = m̂′
val

and plot as
function of m̂′

val:
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Fit of fπ

Consistency
check: extrapolate
points with sea
masses = valence
masses to
continuum at fixed
quark mass
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Fit of fπ

Correct/interpolate
from simulation
strange mass, m′

s,
to physical value,
ms

In this last plot, data
from second m′

s at a =
0.12 fm, all data from
a = 0.09 fm, and first
data from a = 0.06 fm
where included.
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Fit of fK

Similar procedure
for fK .

But note that fK is
the decay constant
of K+

Here we need to
extrapolate light
valence quark to
mu, but light sea
quark to m̂
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Fit of m2

π/(mx + my)
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Convergence ofSU(3)L × SU(3)R χPT

2004 fit:

i.e. no NNNLO terms
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Light Quark Masses

To find quark masses, must extrapolate to the physical meson
masses. Electromagnetic and isospin-violating effects are
important

Experimental masses:
mexpt

π0 , mexpt
π+ , mexpt

K0 , mexpt
K+

Masses with EM effects turned off:
mQCD

π0 , mQCD
π+ , mQCD

K0 , mQCD
K+

Masses with EM effects turned off and mu = md = m̂:
mπ̂, mK̂
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EM & Isospin Violation

m2
π̂ ≈ (mQCD

π0 )2 ≈ (mexpt
π0 )2

m2
K̂

≈
(mQCD

K0 )2 + (mQCD
K+ )2

2

(mQCD
K0 )2 ≈ (mexpt

K0 )2

(mQCD
K+ )2 ≈ (mexpt

K+ )2 − (1 + ∆E)
(

(mexpt
π+ )2 − (mexpt

π0 )2
)

∆E = 0 is “Dashen’s theorem.”

Continuum suggests: ∆E ≈ 1.

We use 0 < ∆E < 2
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Finding m̂, ms

From 2004 fits.

Subset of data
with fits

Red lines are
continuum
extrapolated full
QCD fits with ms

adjusted so that
both π̂ and K̂ are
fit
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Finding mu

Next estimate mu

by extrapolating in
quark mass to K+

mass

Below m̂ only
valence mass
changes

There is a small
isospin violation
because for sea
quarks
mu = md = m̂
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Quark mass results

We find
mu/md = 0.42(0)(1)(4) ,

where the errors are statistical (rounded down to 0), lattice
systematics, and a conservative estimate of EM effects.

Using instead a phenomenological result of Bijnens and Prades,
NPB 490 (1997) 239 [hep-ph/9610360], ∆E = 0.84 ± 0.25, we
would obtain

mu/md = 0.43(0)(1)(2) .
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Quark mass results

Using a recent 2-loop mass renormalization constant (HPQCD
collaboration, Q.Mason et al., PRD 73 (2006) 114501
[hep-ph/0511160]) we obtain

mMS
s = 90(0)(5)(4)(0) MeV ,

m̂MS = 3.3(0)(2)(2)(0) MeV ,

ms/m̂ = 27.2(0)(4)(0)(0) ,

where the errors are from statistics, simulation systematics,
perturbation theory (2α3), and electromagnetic effects,
respectively. The renormalization scale of the masses is 2 GeV.
With mu/md from above, then:

mMS
u = 2.0(0)(1)(1)(1) MeV ,

mMS
d = 4.6(0)(2)(2)(1) MeV .
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Results for light decay constants

We find (from preliminary 2005 fits):

fπ = 128.6 ± 0.4 ± 3.0 MeV ,

fK = 155.3 ± 0.4 ± 3.1 MeV ,

fK/fπ = 1.208(2)(+ 7
−14) .

Experiments:
fπ = 130.7 ± 0.4 MeV, fK = 159.8 ± 1.5 MeV, fK/fπ = 1.223(12).

Using our fK/fπ, the experimental B(K → ℓν)/B(π → ℓν)

and the well known Cabbibo angle Vud: ⇒ Vus = 0.2223(+26
−14)

PDG (2006) value: Vus = 0.2257(21)
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Results: Low Energy Constants

Also get (in units of 10−3, at chiral scale mη; 2004 fits):

2L6 − L4 = 0.5(1)(2) ,

2L8 − L5 = −0.1(1)(1) ,

L4 = 0.1(2)(2) ,

L5 = 2.0(3)(2) .

Consistent with “conventional results” summarized, e.g., in
Cohen, Kaplan, & Nelson, JHEP 9911, 027 (1999):
L5 = 2.2(5), L6 = 0.0(3), L4 = 0.0(5).

Our result for 2L8 − L5 is far from range that would allow
mu = 0, −3.4 ≤ 2L8 − L5 ≤ −1.8 (Kaplan & Manohar;
Cohen, Kaplan & Nelson)

Consistent with (but not independent of) direct
determination of mu.
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Nucleon masses

The fancy plusses are
continuum extrapola-
tions at fixed mπr1.
The curves are differ-
ent continumm chiral
extrapolations (with m3

π

term [3 lowest points],
additional analytic m4

π

term [all 4 points, red
curves]; m∆ − mN in-
cluded, see V. Bernard
et al. PLB 622 (2005)
141 [hep-lat/0503022]
[green curve]; power
series in m2

π and
log(m2

π) [blue curve]).
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Ω− baryon
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Electroweak interaction and the CKM matrix

The charged electroweak current couples the fermions of the
Standard Model to the W -bosons

LCC = − gw√
2
Jµ

CCW+
µ + h.c.

At low energy, E << mW , this leads to an effective
current-current (4-Fermi) interaction

Leff = −2
√

2GF Jµ
CCJ†

CC,µ

with

GF =
g2
w

4
√

2M2
W

= 1.16639(1) × 10−5GeV −2

the Fermi constant.
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Electroweak interaction and the CKM matrix

The charged weak current is given by

Jµ
CC = (ν̄e, ν̄µ, ν̄τ )





eL

µL

τL



 + (ūL, c̄L, t̄L)VCKM





dL

sL

bL



 .

The Cabbibo-Kobayashi-Maskawa (CKM) matrix shows that the
quark families mix in the weak interactions:

VCKM =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 .

The elements of the CKM matrix are parameters in the Standard
Model that need to be determined from experiment. Theoretical
input, from lattice QCD, is needed for this.
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Heavy-light decay constants

The leptonic decay branching ratio of a B-meson, and similarly a
D-meson (or K+ or π+ mesons), goes like

B(B → ℓνℓ) = |Vub|2f2
Bmℓ

(

1 − m2
ℓ

m2
B

)

× known factors .

b

u

B+

W+

QCD
E – W

t+

n
t

So computing the QCD matrix element fB,

〈0|b̄γ5γµu|B(p)〉 = ipµfB ,

is needed to extract the CKM matrix element Vub.
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Heavy-light decay constants

With the Fermilab and HPQCD collaborations, we are computing
the decay constant with improved staggered light and heavy
clover (Fermilab) quarks. Advantages are:

Can go to lower light valence quarks

Use SχPT (Aubin & Bernard) for chiral extrapolation to md

Have Z-factors, written as ZQq
V = ρV (ZQQ

V Zqq
V )1/2, with ZQQ

V

and Zqq
V from charge normalization, non-perturbatively, and

ρV ≈ 1 to one-loop.
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Heavy-light decay constants

Use of SχPT is illustrated in the fit of Rq/s = fD
√

mD/fDs

√
mDs

.
The red line and extrapolated point are obtained after removing
the O(a2) effects from the fit.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
m

q
/m

s

0.80

0.90

1.00

R
q/

s

Details in C. Aubin et al., PRL 95 (2005) 122002
[hep-lat/0506030]
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Heavy-light decay constants

We find:

fDs
= 249 ± 3 ± 16 MeV ,

fD = 201 ± 3 ± 17 MeV ,

fDs

√
mDs

fD
√

mD
= 1.27 ± 0.06 ± 0.06 .

The computations for B-mesons are in progress.

Experimentally measured, from leptonic decays

fD+
s

= 274 ± 13 ± 7 MeV (CLEO),

fD+
s

= 283 ± 17 ± 7 ± 14 MeV (BABAR),

fD+ = 222.6 ± 16.7+2.8
−3.4 MeV (CLEO),

fD+
s

fD+

= 1.23 ± 0.11 ± 0.04 .
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Semileptonic B/D decays

With the Fermilab and HPQCD collaborations, we are computing
also form factors for semileptonic D → π/K and B → π/D
decays.

b

u

B
+

W+

+
m

nm

u

0
p

The heavy-to-light decay amplitudes, non-perturbative QCD
quantities, are parametrized as

〈P |V µ|H〉 = f+(q2)(pH + pP − ∆)µ + f0(q
2)∆µ ,

where ∆µ = (m2
H − m2

P )qµ/q2.
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Semileptonic B/D decays

As an example we show the B → π form factors f0 and f+, see
M. Okamoto et al., hep-ph/0409116 (Lattice 2004):

0 5 10 15 20 25
q

2
 [GeV

2
]

0

0.5

1

1.5

2

2.5

�

f0

f+

B−>π
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Semileptonic B/D decays

Our calculations has been compared to the experimental form

factor f
(K)
+ (q2) for the process D0 → K−µ+ν by the FOCUS

collaboration (Phys. Lett. B607 (2005) 233 [hep-ex/0410037]).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

q
2
/m

Ds
*

2

0

0.5

1

1.5

2

2.5

f +
(q

2 )/
f +

(0
)

0

q
2

max
/m

Ds
*

2

experiment [FOCUS, hep-ex/0410037]
lattice QCD [Fermilab/MILC, hep-ph/0408306]
1σ (statistical)
1σ (stat + syst)

D → Klν

see C. Aubin et al., PRL 94 (2005) 011601 [hep-ph/0408306]
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Semileptonic B/D decays

Or, we can compare with the recent measurement by Belle,
including the normalization (modulo assumptions on |Vcs|):

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

q
2
/m

Ds
*

2

0

0.5

1

1.5

2

2.5

f +
(q

2 )

0

q
2

max
/m

Ds
*

2

experiment [Belle, hep-ex/0510003]
lattice QCD [Fermilab/MILC, hep-ph/0408306]

D → Klν
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Semileptonic B/D decays

The differential semileptonic decay rate is given by

dΓ

dq2
=

G2
F p′3

24π3
|VCKM|2 |f+(q2)|2 .

p′: 3-mom of final-state meson in restframe of inital-state meson.

Knowing f+(q2) allows us to extract CKM matrix elements from
experiment. We find:

|Vub| = 3.78(30)(42)(25) × 10−3 , |Vcd| = 0.239(10)(24)(20) ,

|Vcs| = 0.969(39)(94)(24) , |Vcb| = 3.91(09)(34) × 10−2 ,

with (|Vcd|2 + |Vcs|2 + |Vcb|2)1/2 = 1.00(10) .
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Summary and Outlook

Simulations at two (and, in progress, more) lattice spacings and
several sea quark masses in full 2+1 flavor QCD lead to
precision results in the pseudoscalar sector, including decay
constants, Vus and quark masses.
Many other “gold-plated” observables also show good
agreement with experiment.

The configurations are used for predictions for heavy-light
meson decay constants and semileptonic form factors, needed
for extraction of CKM matrix elements from experiments.
Improvements will include:

Simulations with a smaller strange sea quark mass
(done for a = 0.12 fm, planned for a = 0.09 fm)

Full analysis of coarser ensembles, 0.18 and 0.15 fm

More light quark masses, and more statistics, for the smaller
lattice spacing: a ∼ 0.06 fm
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Spectrum summary
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