Cascading in the Early Universe

Scott Watson
University of Toronto

UC-Davis, Spring 2007

Acknowledgments

- Cambridge:
 Kate Marvel, Malcolm Perry
- Columbia:
 Brian Greene, Simon Jude, Janna Levin, Amanda Weltman
- Michigan: Fred Adams, Sera Cremonini, Katie Freese, Chris Gauthier, Gordon Kane, Jim Liu
- Toronto / CITA: Lev Kofman

Overview

- Brief Review of Inflation Model Building
- Inflation in String theory -- and a problem...
- · Moduli Trapping
- Transitions through the landscape
- Coarse graining and a multi-fluid approach to inflation
- Cosmological Perturbations
- Conclusions

Phase Transitions and Cosmology

Phase Transitions can result in many experimental signatures:

- Gravity Waves

 Ist order: Bubble collisions, Turbulence

 2nd order: Inhomogeneous inflaton decay
- Density fluctuations
- Relic Abundances (e.g. neutrino background)
- Defect Formation (e.g. Cosmic strings, Domain walls)

Vacuum Manifolds and Gauge Theories

- Gauge Theories can have rich vacuum structure (e.g. Theta vacuum)
- Non-perturbative behavior
 (e.g. Gaugino condensation, solitons, instantons)
- String theory Landscape Strings, Branes, lots of fluxes

Old Inflation

Guth and Weinberg, 1981 SU(5) GUT (well motivated by fundamental theory)

Could potentially solve:

- *Monopole problem*
- Horizon problem,
- Flatness problem,
- Entropy problem

AND (accident)
gives explanation for origin of

Scale Invariant Spectrum of density perturbations (LSS) (maybe some gravity waves too)

Old Inflation doesn't work

- 1st order transition Single Tunneling Event
- Potential difference must yield enough inflation
- Bubbles of new phase must percolate

Unfortunately:

- Inflation doesn't end
 Graceful Exit Problem)
- Single universe emerges
- Can't reheat (cold & empty)

Inflation remains an idea w/out a theory (no UV completion)

Towards inflation in string theory (e.g., KKLT, KKNNNLT, BBCEGKLQ, etc..)

Many moduli - flat directions to stabilize Universe is hot --> Finite Temp.

Is Symmetry Attractive?

Are all minima equal?

Review of Strings on S'

SUGRA Massless modes:

$$R \equiv \sqrt{G_{55}}
ightarrow \phi \qquad A_{\mu}^{R/L} = G_{\mu 5} \pm B_{\mu 5} \qquad \qquad$$
 Chiral $U(1)$

Higgsed scalar w/ winding charge (w/ knowledge of string theory)

$$m_w^2 = m_s^2(\omega^2 R^2 - 4)$$
 $w = \pm 2$

Time dependent effective mass

$$m_w^2 = g^2 \phi^2(t)$$

Enhanced gauge symmetry - ESP @ self-dual radius

$$R \rightarrow l_s$$

$$m_w o 0$$

$$R \to l_s \qquad m_w \to 0 \qquad U(1) \to SU(2)$$

B new scalars 4 new vectors

Enhanced Symmetry

Many examples of ESPs in string theory

- Heterotic strings on T⁶- Enhanced gauge symmetry
- Type II on K3 ESPs at singularities
- Wrapped branes and strings on collapsing cycles
 (e.g. conifolds and flops)
- Coincident branes (open strings become light)

$$\begin{array}{c|c}
U(1) & U(1) \\
\hline
\phi & \end{array} \Longrightarrow \begin{array}{c}
U(2)
\end{array}$$

Moduli Trapping

- Kofman, Linde, Liu, Maloney, McAllister, Silverstein hep-th/0403001
- S.W. hep-th/0404177
- Cremonini & S.W. hep-th/0601082
- Greene, Judes, Levin, Weltman, & S.W. to appear soon

$$\ddot{\phi} + 3H\dot{\phi} + g^2\langle\chi^2\rangle\phi = 0$$
$$\ddot{\chi} + 3H\dot{\chi} + g^2\langle\phi^2\rangle\chi = 0$$

Initially: $\langle \chi^2 \rangle = 0$

Adiabaticity parameter

$$\frac{\dot{\omega}}{\omega^2} \approx \frac{\dot{m}}{m^2} \sim 1$$

Near ESP modes become excited

-Particle production-

$$\ddot{\phi} + 3H\dot{\phi} + g^2\langle\chi^2\rangle\phi = 0$$

Initially: $\langle \chi^2 \rangle = 0$

Adiabaticity parameter

$$\frac{\dot{\omega}}{\omega^2} pprox \frac{\dot{m}}{m^2} \sim 1$$

Near ESP modes become excited -Particle production-

$$n_k pprox e^{-rac{\pi k^2}{gv_0}}$$

$$\ddot{\phi} + 3H\dot{\phi} = -gn_{\chi}\frac{\phi}{|\phi|}$$

"Observations"

- Moduli dynamics require careful study of moduli space new light d.o.f. (c.f. Vafa - Swampland)
- Points of enhanced symmetry seem to be dynamical attractors - some pts. in landscape preferred dynamically
- ESPs are fixed pts. of effective action... even after phase transition (protected by symmetry - c. f. Dine)
- Fixed points of dualities natural places to find moduli
- Can moduli dynamics + gravity generate hierarchies?
- The dilaton difficult but possible (Cremonini & S.W. hep-th/0601082)

Traveling through the landscape

- Did the universe go through a series of rapid phase transitions?
- 1st or 2nd order?
- Can a successful model of inflation result?
- Signatures?

Can this address the Cosmological constant problem? (Abbott)

Traveling through the landscape

Bousso-Polchinski (extension of Brown-Teitelboim mechanism)

$$F^{(i)}_{\mu\nu\rho\sigma} = n_i q_i \epsilon_{\mu\nu\rho\sigma}$$

$$n \in \mathbb{Z}$$

$$\Lambda = \Lambda_{\mathrm bare} + \sum_{fluxes} rac{1}{2} n_i^2 q_i^2$$

Make Λ dynamical: $\Lambda o F_{(4)}$

Membrane nucleation (instantons)

$$n \rightarrow n-1$$

Energy drop

$$\epsilon^4 = -\left(n - \frac{1}{2}\right)q^2$$

Ex: M-theory compactification

$$au_4 = 2\pi M_{11}^3 (V_3 M_{11}^3)$$
 M5 --> 4D

$$M_{11} \sim 10^{-3} M_p$$

$$V_3 M_{11}^3 \sim 10^3 \qquad n \sim 1000$$

$$\epsilon^4 \sim 10^{-7} M_p^4$$

Can we use degeneracy of vacua to address naturalness?

Kane, Perry, and Zytkow, hep-th/0311152

Near degeneracy

--> Super-position of vacua

Ground State Energy

$$\rho(\theta) \approx H^2 M_p^2 - 2 \sum_{i=1}^d H^4 \cos(\theta_i) e^{-S_E}$$

$$H \sim 10^{15} GeV$$

 $d \sim 10^{12} \quad N \sim 10^{100}$

$$\longrightarrow \rho_0 \sim \left(10^{-3} eV\right)^4$$

Early Universe would have band structure --> interesting cosmology

S.W., Kane, Perry, and Adams, hep-th/06010054

First Order Transitions

- Bubbles of new phase form in background of old phase
- Energy difference stored in walls / velocity typically relativistic
- Bubble collisions create regions of new phase as they collide
- Transition completes when all bubbles collide (percolation) and bath of radiation results

The Bounce

$$\Gamma = Ae^{-B}$$
 $A \sim \epsilon^4$ $\epsilon^4 = V(\varphi_+) - V(\varphi_-)$ $B = S_E(\varphi_b) - S_E(\varphi_-)$

Dimensionless Decay rate

$$eta = rac{\Gamma}{H^4}$$

Percolation and e-folds

$$p(t) \sim e^{-\frac{4\pi}{3}\beta Ht}$$
 $\tau \sim (\beta H)^{-1}$

$$eta\ll 1$$
 enough e-folds

$$N = \int H dt \approx H \tau \leq \frac{1}{3}$$

$$N = \int H dt \approx H \tau \leq \frac{1}{3}$$

Observations:

- Transitions will be weakly first order
- Characteristic bubble size (< Hubble scale (gravitational effects unimportant)

$$r_b \ll H^{-1} \qquad r_b \sim rac{\xi^2 \Delta \varphi}{\epsilon^4}$$

Hawking, Moss, and Stewart Phys Rev D26 1982

Macroscopic description

- \circ Coarse grain --> Bubbles act as radiation bath $r_b \ll H^{-1}$
- Slow roll inflation w/ radiation present

Cosmology with Multiple Fluids

$$abla_{\mu}T^{\mu
u}_{(lpha)}=Q_{(lpha)}$$
 $abla_{\mu}T^{\mu
u}_{ ext{total}}=0 \qquad \qquad \sum_{lpha}Q_{(lpha)}=0$

$$\dot{
ho}_{arphi} = -3H\dot{arphi}^2 + Q_{arphi}$$
 $Q_{arphi} = -4H
ho_r + Q_r$ $Q_{arphi} = -Q_r$

$$3H^2=rac{8\pi}{M_p^2}
ho$$
 $\dot{H}=-rac{4\pi}{M_p^2}\left(\dot{arphi}^2+rac{4}{3}
ho_r
ight)$

Inflation with Multiple Fluids

$$\epsilon = \frac{d}{dt} \left(H^{-1} \right) = 3\Omega_k + 2\Omega_r$$

$$\Omega_k = rac{rac{1}{2}\dot{arphi}^2}{
ho} \quad \Omega_r = rac{
ho_r}{
ho} \quad \Omega_v = rac{V(arphi)}{
ho}$$

$$\ddot{a} > 0 \longrightarrow \epsilon < 1$$

Standard slow roll inflation

Effect of Bubbles

$$\Omega_k + \Omega_v + \Omega_r = 1$$

Example One: Inflation w/out inflatons

S.W., Perry, Kane, Adams hep-th/0610054

$$egin{aligned} Q_{arphi} &= -\Gamma
ho_{\phi} & \dot{arphi} &= 0 \ \ \dot{
ho}_{\Lambda} &= -\Gamma
ho_{\Lambda} \ \dot{
ho}_{r} &= -4 H
ho_{r} + \Gamma
ho_{\Lambda} \end{aligned}$$

$$r = rac{\Gamma}{3H} \lesssim rac{1}{150}$$

Example Two: Warm Inflation

Berera, astro-ph/9509049, Criticism: Linde & Yokoyama hep-ph/9809409

$$egin{aligned} Q_{arphi} &= -\Gamma \dot{arphi}^2 \ \dot{
ho}_r &= -4 H
ho_r + \Gamma \dot{arphi}^2 \ \dot{
ho}_{arphi} &= -3 H \dot{arphi}^2 - \Gamma \dot{arphi}^2 \end{aligned}$$

Three regimes

$$r=rac{\Gamma}{3H}\gg 1$$
 Warm Inflation

$$r=rac{\Gamma}{3H}pprox 1$$
 New regime (motivated by bubbles)

$$r=rac{\Gamma}{3H}\ll 1$$
 Standard inflation

Condition for inflation

$$\epsilon = \epsilon_{\varphi}(1+r) \ll 1$$

Comments about Warm Inflation:

- Reheating is not necessary
- Potential can be less fine-tuned if many vacua are present (e.g. string landscape)
- Thermal correction to inflaton potential can be important (place for concern / fine tuning?)
- When vacuum energy ~ radiation density
- --> interesting physics!
- Initial state is modified (transplanckian effects? hep-th/0611277)

Density Perturbations

Scalar Metric Perturbations

(no anisotropic stress / longitudinal gauge / I d.o.f.)

$$ds^{2} = -(1+2\Psi) dt^{2} + a^{2} (1-2\Psi) d\vec{x}^{2}$$

Curvature Fluctuation

$$\zeta = -\Psi - rac{H}{\dot{
ho}}\delta
ho \hspace{1cm} \zeta_{lpha} = -\Psi - rac{H}{\dot{
ho}_{lpha}}\delta
ho_{lpha}$$

Entropy or Isocurvature Fluctuation

$$S_{\alpha\beta} = 3(\zeta_{\alpha} - \zeta_{\beta})$$

Ex: Baryon / Photons (Isocurvature)

$$\delta
ho=0
ightarrow\delta
ho_b=-\delta
ho_\gamma \qquad \quad S_{b\gamma}=rac{\delta\left(n_b/n_\gamma
ight)}{n_b/n_\gamma}$$

Standard Scenario

Curvature Fluctuation

$$\zeta = -\Psi - \frac{H}{\dot{\rho}} \delta \rho$$

$$\dot{\zeta} = -\left(\frac{H}{\rho + p}\right) \delta P_{\mathrm{NAD}}$$

$$\delta P_{
m int}^{(lpha)} = \delta p^{(lpha)} - c_lpha^2 \delta
ho^{(lpha)}$$

$$\delta P_{
m rel} \sim \sum_{lphaeta} S_{lphaeta}$$

Scalar field inflation

$$\delta P_{
m int}^{(lpha)} \sim -k^2 \Psi$$
 $\dot{\zeta}
ightarrow 0 \qquad k^{-1} \gg H^{-1}$

Curvature perturbation conserved on Super-Hubble scales

Density Fluctuations w/ multiple fluids (e.g. scalars)

$$\dot{\zeta} = -\left(\frac{H}{\rho + p}\right) \delta P_{\text{NAD}}$$

Multiple fields w/ significant interactions can lead to new generation mechanisms:

- Perturbations during (p) reheating
- Curvaton
- Modulated Perturbations

Upshot: Significant contribution to density fluctuations can result *AFTER* inflation ends or by fields other than inflaton!

Modulated Perturbations

- Dvali Gruzinov, Zaldarriaga astro-ph/0303591 & astro-ph/0305548
- Kofman astro-ph/0303614 & astro-ph/0403315
- Kofman & S.W. in progress

Light scalars during inflation

$$\delta \chi \sim rac{H}{2\pi}$$

Couplings controlled by moduli will fluctuate

$$V(\phi) = \frac{1}{2}m^2(\chi)\phi^2 + \lambda^4(\chi)\phi^4$$
 $\frac{\delta\chi}{\chi} \to \left(\frac{\delta m}{m} \text{ or } \frac{\delta\lambda}{\lambda}\right) \to \frac{\delta\rho}{\rho} \to \frac{\delta T}{T}$

Density Perturbations for Bubbles

Key Observations

$$r = \frac{\Gamma}{3H} \le 1$$

$$\epsilon = 3\Omega_k + 2\Omega_r \ll 1$$

$$\rho_r \ll \rho_\varphi \to \delta \rho_r \ll \delta \rho_\varphi$$

Significant entropy perturbation can develop,
but radiation ultimately dominates washing out entropy perturbations
(c.f. Curvaton, Modulated Perrturbations)

Density Perturbations for Bubbles

$$\begin{split} \dot{\zeta} &= -\frac{H}{\rho + p} \delta P_{\rm nad} + \frac{k^2}{3Ha^2} \left(\Psi - \zeta \right) + \frac{k^4}{9\dot{H}Ha^4} \Psi, \\ \dot{\Psi} &= -\left(H - \frac{\dot{H}}{H} \right) \Psi - \frac{k^2}{3Ha^2} \Psi + \frac{\dot{H}}{H} \zeta, \\ \dot{\mathcal{V}}_{\phi} &= -\left(\frac{Q_{\phi} (1 + c_{\phi}^2)}{\dot{\phi}^2} - \frac{Q_{\phi}}{\dot{\phi}^2} - 3Hc_{\phi}^2 - \frac{2V'}{\dot{\phi}} \right) \mathcal{V}_{\phi} - \Psi + \frac{\dot{\rho}_{\phi}}{H\dot{\phi}^2} \left(\zeta_{\phi} + \Psi \right), \\ \dot{\zeta}_{\phi} &= \frac{3H^2}{\dot{\rho}_{\phi}} \delta P_{\rm int}^{\phi} - \frac{H}{\dot{\rho}_{\phi}} \left(\delta \mathcal{Q}_{\rm int}^{\phi} + \delta \mathcal{Q}_{\rm rel}^{\phi} \right) + \frac{k^2}{3Ha^2} \left(\frac{Q_{\phi}}{\dot{\rho}_{\phi}} \Psi + \left[1 - \frac{Q_{\phi}}{\dot{\rho}_{\phi}} \right] H \mathcal{V}_{\phi} \right), \\ \delta P_{\rm nad} &= \frac{2V'\dot{\phi}}{H} \left(\zeta_{\phi} + \Psi + H \mathcal{V}_{\phi} \right) + \frac{\dot{\rho}_{\phi}}{H} \left(c_r^2 - c_{\phi}^2 \right) \left(\zeta - \zeta_{\phi} \right), \\ \delta P_{\rm int}^{\phi} &= \frac{2V'\dot{\phi}}{H} \left(\zeta_{\phi} + \Psi + H \mathcal{V}_{\phi} \right), \\ \delta \mathcal{Q}_{\rm int}^{\phi} &= \delta Q_{\phi} + \frac{\dot{Q}_{\phi}}{H} \left(\zeta_{\phi} + \Psi \right), \\ \delta \mathcal{Q}_{\rm rel}^{\phi} &= \frac{Q_{\phi}\dot{\rho}}{2H\rho} \left(\zeta - \zeta_{\phi} \right), \end{split}$$

Density Perturbations for Bubbles

Power Spectrum

$$P_{\zeta} = rac{1}{4\pi^2 c_s \epsilon} \left(rac{H}{M_p}
ight)^2 (-kc_s \eta)^{-2\epsilon}$$

$$\epsilon = 3\Omega_k + 2\Omega_r$$

Scalar Tilt:

$$n_s = 1 + rac{d \ln P_\zeta}{d \ln k} = 1 - 2\epsilon$$

Gravity Waves

$$P_h = rac{8}{\pi^2} \left(rac{H}{M_p}
ight)^2 (-k\eta)^{-2\epsilon}$$

Tensor to Scalar ratio:

$$r=rac{P_h}{P_\zeta}=16\epsilon c_s$$

Single field slow-roll models

Conclusions

- Moduli Trapping offers a way to stabilize moduli near locations of higher symmetry
- Rapid transitions through landscape (1st or 2nd order) suggests new approach to fine tuning issues (replaced by energy splitting)
- Cosmological Perturbations are consistent with observations
- May be additional signatures.. gravity waves? tensor/scalar?
- Much left to explore...