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QCD Lagrangian

Parisi

QCD: NC = 3 Quarks: 3C Gluons: 8C.

Generalized gauge invariance:

Invariant under local SU(NC)
gauge rotations.

QCD: NC = 3

RJ/ψ ≡ σ(e+e−→J/ψ cc)
σ(e+e−→J/ψ X)

= 0.8

RJ/ψ $ 0.1

QCD: NC = 3 Quarks: 3C Gluons: 8C.

Generalized gauge invariance:

Invariant under local SU(NC)
gauge rotations.

QCD: NC = 3

RJ/ψ ≡ σ(e+e−→J/ψ cc)
σ(e+e−→J/ψ X)

= 0.8

RJ/ψ $ 0.1

αs = g2

4π is dimensionless

Massless quarks: LQCD is scale invariant

If β = dαs(Q2)
d logQ2 = 0

then QCD is conformal invariant

αs = g2

4π is dimensionless

Massless quarks: LQCD is scale invariant

If β = dαs(Q2)
d logQ2 = 0

then QCD is conformal invariant

αs = g2

4π is dimensionless

Massless quarks: LQCD is scale invariant

If β = dαs(Q2)
d logQ2 = 0

then QCD is invariant under conformal trans-
formations:

Classical Lagrangian is scale invariant for massless quarks
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QCD Lagrangian and Conformal Symmetry

Symmetrize

August 20, 2005

Φ(x, z = z0 = 1
ΛQCD

) = 0
In the large ! limit:
M2 = π2

4 !2Λ2
QCD

Conformal Symmetry – Property of classical renormalizable Lagrangian

Poincare transformations plus

dilatation : xµ → λxµ

plus

conformal transformations : inversion[xµ → −xµ

x2
] × translation × inversion

1

3

(massless quarks)
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AdS/QCD G. F. de Téramond

Strongly Coupled Conformal QCD and Holography

• Conformal Theories are invariant under the Poincaré and conformal transformations with

Mµν , P µ,D,Kµ, the generators of SO(4, 2).

• QCD appears as a nearly-conformal theory in the energy regimes accessible to experiment.

Invariance of conformal QCD is broken by quark masses and quantum loops. For β =
dαs(Q2)/dQ2, QCD is a conformal theory: Parisi, Phys. Lett. B 39, 643 (1972).

• Growing theoretical and empirical evidence that αs(Q2) has an IR fixed point:
von Smekal, Alkofer and Hauck, arXiv:hep-ph/9705242; Alkofer, Fischer and Llanes-Estrada, hep-

th/0412330; Deur, Burkert, Chen and Korsch, hep-ph/0509113 . . .

• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Brodsky and Farrar, Phys. Rev. Lett. 31, 1153 (1973); Matveev et al., Lett. Nuovo Cim. 7, 719 (1973).
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AdS/CFT: mapping of 
AdS5 X S5 to conformal N=4 SUSY

• QCD not conformal;  however, it has some 
manifestations of a scale-invariant theory: 
Bjorken scaling, dimensional counting for hard 
exclusive processes

• IR fixed point?

• “Semi-classical” approximation to QCD

• Use mapping of conformal group SO(4,2) to AdS5

5

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

Maldacena:
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• Polchinski & Strassler: AdS/CFT  builds in conformal 
symmetry at short distances, counting, rules for form 
factors and hard exclusive processes; non-perturbative 
derivation

• Goal: Use AdS/CFT to provide models of hadron 
structure: confinement at large distances, near 
conformal behavior at short distances

• de Teramond, sjb:  AdS/QCD Holographic Model: 
Initial “semi-classical” approximation to QCD: 
Remarkable agreement with light hadron spectroscopy

• Mapping to 3+ 1 Light-Front equations, wavefunctions

• Use AdS/CFT wavefunctions as expansion basis for 
diagonalizing HLFQCD ; variational methods

6
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Guy de Teramond
SJB 

Only one 
parameter! 

Entire light 
quark baryon 

spectrum

Prediction from  
AdS/QCDAdS/QCD G. F. de Téramond
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corre-

sponds to L even P = + states, and the 70 to L odd P = − states.
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• SU(6) multiplet structure for N and ∆ orbital states, including internal spin S and L.

SU(6) S L Baryon State
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Dirac’s Amazing  Idea:
The  “Front Form”

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!

9

Evolve in 
ordinary time
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1Remarkable new insights from AdS/CFT, the duality between    
conformal field theory and  Anti-de Sitter Space 

Invariant under boosts.   Independent of Pµ

10
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

Light-Front Wavefunctions

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of P
μ 
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12

ψ(x,k⊥)

HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c
Light-Front Wavefunctions

Intrinsic gluons, sea quarks, asymmetries

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1

n
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

Mapping between LF(3+1) and AdS5

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

κ = 0.77GeV

ψ(x,#b⊥) =
√

x(1− x) φ(ζ)

√
x(1− x)

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

M ∝ ∂2

∂2k⊥
ψγ∗(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

13
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
(a) (b)

00.5
1
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5
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2

0

FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic radial equation:

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent

14
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Figure 8: Asymptotic effective partonic density 2πρ(x, b⊥, Q → ∞) in terms of the
longitudinal momentum fraction x, the transverse relative impact variable b⊥ and
momentum transfer Q for the harmonic oscillator model. The figure corresponds to
κ = 0.67 GeV. The distribution is peaked at b⊥ = 0.
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Figure 9: LFWF ψ(x, b) for the truncated space model (left) and for the HO model
(right) in terms of the longitudinal momentum fraction x, the transverse relative
impact variable b⊥. The figures correspond to ΛQCD = 0.32 GeV and κ = 0.76 GeV.
The WF are normalized to Mρ.
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longitudinal momentum fraction x, the transverse relative impact variable b⊥ and
momentum transfer Q for the harmonic oscillator model. The figure corresponds to
κ = 0.67 GeV. The distribution is peaked at b⊥ = 0.
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The WF are normalized to Mρ.
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Truncated Spac" Harmonic Osci!ator

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0
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ψ(σ, b⊥)

σ = y−P+

2

|b⊥|

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

ψ(σ, b⊥)

σ = y−P+

2

|b⊥|(GeV−1)

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

AdS/CFT  Holographic Model

3-dimensional photograph:
meson LFWF at fixed LF Time

G. de Teramond
SJB 

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z
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AdS/QCD G. F. de Téramond

Holographic Model for QCD Light-Front Wavefunctions

SJB and GdT in preparation

• Drell-Yan-West form factor in the light-cone (two-parton state)

F (q2) =
∑

q

eq

∫ 1

0
dx

∫
d2!k⊥
16π3

ψ∗P ′(x,!k⊥ − x!q⊥) ψP (x,!k⊥).

• Fourrier transform to impact parameter space!b⊥

ψ(x,!k⊥) =
√

4π

∫
d2!b⊥ ei!b⊥·!k⊥ψ̃(x,!b⊥)

• Find (b = |!b⊥|) :

F (q2) =
∫ 1

0
dx

∫
d2!b⊥ eix!b⊥·!q⊥∣∣ψ̃(x, b)

∣∣2
= 2π

∫ 1

0
dx

∫ ∞

0
b db J0 (bqx)

∣∣ψ̃(x, b)
∣∣2,

Caltech High Energy Seminar, Feb 6, 2006 Page 33

Soper
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AdS/QCD G. F. de Téramond
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2
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Space-like pion form factor in holographic model for ΛQCD = 0.2 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 29
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Heuristic Argument for an IR Fixed Point

• Semi-Classical approximation to massless QCD

• No particle creation or absorption

• Conformal symmetry broken by confinement

•
•

β = 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0
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Effective gluon mass:  vacuum polarization vanishes at small 
momentum transfer

Oberwölz

Π(Q2) ∼ α
5π

Q2

m2
e

Q2 << m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << m2
g

Oberwölz

Π(Q2) ∼ α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Oberwölz

Π(Q2) ∼ α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Analog of Serber-Uehling vacuum polarization in QED:

Oberwölz

Q4F1(Q2)→ constant

Π(Q2) = α
15π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

αs(Q2) ! const

at Q2 < 4M2
g

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ
Decoupling of long wavelength gluonic interactions
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VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the
M̃OM scheme is calculated by the gluon dressing func-
tion Z3 and the ghost dressing function Z̃3 and the vertex
renormalization factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2, q2)Z̃3(µ2, q2)g(µ).

Our lattice simulation[16] of the gluon propagator and
the ghost propagator of MILCc yields the running cou-
pling shown in FIG.3. There are deviations from the
pQCD (dash-dotted line) and the DSE approach with
κ = 0.5 (long dashed line). As was done by the Orsay
group[9], we consider a correction including the A2 con-
densates and obtained 〈A2〉 ∼ a few GeV2.

-0.4-0.2 0 0.2 0.4 0.6 0.8 1
Log_10!q"GeV#$

0.5

1

1.5

2

2.5

3
Α

s
"q#

FIG. 3: The running coupling αs(q) as a function of
log10 q(GeV) of MILCc (a = 0.12fm) βimp = 6.76(triangles)
and 6.83(diamonds), (50 samles each).

The running coupling in the infrared can be estimated
from the quark-gluon coupling

g(q) = Zψ
1

−1
Z1/2

3 (µ2, q2)Z2(µ2, q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the ver-

tex renormalization factor. An evaluation of Z2(µ2, q2)
is given in the next section.

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator
using Asqtad action of MILCc [14] to MILCf . In the
case of MILCc, we compared the Asqtad action and the
Staple+Naik action.

Due to long computation time for the convergence of
the conjugate gradient method, the number of samples is
of the order of 10 for each βimp and the bare quark mass
m0.

The quark propagator is defined as a statistical average
over Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α| 1

i /D(U) + m0
|χp,β〉

〉
.

In this expression, the inversion, 1

i /D(U)+m0
, is performed

via conjugate gradient method after preconditioning, and
we obtain

Sαβ(q) = Z2(q)
−iγq + M(q)
q2 + M(q)2

.

The mass function M(q) reflects dynamical chiral sym-
metry breaking. In high momentum region, it is param-
eterized as

M(q) = −4π2dM 〈ψ̄ψ〉µ[log(q2/Λ2
QCD)]dM −1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33 − 2Nf ) and m(µ2) is the running
mass.

In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 + Λ2
+ m0.

The momentum dependence of M(q) and Z2(q) of
m0 = 13.6MeV in the infrared region of Asqtad action is
smoother than that of the Staple+Naik action. It could
be attributed to the effect of the tadpole renormalization.
The parameters c̃ and Λ in our fit of the mass function
are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILCf βimp = 7.11 using
the staple+Naik action in [14], where Z2(q2) is the bare
lattice data and g1(q2) is the coefficient of γµ of the vector
current vertex that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2) +

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2

〈A2〉µ
4(N2

c − 1)
Zpert

ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme us-
ing the same MILCf gauge configuration[7].

Here Nf is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by
the running coupling, the absence of suppression of the
quark wave function renormalization suggests that the
infrared suppression of the running coupling obtained by
the ghost-gluon coupling could be an artefact.

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at
q = 3GeV is close to 1 and the results are consistent.
Our mass function M(q) of βimp = 7.09 are about 20%

Lattice simulation 
(MILC)

Schwinger-Dyson

Infrared-Finite QCD Coupling?

Furui, Nakajima

PQCD Asymptotic freedom 

DSE: Alkofer, Fischer, von Smekal et al.
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Shirkov
Gribov

Dokshitser
Siminov
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Define QCD Coupling from 
Observable

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Commensurate scale relations: Relate observable to 
observable at commensurate scales

Grunberg

A. Kataev, Lu, 
Rathsman, sjb
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Effective Charges: analytic at quark mass thresholds,  finite at small momenta

Neubert
Maxwell
Kataev
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!0.008 at s"m!
2 corresponds to a value of "MS(MZ

2)

"(0.117–0.122)!0.002, where the range corresponds to
three different perturbative methods used in analyzing the

data. This result is, at least for the fixed order and renorma-

lon resummation methods, in good agreement with the world

average "MS(MZ

2)"0.117!0.002 #46$. However, from the

figure we also see that the effective charge only reaches

"!(s)%0.9!0.1 at s"1 GeV2, and it even stays within the
same range down to s%0.5 GeV2. This result is in good
agreement with the estimate of Mattingly and Stevenson #47$
for the effective coupling "R(s)%0.85 for !s#0.3 GeV de-
termined from e

$
e

% annihilation, especially if one takes into

account the perturbative commensurate scale relation,

"!(m!!
2
)""R(s*) where, for "R"0.85, we have s*

!0.10 m!!
2
according to Eq. &7'. As we will show in more

detail in the next section, this behavior is not consistent with

the coupling having a Landau pole but rather shows that the

physical coupling is much more constant at low scales, sug-

gesting that physical QCD couplings are effectively constant

or ‘‘frozen’’ at low scales.

At the same time, it should be recognized that the behav-

ior of "!(s) in the region s#1 GeV2 is more and more
influenced by nonperturbative effects as the scale is lowered.

Even though the dominant nonperturbative effects cancel in

the sum of the vector and axial-vector contributions as can

be seen by looking at the corresponding effective charges

individually. Looking at "!
V(s), we see that it more or less

vanishes as the integration region moves to the left of the

two-pion peak in the hadronic spectrum. In the same way the

behavior of "!
A(s) at small scales is governed by the single

pion pole.

III. ANALYSIS OF THE INFRARED BEHAVIOR OF !"„s…

In order to be able to analyze the infrared behavior of the

effective coupling "!(s) in more detail, we will compare

with &a' the fixed-order perturbative evolution of the "!(s)

coupling on the one hand, and &b' with the evolution of cou-
plings that have nonperturbative or all-order resummations

included in their definition. For the latter case, many differ-

ent schemes have been suggested, and we will concentrate on

two of them: the one-loop ‘‘timelike’’ effective coupling

"eff(s) #3–5$, and the modified "̃V coupling calculated from

the static quark potential using perturbative gluon condensate

dynamics #48$.
The perturbative couplings evolve according to the stan-

dard evolution equation

das&s '

d ln s
"%(0as

2&s '%(1as
3&s '%(2as

4&s '%(3as
5&s '% . . . ,

&8'

where as(s)""s(s)/(4)). The first two terms in the ( func-
tion, (0 and (1, are universal at leading twist whereas the
higher order terms are scheme dependent. Currently the (
function is known to four loops ((3) in the MS scheme and
to three loops ((2) in the "! scheme. In the latter case there

also exists an estimate of the four-loop term. For complete-

ness these terms are summarized in the Appendix.

Figure 3 shows a comparison of the experimentally deter-

mined effective charge "!(s) with solutions to the evolution

equation &8' for "! at two-, three-, and four-loop order nor-

malized at m! . It is clear from the figure that the data on

"!(s) does not have the same behavior as the solution of the

&universal' two-loop equation which is singular1 at the scale
s!1 GeV2. However, at three loops the behavior of the per-
turbative solution drastically changes, and instead of diverg-

ing, it freezes to a value "!!2 in the infrared. The reason for
this fundamental change is, of course, the negative sign of

(! ,2 . At the same time, it must be kept in mind that this

result is not perturbatively stable since the evolution of the

coupling is governed by the highest order term. This is illus-

trated by the widely different results obtained for three dif-

ferent values of the unknown four-loop term (! ,3 which are

also shown.2 Still, it may be more than a mere coincidence

that the three-loop solution freezes in the infrared. Recently

it has been argued that "R(s) freezes perturbatively to all

orders #49$. Given the commensurate scale relation &6' this
should also be true perturbatively for "!(s). It is also inter-

esting to note that the central four-loop solution is in good

agreement with the data all the way down to s!1 GeV2.
The one-loop ‘‘timelike’’ effective coupling #3–5$

1The same divergent behavior would also be seen at three-and

four-loop order in the MS scheme where both (2 and (3 are posi-
tive for n f"3.
2The values of (! ,3 used are obtained from the estimate of the four

loop term in the perturbative series of R! , K4
MS"25!50 #30$.

FIG. 3. &Color online' The effective charge "! for nonstrange

hadronic decays of a hypothetical ! lepton with m!!
2 "s compared

to solutions of the fixed order evolution equation &8' for "! at two-,

three-, and four-loop order. Error bands include statistical and sys-

tematic errors.

BRODSKY et al. PHYSICAL REVIEW D 67, 055008 &2003'

055008-4

QCD Effective Coupling from
hadronic τ decay

Menke,Merino,Rathsman,SJB
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FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

A

B

C

D

Constituent Counting Rules

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)
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Conformal symmetry and PQCD predicts 
leading-twist power behavior

Characteristic scale of QCD: 300 MeV

New  J-PARC, GSI, J-Lab, Belle, Babar tests

Farrar & sjb; Matveev et al
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pQCD (Bakulev et al, 2004)
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Disp. Rel. (Geshkenbein, 2000)

CERN !-e scattering

DESY (Ackermann)
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this work

FIG. 3: Pion form factor as extracted in this work. Also
shown are e−π elastic data from CERN, and earlier pion elec-
troproduction data from DESY and Jefferson Lab. The ear-
lier Jefferson Lab data are taken from reference [9]. The data
point at Q2 = 1.60 GeV2 from [9] has been shifted from its
central value for visual representation. The curves are from a
Dyson-Schwinger equation (solid, [17]), QCD sum rules (dot-
ted, [14]), dispersion relations with QCD constraint (dashed,
[15]), and from a pQCD calculation (dashed-dotted, [18]).

inance the longitudinal π−/π+ ratios in 2H were exam-
ined. Since the pole term is purely isovector this ratio is
expected to be close to unity and a significant deviation
from unity would indicate the presence of an isoscalar
background. The preliminary analysis of the longitudi-
nal π−/π+ ratios is consistent with unity.

In Figure 3, our results are shown along with re-
sults from CERN, DESY, earlier Jefferson Lab data, and
some representative calculations. Comparing the result
at Q2 = 1.60 GeV2 to the earlier Jefferson Lab data
point at a lower value of W allows for a direct test of the
theoretical model dependence. A higher value of W al-
lows for a measurement at smaller values of −t, at closer
proximity to the pion pole. The data are consistent with
the previous Jefferson Lab Fπ measurement at a value of
Q2 = 1.60 GeV2 and suggest a small model uncertainty
due to fitting the VGL model to the data. The data in-
dicate a one sigma deviation from a monopole form fac-
tor that yields the measured charge radius. That form
factor is up to Q2=2.5 GeV2 indistinguishable from the
solid curve in Figure 3. Various models provide a good
description of the measured values for Fπ up to Q2=1.60
GeV2. The data are well described by the calculation of
Nesterenko and Radyushkin [14], in which a QCD sum
rule framework for the soft contribution to Fπ as well as
an asymptotically dominant hard gluon exchange term
is used. The dispersion relation calculation by Geshken-

bein [15] also agrees well with the data. The data are
also reasonably well described by the Dyson-Schwinger
calculation by Maris and Tandy, which is based on the
Bethe-Salpeter equation with dressed quark and gluon
propagators. All parameters in the latter calculation are
determined without the use of Fπ data [16, 17]. Perturba-
tive QCD calculations of which one is shown in Figure 3
give values of Q2Fπ around 0.10 GeV2 in the region of
our measurements.

In summary, we have measured separated 1H(e,e′π+)n
cross sections at values of Q2=1.60 and 2.45 GeV2 at
W=2.22 GeV. The charged pion form factor was ex-
tracted from the separated longitudinal cross section us-
ing a Regge model. The data are consistent with the
previous Jefferson Lab result at Q2 = 1.60 GeV2. The
data deviate by one sigma from a monopole form factor
obeying the measured charge radius, but are still far from
the values expected from pQCD calculations.
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(which is not unnatural for discussing effects of nuclear size) we may regard3 antishadowing and the EMC effect as

merely resulting from Fourier transforming a flat distribution (of finite length) in x−! This is corroborated in Fig. 11b,
where the reverse transform back to momentum (xB-) space is made, under the assumption that R

A(x−,Q2) is unity
for x− < w (and takes the values of Fig. 11a for x− > w). It is seen that the antishadowing and (most of) the EMC

effect is reproduced assuming no nuclear dependence in coordinate space for x− <∼ 5 fm. The nuclear effects can thus
be ascribed solely to shadowing.

The parton distribution qA(x−,Q2) in coordinate space is insensitive to the region of Fermi motion at large xB in
Fig. 9, where the structure function F2(xB,Q2) is small. The sizeable nuclear dependence of RAF2(xB,Q

2) at large xB
reflects the ratio of very small F2, which do not appreciably affect the inverse Fourier transform (11).

SIZE OF HARD SUBPROCESSES

The third aspect of shape that I would like to discuss concerns the size of coherent hard subprocesses in scattering

involving large momentum transfers. As sketched in Fig. 12, in inclusive DIS (ep→ eX) we expect that the virtual

photon (whose transverse coherence length is ∼ 1/Q) scatters off a single quark. The quark is typically part of a Fock
state with a hadronic,∼ 1 fm size. In elastic scattering (ep→ ep), where the entire Fock state must coherently absorb

the momentum, one might on the other hand expect [11] that only compact Fock states of the photon, with transverse

sizes r⊥ ∼ 1/Q will contribute. Thus the dynamics of inclusive and exclusive processes appears to be quite different.
In particular, the dependence on the electric charges of the quarks is expected to be, qualitatively,

!(ep→ eX) " #
q

e2q Inclusive, DIS

(13)

!(ep→ ep) " (#
q

eq)
2 Exclusive, form factor

! !

"

!#$

!"#$%&'()

% *+,-.

&

/0#$%&'()

! !

" "

#$ !

% *+12

FIGURE 12. The virtual photon scatters from single quarks in inclusive deep inelastic scattering (left). If the valence quarks
absorb equal shares of the momentum transfer in the exclusive ep→ ep process (right) only compact Fock states can contribute.

In contrast to these expectations the data suggests a close connection between inclusive and exclusive scattering.

The resonance production ep→ eN∗ cross sections (including N∗ = p) average the DIS scaling curve when plotted at

the same value of xB (or of the related Nachtmann variable $ ) [12]. Examples of this Bloom-Gilman duality are shown
in Fig. 13. A natural explanation of duality is that the same Fock states of the proton contribute in both cases [13].

Resonance formation occurs on a longer time scale than the hard subprocess, hence is incoherent with it and cannot

change the total cross section. Only the local mass distribution (resonance bumps) is sensitive to the hadronization

time scale.

3 Understanding the dynamics of nuclear dependence in momentum space is nevertheless interesting in its own right. See [10] for recent ideas about
the origin of the antishadowing enhancement.

M =
∫ ∏

dxidyiφF (x, Q̃)×TH(xi, yi, Q̃)φI(yi, Q)

Lepage, sjb
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FIG. 3. The scaled differential cross section s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include statistical and systematic
uncertainties. Other data sets [26,27] are shown with only statistical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid line was obtained
from the recent partial-wave analysis of single-pion photoproduction data [29] up to Eγ=2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ=1.25 GeV.

10

Test of PQCD Scaling

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s7dσdt (γp→ π+n) = F(θCM)
ntot = 1+3+2+3= 9

s7dσ/dt(γp→ π+n)∼ const
f ixed θCM scaling

Conformal invariance at high  momentum transfer!

Constituent counting rules
Farrar, sjb; Muradyan, Matveev, Taveklidze

No sign of running coupling

27
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Quark-Counting : dσ
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Deuteron Photodisintegratio# 

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s11dσdt (γd→ np) = F(θCM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11

Conformal invariance 
at high  momentum transfers!

J-Lab
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Fig. 5. Cross section for (a) γγ→π+π−, (b) γγ→K+K− in the c.m. angular region
|cos θ∗| < 0.6 together with a W−6 dependence line derived from the fit of s|RM |.
(c) shows the cross section ratio. The solid line is the result of the fit for the data
above 3 GeV. The errors indicated by short ticks are statistical only.

6 Systematic errors

The dominant systematic errors are listed in Table 2. The uncertainty due
to trigger efficiency is estimated by comparing the yields of γγ → µ+µ− in
real and simulated data [9] after accounting for the background from e+e− →
µ+µ− nγ events (varying with W from 0.5–4.6%), which have the same topol-
ogy [13]. The uncertainty in the relative muon identification efficiency between
real and simulated data is used to determine the error associated with the
residual µ+µ− subtraction from the π+π− sample. We use an error of 100% of
the subtracted value for the non-exclusive background subtraction. We allow
the number of χcJ events to fluctuate by up to 20% of the measured excess to
estimate the error due to the χc subtraction that is applied for the energy bins
in the range 3.3 GeV < W < 3.6 GeV. The total W -dependent systematic
error is 10–33% (10–21%) for the γγ → π+π− (γγ → K+K−) cross section.

11

PQCD, AdS/CFT:
Δσ(γγ→ π+π−,K+,K−)∼ 1/W 6

|cos(θCM)| < 0.6

Hard Exclusive Processes:
 Fixed angle

Two-Photon 
Reactions

Conformal invariance at high  momentum transfers!
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Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β
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Fig. 4. Angular dependence of the cross section, σ−1
0 dσ/d|cos θ∗|, for

the π+π−(closed circles) and K+K−(open circles) processes. The curves are
1.227 × sin−4 θ∗. The errors are statistical only.

dσ

d|cos θ∗|(W, |cos θ∗|; γγ → X ) =
∆N(W , |cos θ∗|; e+e− → e+e−X )

Lγγ(W )∆W ∆|cos θ∗|ε(W , |cos θ∗|)∫Ldt
(2)

where N and ε denote the number of the signal events and a product of de-
tection and trigger efficiencies, respectively;

∫Ldt is the integrated luminosity,
and Lγγ is the luminosity function, defined as Lγγ(W ) = dσ

dW
(W ; e+e− →

e+e−X)/σ(W ; γγ→X).

The efficiencies ε(W, |cos θ∗|) for γγ → π+π− and γγ → K+K− are obtained
from a full Monte Carlo simulation [11], using the TREPS [12] program for
the event generation as well as the luminosity function determination. The
trigger efficiency is determined from the trigger simulator. The typical value
of the trigger efficiency is ∼ 93% for events in the acceptance.

The efficiency-corrected measured differential cross sections for γγ → π+π−

and γγ → K+K−, normalized to the partial cross section σ0 for |cosθ∗| < 0.6,
are shown in Fig. 4 for each 100 MeV wide W bin. The partial cross sections
σ0 for both processes, integrated over the above scattering angle range, are
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Abstract

We have measured π+π− and K+K− production in two-photon collisions using
87.7 fb−1 of data collected with the Belle detector at the asymmetric energy e+e−

collider KEKB. The cross sections are measured to high precision in the two-photon
center-of-mass energy (W ) range between 2.4GeV < W < 4.1GeV and angular
region |cos θ∗| < 0.6. The cross section ratio σ(γγ → K+K−)/σ(γγ → π+π−) is
measured to be 0.89 ± 0.04(stat.) ± 0.15(syst.) in the range of 3.0GeV < W <
4.1GeV, where the ratio is energy independent. We observe a sin−4 θ∗ behavior of
the cross section in the same W range. Production of χc0 and χc2 mesons is observed
in both γγ → π+π− and γγ → K+K− modes.

Key words: two-photon collisions, mesons, QCD, charmonium
PACS: 12.38Qk, 13.25.Gv, 13.66.Bc, 13.85.Lg

1 Introduction

Exclusive processes with hadronic final states test various model calculations
motivated by perturbative or non-perturbative QCD. Two-photon production
of exclusive hadronic final states is particularly attractive due to the absence of
strong interactions in the initial state and the possibility of calculating γγ →
qq amplitudes. The perturbative QCD calculation by Brodsky and Lepage
(BL) [1] is based on factorization of the amplitude into a hard scattering
amplitude for γγ → qq̄qq̄ and a single-meson distribution amplitude. Their
prediction gives the dependence on the center-of-mass (c.m.) energy W (≡√

s)
and scattering angle θ∗ for γγ → M+M− processes

dσ

d|cos θ∗|(γγ → M+M−) ≈ 16πα2

s

|FM(s)|2
sin4 θ∗

, (1)

where M represents a meson and FM denotes its electromagnetic form factor.
Vogt [2], based on the perturbative approach, claimed a need for soft contribu-
tions, as his result for the hard contribution was well below the experimental
cross section obtained by CLEO [3].

Diehl, Kroll and Vogt (DKV) proposed [4] the soft handbag contribution to
two-photon annihilation into pion or kaon pairs at large energy and momentum
transfers, in which the amplitude is expressed by a hard γγ → qq subprocess
and a form factor describing the soft transition from qq to the meson pair.

1 on leave from Nova Gorica Polytechnic, Nova Gorica, Slovenia
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Deuteron Form Factor 

Define “Reduced” Form Factor

Same large momentum transfer 
behavior as pion form factor
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Define “Reduced” Form Factor

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]
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! Pion Form Factor×15%

• Evidence for Hidden Color in the Deuteron
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Why do dimensional counting 
rules work so well?

• PQCD predicts log corrections from powers of αs, logs, pinch 
contributions  Lepage, sjb; Efremov, Radyushkin

• DSE: QCD coupling  (mom scheme) has IR Fixed point!       
Alkofer, Fischer, von Smekal et al.

• Lattice  results show similar flat behavior

• PQCD exclusive amplitudes dominated by integration regime 
where αs   is large and flat

Furui, Nakajima
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Conformal symmetry: Template for QCD

• Take conformal symmetry as initial approximation; 
then correct for non-zero beta function and quark 
masses

• Eigensolutions of ERBL evolution equation for 
distribution amplitudes

• Commensurate scale relations: relate observables at 
corresponding scales: Generalized Crewther Relation

• Use  AdS/CFT

38

V. Braun et al; 
 Frishman, Lepage, Sachrajda, sjb
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 

3+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level

39
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AdS/QCD G. F. de Téramond

5-Dimensional
Anti-de Sitter

Spacetime

4-Dimensional
Flat Spacetime

(hologram)

Black Hole

1-2006
8685A7

z0 = 1/ΛQCD

z

Caltech High Energy Seminar, Feb 6, 2006 Page 3
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Truncated AdS Space
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Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(ηµνdxµdxν − dz2),

xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 → λ2x2, z → λz.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to theQ→∞, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11
41

invariant measure
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• Use mapping of conformal group SO(4,2) to AdS5

• Scale Transformations represented by wavefunction  
in 5th dimension

• Holographic model: Confinement at large distances 
and conformal symmetry in interior

• Match solutions at small z to conformal dimension of 
hadron wavefunction at short distances

• Truncated space simulates “bag” boundary conditions

Guy de Teramond
SJB 
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AdS/CFT
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• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD.

• Normalizable AdS modes Φ(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

0

2

4

z

Φ(z)

3-2006
8721A13

Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 19

Confinement 
in the 5th 

dimension
z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

Twist dimension 
of baryon

z0 = 1
ΛQCD

z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

de Teramond, sjb

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

Identify hadron by its interpolating operator at z  -- > 0

43
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I. INTRODUCTION

The application of the AdS/CFT correspondence to
QCD phenomenology has had a number of remarkable
successes, despite the fact that QCD is not a conformal
theory. For example, the predicted masses of three-quark
states gives an excellent representation of the observed
spectrum of spin-1/2 and spin-3/2 baryons and their or-
bital angular excitations for isospin I = 1/2 and I = 3/2.
There is only one parameter – the overall mass scale. The
form factors of the nucleons and pion also agree well with
experiment. The AdS/CFT wavefunctions of the hadrons
satisfy conformal symmetry at short distances and con-
finement at long distance, thus allowing one to derive the
quark counting rules for hard exclusive processes without
using perturbation theory.

The essential step in identifying specific hadronic
states in AdS/CFT is the requirement that the wave-
function in the Anti-deSitter space has the correct be-
havior at short distances φH(z) ∼ z∆

H , where ∆H is the
twist dimension of the local interpolating operator with
the quantum number of the state ∆H = nH + L. Here
nH is the number of minimum number of constituents
of the hadron and L is the integral total internal orbital
angular momentum. However, In order for this short-
dtstance behavior to be consistently derived from the
equation of motion in the AdS space, the mass µ govern-
ing the string dynamics has to be quantized and match
the conformal dimensions; For example, for mesons we
shall show (µR)2 = −4 + L2 using semiclassical quanti-
zation where R is the characteristic radius of AdS space.
Furthermore, since L2 ≥ 0 this quantization condition
also satisfies the Breitenlohner-Freedman condition for
stable eigensolutions of the string theory. Given this
quantization, (µR)2 becomes a Casimir operator in the
AdS equation of motion, similar to the L(L + 1) Casimir
in nonrelativistic Schrodinger theory.

In this paper we shall show that the quantization con-
dition for µR can be derived from the semi-classical quan-
tization of the string action in AdS space.

Our analysis shows why Anti-de Sitter space holo-
graphic methods can be used to obtain a first approx-
imant to quantum chromodynamics.

The coupling must be constant in this approximation
since there are no vacuum polarization graphs. Its deriva-
tive is zero. The interaction is scale invariant. It is consis-
tent with the idea that the quantum corrections decouple

at large distances. In fact, since the gluons are confined
in the truncated space, they have an effective mass, so it
is reasonable that they decouple from the β function at
small q2.

The essential principle underlying the AdS/CFT ap-
proach to conformal gauge theories is the isomorphism
of the group of Poincare and conformal transformations
SO(4, 2) to the group of isometries of Anti-deSitter space
SO(1, 5). The AdS metric is ds2 = R2

z2 (ηµνdxµdxµ−dz2)
which is invariant under scale changes of the coordinate
in the fifth dimension z → λz and dxµ → λdxµ. Thus
one can match scale transformations in 3 + 1 physical
space time to scale transformations in the fifth dimen-
sion z. Different values of z correspond to different scales
in which the hadron is examined. The amplitude φ(z)
represents the extension of the hadron into the fifth di-
mension. The behavior of φ(z) → z∆ at z → 0 must
match the twist dimension of the hadron at short dis-
tances x2 → 0. As shown by Polchinski and Strassler,
one can simulate confinement by imposing the condition
φ(z = z0 = 1

ΛQCD
). The corresponding action for string

amplitudes in this AdS space is

S[Φ] = κ′
∫

d4xdz
√

g
[
g"m∂"Φ∗∂mΦ− µ2Φ∗Φ

]
(1)

where [κ′] = L−2.
We can verify the invariance of the full action (1) for

a scalar field Φ with respect to scale transformations

xµ → λxµ, z → λz. (2)

Since √g = R5/z5 and

g"m =
z2

R2
η"m, (3)

it follows that full space action (1) is invariant under the
full space scale transformations (2), since Φ is a scalar
field

Φ(x") = Φ(λx"). (4)

One can obtain expectation values for QCD observ-
ables by constructing the generating functional

L→ L+
∑

I

JI(x)OI(x), (5)

Action for scalar field in AdS5
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states in AdS/CFT is the requirement that the wave-
function in the Anti-deSitter space has the correct be-
havior at short distances φH(z) ∼ z∆

H , where ∆H is the
twist dimension of the local interpolating operator with
the quantum number of the state ∆H = nH + L. Here
nH is the number of minimum number of constituents
of the hadron and L is the integral total internal orbital
angular momentum. However, In order for this short-
dtstance behavior to be consistently derived from the
equation of motion in the AdS space, the mass µ govern-
ing the string dynamics has to be quantized and match
the conformal dimensions; For example, for mesons we
shall show (µR)2 = −4 + L2 using semiclassical quanti-
zation where R is the characteristic radius of AdS space.
Furthermore, since L2 ≥ 0 this quantization condition
also satisfies the Breitenlohner-Freedman condition for
stable eigensolutions of the string theory. Given this
quantization, (µR)2 becomes a Casimir operator in the
AdS equation of motion, similar to the L(L + 1) Casimir
in nonrelativistic Schrodinger theory.

In this paper we shall show that the quantization con-
dition for µR can be derived from the semi-classical quan-
tization of the string action in AdS space.

Our analysis shows why Anti-de Sitter space holo-
graphic methods can be used to obtain a first approx-
imant to quantum chromodynamics.

The coupling must be constant in this approximation
since there are no vacuum polarization graphs. Its deriva-
tive is zero. The interaction is scale invariant. It is consis-
tent with the idea that the quantum corrections decouple

at large distances. In fact, since the gluons are confined
in the truncated space, they have an effective mass, so it
is reasonable that they decouple from the β function at
small q2.

The essential principle underlying the AdS/CFT ap-
proach to conformal gauge theories is the isomorphism
of the group of Poincare and conformal transformations
SO(4, 2) to the group of isometries of Anti-deSitter space
SO(1, 5). The AdS metric is ds2 = R2

z2 (ηµνdxµdxµ−dz2)
which is invariant under scale changes of the coordinate
in the fifth dimension z → λz and dxµ → λdxµ. Thus
one can match scale transformations in 3 + 1 physical
space time to scale transformations in the fifth dimen-
sion z. Different values of z correspond to different scales
in which the hadron is examined. The amplitude φ(z)
represents the extension of the hadron into the fifth di-
mension. The behavior of φ(z) → z∆ at z → 0 must
match the twist dimension of the hadron at short dis-
tances x2 → 0. As shown by Polchinski and Strassler,
one can simulate confinement by imposing the condition
φ(z = z0 = 1

ΛQCD
). The corresponding action for string

amplitudes in this AdS space is

S[Φ] = κ′
∫

d4xdz
√

g
[
g"m∂"Φ∗∂mΦ− µ2Φ∗Φ

]
(1)

where [κ′] = L−2.
We can verify the invariance of the full action (1) for

a scalar field Φ with respect to scale transformations

xµ → λxµ, z → λz. (2)

Since √g = R5/z5 and

g"m =
z2

R2
η"m, (3)

it follows that full space action (1) is invariant under the
full space scale transformations (2), since Φ is a scalar
field

Φ(x") = Φ(λx"). (4)

One can obtain expectation values for QCD observ-
ables by constructing the generating functional

L→ L+
∑

I

JI(x)OI(x), (5)
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2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

Variation wr!  
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and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

Solutions of form:

2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

Variation of S wrt f :

2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

Normalization in truncated space

P-S Boundary Condition f(z = 1
ΛQCD

) = 0

s(GeV2)

dσ
dt (γp→MB) = F (θcm)

s7

Introduce confinement, break conformal invariance
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AdS/QCD

• Wave equation in AdS for bound state of two scalar partons with conformal dimension ∆ = 2 + L[
z2∂2

z − 3z ∂z + z2M2 − L2 + 4
]
Φ(z) = 0,

with solution

Φ(z) = Ce−iP ·xz2JL(zM).

• For spin-carrying constituents: ∆→ τ = ∆− σ, σ =
∑n

i=1 σi.

• The twist τ is equal to the number of partons τ = n.

• Same form of equation for vector wave equation in AdS with lowest stable solution (µR)2 ≥ −1 and

(µR)2 = (∆− 1)(∆− d− 1) = κ(κ + d− 2).

• Two-quark vector meson described by wave equation[
z2 ∂2

z − 3z ∂z + z2M2 − L2 + 4
]
Φµ(z) = 0,

with solution

Φµ(x, z) = Ce−iP ·xz2JL(zM) εµ.
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Scalar and Vector AdS Fields

• Consider a scalar wave equation on AdSd+1[
z2∂2

z − (d− 1)z ∂z + z2M2 − (µR)2
]
Φ(z) = 0,

with solution

Φ(z) ∼ zd/2J∆− d
2
(zM), (µR)2 = ∆(∆− d).

• For d = 4, lowest stable solution determined by the Breitenlohner-Freedman (B-F) stability bound,
(µR)2 ≥ −4, on the fifth dimensional mass.

• Orbital excitations correspond to higher values of µ. Allowed values determined by the condition that
conformal dimensions are spaced by integers, according to the spectral relation

(µR)2 = ∆(∆− d) = κ(κ + d).

• If lowest stable state corresponds to the lowest orbital, L = 0, then κ = L− 2, ∆ = 2 + L and

(µR)2 = −4 + L2.
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Introduce confinement, break conformal invarianc"

f(z = 1
ΛQCD

) = 0

s(GeV2)

dσ
dt (γp→MB) = F (θcm)

s7
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• Wave equation in AdS for bound state of two scalar partons with conformal dimension ∆ = 2 + L[
z2∂2

z − 3z ∂z + z2M2 − L2 + 4
]
Φ(z) = 0,

with solution

Φ(z) = Ce−iP ·xz2JL(zM).

• For spin-carrying constituents: ∆→ τ = ∆− σ, σ =
∑n

i=1 σi.

• The twist τ is equal to the number of partons τ = n.

• Same form of equation for vector wave equation in AdS with lowest stable solution (µR)2 ≥ −1 and

(µR)2 = (∆− 1)(∆− d− 1) = κ(κ + d− 2).

• Two-quark vector meson described by wave equation[
z2 ∂2

z − 3z ∂z + z2M2 − L2 + 4
]
Φµ(z) = 0,

with solution

Φµ(x, z) = Ce−iP ·xz2JL(zM) εµ.
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Introduce confinement, break conformal invarianc"
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD

• Normalizable AdS modes Φ(z)
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Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.
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Match fall-off at small z to Conformal Dimension 
of hadron state at short distances

z∆

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

z∆

z0

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

z∆

z0 = 1
ΛQCD

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)




