Physics of the D=5 Chern-Simons Term

C.T. Hill, Fermilab

QED in D=5

Photons propagate in bulk; Naturalness, m_e << 1/R, requires chiral delocalization; Wilson-line mass term

Chiral delocalization requires a Chern-Simons term

Anomaly-freedom implies quantized coefficient of CS term; "consistent anomalies" vs. "covariant anomalies"

Chern-Simons term implies new interactions amongst bulk KK-mode photons, effective D=4 interaction,

- (i) Use "Wilson-Line Gauge Transformation" to $A_5 = 0$
- (ii) Large m_e limit -> Integrate out fermions Fermionic Dirac determinant modifies effective interaction; maintains gauge invariance
- (iii) Compute K' -> K + gamma via effective interaction

Yang-Mills in D=5

"quarks" on branes; gauge theory of flavor compactify with A₅ zero-mode -> mesons f_{pi}=1/R; Wilson line mass term <-> chiral condensate

Chiral delocalization requires a Chern-Simons term; anomaly matching, quantization

Chern-Simons term implies bulk and holographic interactions amongst KK-modes effective D=4 interaction,

Large m_q limit -> Fermionic Dirac determinant modifies effective interaction; maintains gauge invariance

Obtain effective interaction: holographic part is the full Wess-Zumino-Witten term.

Exact equivalence of the D=4 gauged Wess-Zumino-Witten term and the D=5 Yang-Mills Chern-Simons term. Phys.Rev.D73:126009,2006

Anomalies, Chern-Simons terms and chiral delocalization in extra dimensions. Phys.Rev.D73:085001,2006

Lecture notes for massless spinor and massive spinor triangle diagrams. hep-th/0601155

<u>Christopher T. Hill (Fermilab)</u>, <u>Cosmas K. Zachos (Argonne)</u>. <u>Phys.Rev.D71:046002,2005</u>

Anomalies and Topology of Little Higgs Theories Christopher T. Hill, Richard J. Hill (Fermilab). (to appear)

AdSCFT Holographic Duals to QCD

Low energy hadron physics in holographic QCD.

Tadakatsu Sakai, Shigeki Sugimoto

Prog.Theor.Phys.113:843-882,2005

QED Chern-Simons term

D=3: Knot Theory "Gauss' Linking Theorem"

$$L_{CS} = \epsilon_{ijk} A^i \partial^j A^k$$

Bulk Physics: Photon Mass Term

Deser, Jackiw, Templeton, Schonfeld, Siegel; Niemi, Semenoff, Y.S. Wu

D=5:
$$L_{CS} = \epsilon_{ABCDE} A^A \partial^B A^C \partial^D A^E$$

Bulk Physics: New interactions amongst KK-modes

D=5 Yang-Mills

Topological object: "instantonic soliton"

Deser's Theorem Ramond and CTH

Conserved Topological Currents:

Singlet:
$$J_A = \epsilon_{ABCDE} \operatorname{Tr}(G^{BC}G^{DE})$$

Adjoint:
$$J_A^a = \epsilon_{ABCDE} \operatorname{Tr}(\frac{\lambda^a}{2} \{ G^{BC}, G^{DE} \})$$

These currents come from a "completion" of the Lagrangian Adjoint current - 2nd Chern character:

$$c\epsilon^{ABCDE} \operatorname{Tr}(A_A \partial_B A_C \partial_D A_E - \frac{3i}{2} A_A A_B A_C \partial_D A_E - \frac{3}{5} A_A A_B A_C A_D A_E)$$

Singlet currents - auxiliary characters:

$$c'\epsilon_{ABCDE}V^A\operatorname{Tr}(G^{BC}G^{DE})$$

Topology of the D=5 pure Yang Mills theory can be directly matched to D=4

Chiral Lagrangian theory obtainable via deconstruction Bianchi ID's, etc.:

CTH, CTH & Zachos

Mathematically exact matchings:

Gauge currents Chiral currents

Chern-Simons term + boundary term WZW term

I. Technically natural QED in D=5:

Bulk:
$$D_A = \partial_A - iA_A$$
, $F_{AB} = i[D_A, D_B]$, $L_0 = -\frac{1}{4e^2}F_{AB}F^{AB}$

$$\int_I d^4x \ \overline{\psi}_L iD L\psi_L \qquad \qquad \int_{II} d^4x \ \overline{\psi}_R iD R\psi_R$$

$$D_{L\mu} = \partial_\mu - iA_\mu(x_\mu, 0)$$

$$R$$

$$D_{R\mu} = \partial_\mu - iA_\mu(x_\mu, R)$$

$$R$$

$$m\overline{\psi}_L(x_\mu, 0)W\psi_R(x_\mu, R) + h.c.$$

$$W = \exp(i\int_0^R -A_5(x_\mu, x_5)dx^5)$$

Orbifold Boundary Conditions:

Horava-Witten = Magnetic Josephson Junction

Spectrum: (a) A_u zero mode and KK tower

- (b) No A₅ zero mode
- (c) All A₅ modes eaten -> longitudinal dof's

Flipped Orbifold Boundary Conditions:

parity reversed Horava-Witten = Josephson Junction

Spectrum: (a) A₅ zero mode

- (b) No A_{mu} zero mode
- (c) All other A₅ modes eaten -> longitudinal dof's

Gauge transformation in D=5:

$$A_A(x_\mu, y) \to A_A(x_\mu, y) + \partial_A \theta(x_\mu, y)$$

$$\psi_L(x_\mu) \rightarrow \exp(i\theta(0, x_\mu))\psi_L(x_\mu)$$
 $\psi_R(x_\mu) \rightarrow \exp(i\theta(R, x_\mu))\psi_R(x_\mu)$

$$S_{branes} \rightarrow S_{branes} + \int_{I} d^{4}x \, \overline{\psi}_{L} \gamma_{\mu} \partial^{\mu} \theta \psi_{L}(x_{\mu}, 0) + \int_{II} d^{4}x \, \overline{\psi}_{R} \gamma_{\mu} \partial^{\mu} \psi_{R}(x_{\mu}, R)$$

$$\rightarrow S_{branes} - \int_{I} d^{4}x \, \theta(x_{\mu}, 0) \partial_{\mu} J_{L}^{\mu} - \int_{II} d^{4}x \, \theta(x_{\mu}, R) \partial_{\mu} J_{R}^{\mu}$$

$$\partial_{\mu}J_{L}^{\mu} \; = \; -\frac{1}{48\pi^{2}}F^{\mu\nu}(0)\widetilde{F}_{\mu\nu}(0) \qquad \qquad \partial_{\mu}J_{R}^{\mu} \; = \; \frac{1}{48\pi^{2}}F^{\mu\nu}(R)\widetilde{F}_{\mu\nu}(R)$$

"Consistent" Anomalies

QED in D=5 requires Chern-Simons term:

$$L_{CS} = c \epsilon^{ABCDE} A_A \partial_B A_C \partial_D A_E = \frac{c}{4} \epsilon^{ABCDE} A_A F_{BC} F_{DE}$$

$$S_{CS} = \int d^5x \ c \ \epsilon^{ABCDE} A_A \partial_B A_C \partial_D A_E$$

$$S_{CS} \ \rightarrow \ S_{CS} + \frac{c}{4} \int_{II} d^4x \ \theta(R) \ \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}(R) - \frac{c}{4} \int_I d^4x \ \theta(0) \ \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}(0) \ .$$

Anomaly Cancellation Condition:

$$S_{branes} \; \to \; S_{branes} \; + \; \frac{1}{48\pi^2} \int_I d^4x \; \theta(x_\mu,0) F^{\mu\nu} \widetilde{F}_{\mu\nu}(0) \; - \; \frac{1}{48\pi^2} \int_{II} d^4x \; \theta(x_\mu,R) F^{\mu\nu} \widetilde{F}_{\mu\nu}(R)$$

$$S_{CS} \rightarrow S_{CS} - \frac{c}{2} \int_{I} d^4x \; \theta(x_{\mu}, 0) F^{\mu\nu} \widetilde{F}_{\mu\nu} + \frac{c}{2} \int_{II} d^4x \; \theta(x_{\mu}, R) F^{\mu\nu} \widetilde{F}_{\mu\nu}$$

Consistent Anomalies: $c = \frac{1}{24\pi^2}$

C-S coefficient obtainable in any odd D from gauss linking for a generalized Dirac monopole solenoid (dA)^{(D-1)/2}

Summary of Anomalies: W. A. Bardeen, PR 184, 1848 (199)

Consistent Anomalies:

Consistent L = V - A and R = V + A Forms:

(1) Pure Massless Weyl Spinors $(p_i \cdot p_j >> m^2)$:

$$\partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{L} = -\frac{1}{48\pi^{2}}F_{L\mu\nu}\tilde{F}_{L}^{\mu\nu}$$

$$\partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{R} = \frac{1}{48\pi^{2}}F_{R\mu\nu}\tilde{F}_{R}^{\mu\nu}$$

$$\partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{R} = \frac{1}{48\pi^{2}}F_{R\mu\nu}\tilde{F}_{R}^{\mu\nu}$$

$$\partial^{\mu}\overline{\psi}\gamma_{\mu}\gamma^{5}\psi = \frac{1}{24\pi^{2}}(F_{V\mu\nu}\tilde{F}_{V}^{\mu\nu} + F_{A\mu\nu}\tilde{F}_{A}^{\mu\nu})$$

(2) Heavy Massive Weyl Spinors (p_i · p_j << m²):

$$\begin{array}{lll} \partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{L}+im(\overline{\psi}_{L}\psi_{R}-\overline{\psi}_{R}\psi_{L})&=-\frac{1}{48\pi^{2}}F_{L\mu\nu}\tilde{F}_{L}^{\mu\nu}\\ \partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{R}+im(\overline{\psi}_{R}\psi_{L}-\overline{\psi}_{L}\psi_{R})&=\frac{1}{48\pi^{2}}F_{R\mu\nu}\tilde{F}_{R}^{\mu\nu}\\ \partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{R}+im(\overline{\psi}_{R}\psi_{L}-\overline{\psi}_{L}\psi_{R})&=\frac{1}{48\pi^{2}}F_{R\mu\nu}\tilde{F}_{R}^{\mu\nu}\\ \partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{L}&=\frac{1}{48\pi^{2}}(F_{L\mu\nu}\tilde{F}_{R}^{\mu\nu}+F_{R\mu\nu}\tilde{F}_{R}^{\mu\nu})\\ \partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{R}&=-\frac{1}{48\pi^{2}}(F_{L\mu\nu}\tilde{F}_{R}^{\mu\nu}+F_{L\mu\nu}\tilde{F}_{L}^{\mu\nu})\\ \partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{R}&=-\frac{1}{12\pi^{2}}F_{V\mu\nu}\tilde{F}_{R}^{\mu\nu}\\ \partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{R}&=-\frac{1}{12\pi^{2}}(F_{V\mu\nu}\tilde{F}_{R}^{\mu\nu}+F_{L\mu\nu}\tilde{F}_{L}^{\mu\nu})\\ \partial^{\mu}\overline{\psi}\gamma_{\mu}\psi_{R}&=-\frac{1}{12\pi^{2}}(F_{V\mu\nu}\tilde{F}_{R}^{\mu\nu})\\ \partial$$

$$im\overline{\psi}\gamma^5\psi \rightarrow -\frac{1}{48\pi^2}[F_{L\mu\nu}\tilde{F}_L^{\mu\nu} + F_{R\mu\nu}\tilde{F}_R^{\mu\nu} + F_{L\mu\nu}\tilde{F}_R^{\mu\nu}]$$

Summary of Anomalies (cont'd):

see CTH [HEP-TH 0601155]

Covariant Forms:

Add a term to the lagrangian of the form $(1/6\pi^2)\epsilon_{\mu\nu\rho\sigma}A^{\mu}V^{\nu}\partial^{\rho}V^{\sigma}$. The currents are now modified to $\tilde{J} = J + \delta J$ and $\tilde{J}^5 = J^5 + \delta J^5$

$$\begin{split} \frac{\delta S'}{\delta V_{\mu}} &= \delta J^{\mu} = -\frac{1}{3\pi^2} \epsilon_{\mu\nu\rho\sigma} A^{\nu} \partial^{\rho} V^{\sigma} + \frac{1}{6\pi^2} \epsilon_{\mu\nu\rho\sigma} V^{\nu} \partial^{\rho} A^{\sigma} \\ \frac{\delta S'}{\delta A_{\mu}} &= \delta J^{5\mu} = \frac{1}{6\pi^2} \epsilon_{\mu\nu\rho\sigma} V^{\nu} \partial^{\rho} V^{\sigma} \end{split}$$

(1) Pure Massless Weyl Spinors $(p_i \cdot p_j >> m^2)$:

$$\partial^{\mu} \tilde{J}_{\mu} = 0$$

 $\partial^{\mu} \tilde{J}_{\mu}^{5} = \frac{1}{8\pi^{2}} (F_{V\mu\nu} \tilde{F}_{V}^{\mu\nu} + \frac{1}{3} F_{A\mu\nu} \tilde{F}_{A}^{\mu\nu})$

(2) Heavy Massive Weyl Spinors $(p_i \cdot p_j \ll m^2)$:

$$\begin{split} \partial^{\mu}\tilde{J}_{\mu} &= 0 \\ \partial^{\mu}\tilde{J}_{\mu}^{5} - 2im\overline{\psi}\gamma^{5}\psi &= \frac{1}{8\pi^{2}}(F_{V\mu\nu}\tilde{F}_{V}^{\mu\nu} + \frac{1}{3}F_{A\mu\nu}\tilde{F}_{A}^{\mu\nu}) \end{split}$$

Dirac determinant = (-1) X Bardeen's counterterm

$$\partial^{\mu} \tilde{J}_{\mu} = 0$$

$$\partial^{\mu} \tilde{J}_{\mu}^{5} = 0$$

Summary: Technically natural QED in D=5

$$D_A = \partial_A - iA_A ,$$

$$F_{AB} = i[D_A, D_B] ,$$

Bulk:
$$D_A = \partial_A - iA_A$$
, $F_{AB} = i[D_A, D_B]$, $L_0 = -\frac{1}{4\tilde{e}^2}F_{AB}F^{AB}$

$$\int_{I} d^{4}x \; \overline{\psi}_{L} i \mathcal{D}_{L} \psi_{L} \qquad \Box$$

$$D_{L\mu} = \partial_{\mu} - iA_{\mu}(x_{\mu}, 0)$$

$$Orbifold$$

$$D_{L\mu} = \partial_{\mu} - iA_{\mu}(x_{\mu}, 0)$$

$$S_{CS} = \int d^{5}x \frac{1}{24\pi^{2}} \epsilon^{ABCDE} A_{A} \partial_{B} A_{C} \partial_{D} A_{E}$$

$$m\overline{\psi}_{L}(x_{\mu}, 0) W \psi_{R}(x_{\mu}, R) + h.c.$$

$$m\overline{\psi}_L(x_\mu, 0)W\psi_R(x_\mu, R) + h.c.$$

$$W = \exp(i \int_0^R A_5(x_{\mu}, x_5) dx^5)$$

$$\int_{II} d^4x \; \overline{\psi}_R i D\!\!\!/_R \psi_R$$

$$D_{R\mu} = \partial_{\mu} - iA_{\mu}(x_{\mu}, R)$$

Pass to $A_5 = 0$ Gauge

$$L_{CS} = \frac{3c}{4} \epsilon^{\mu\nu\rho\sigma} A_5 F_{\mu\nu} F_{\rho\sigma} + c \ \epsilon^{\mu\nu\rho\sigma} (\partial_5 A_\mu) A_\nu F_{\rho\sigma} \ .$$

Consider a Wilson line that emanates from, e.g., brane I, $x^5 = 0$, toward an arbitrary point in the bulk, $x^5 = y$:

$$U(y) = \exp \left(i \int_0^y dx^5 A_5(x^5)\right)$$
 $\partial_y U = i A_5(y) U$

Using the Wilson line as a gauge transformation, we have:

$$A_A \to A_A + iU^{\dagger} \partial_A U \qquad A_5 \to A_5(y) + iU^{\dagger} \partial_y U = A_5(y) - \partial_y \int_0^y dx^5 A_5(x^5) = 0$$

$$B_{\mu} = A_{\mu} - \partial_{\mu} \int_0^y A_5 dx^5; \qquad F_{B\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}.$$

$$S_{CS} = c \epsilon^{\mu\nu\rho\sigma} \int d^4x \int_0^R dy (\partial_y B_{\mu}) B_{\nu} F_{B\rho\sigma}.$$

 B_{μ} field will lead to gauge invariant

("Stueckelberg") combinations for each massive KK-mode in the compactified theory

The orbifold mode expansion

$$\begin{split} A_{\mu}^{0}(x,y) &= \sqrt{\frac{1}{R}} \widetilde{e} A_{\mu}^{0}(x) \\ A_{\mu}(x,y) &= \sum_{n=1}^{\infty} (-1)^{n} \sqrt{\frac{2}{R}} \widetilde{e} \cos(n\pi y/R) A_{\mu}^{n}(x) \\ A_{5}(x,y) &= \sum_{n=1}^{\infty} (-1)^{n+1} \sqrt{\frac{2}{R}} \widetilde{e} \sin(n\pi y/R) A_{5}^{n}(x) \\ S_{1} &= -\frac{1}{4\widetilde{e}^{2}} \int_{0}^{R} dy \int d^{4}x \; F_{\mu\nu} F^{\mu\nu} = -\frac{1}{4} \sum_{n} \int d^{4}x \; F_{\mu\nu}^{n} F^{n\mu\nu} \\ S_{2} &= \frac{1}{2\widetilde{e}^{2}} \int_{0}^{R} dy \int d^{4}x \; F_{\mu5} F^{\mu5} = \frac{1}{2} \sum_{n=1} M_{n}^{2} \int d^{4}x \; B_{\mu}^{n} B^{n\mu} \\ M_{n} &= n\pi/R \; ; \qquad B_{\mu}^{n} = A_{\mu}^{n} + \frac{1}{M_{n}} \partial_{\mu} A_{5}^{n} \; ; \qquad F_{\mu\nu}^{n} \equiv \partial_{\mu} B_{\nu}^{n} - \partial_{\nu} B_{\mu}^{n}. \end{split}$$

"Stueckelberg fields."

$$e = \tilde{e}/\sqrt{R} \equiv e_0$$
 $e' = \sqrt{2}\tilde{e}/\sqrt{R} = \sqrt{2}e \equiv e_n \quad (n \neq 0)$

$$S_{CS} = \frac{1}{24\pi^2} \int_0^R dy \int d^4x \, \epsilon^{\mu\nu\rho\sigma} (\partial_y B_\mu) B_\nu F_{\rho\sigma}$$

$$\equiv \frac{1}{12\pi^{2}} \sum_{nmk} \int d^{4}x \; (e_{n}e_{m}e_{k}) c_{nmk} (B_{\mu}^{n} B_{\nu}^{m} \widetilde{F}^{k\mu\nu})$$

$$c_{nmk} = (-1)^{(k+n+m)} \int_0^1 dz \, \partial_z \left[\cos(n\pi z) \right] \cos(m\pi z) \cos(k\pi z)$$

$$= \frac{n^2(k^2+m^2-n^2)\left[(-1)^{(k+n+m)}-1\right]}{(n+m+k)(n+m-k)(n-k-m)(n-m+k)}$$

$$c_{nm0} = c_{n0m} = -\frac{n^2}{n^2 - m^2} [(-1)^{n+m} - 1]$$

 $c_{0nm} = c_{000} = 0$
 $c_{n00} = [1 - (-1)^n].$

D=4 Effective Theory

$$S_{full} = \int d^4x \left[\overline{\psi} (i \partial \!\!\!/ + V + \mathcal{A} \gamma^5 - m) \psi + \frac{1}{12\pi^2} \sum_{nmk} c_{nmk} B^n_\mu F^{m} \widetilde{F}^{k\mu\nu} \right.$$
$$\left. - \frac{1}{4e^2} F^0_{\mu\nu} F^{0\mu\nu} - \frac{1}{4e'^2} \sum_{n \ge 1} F^n_{\mu\nu} F^{n\mu\nu} + \sum_{n \ge 1} \frac{1}{2e_n^2} M_n^2 B^n_\mu B^{n\mu} \right]$$

$$V_{\mu} = \sum_{n \text{ even}} B_{\mu}^{n}, \qquad A_{\mu} = \sum_{n \text{ odd}} B_{\mu}^{n}$$

if we truncate the theory on the zero mode B^0 and first KK-mode, B^1 ,

$$\frac{1}{12\pi^2}c_{100}B^1_{\mu}B^0_{\nu}\widetilde{F}^{0\mu\nu} = \frac{1}{6\pi^2}\epsilon^{\mu\nu\rho\sigma}A_{\mu}V_{\nu}\partial_{\rho}V_{\sigma}$$

D=4 Effective Theory Current Algebra

$$\tilde{J}_{\mu}^{n} = \frac{\delta S}{\delta B^{n\mu}} = \overline{\psi} \gamma_{\mu} \psi |_{n \text{ even}} + \overline{\psi} \gamma_{\mu} \gamma^{5} \psi |_{n \text{ odd}} + J_{\mu}^{n CS}$$

$$J_{mu}^{n CS} = \frac{\epsilon_{\mu\nu\rho\sigma}}{12\pi^2} \sum_{mk} \left[(c_{nmk} - c_{mnk} + c_{kmn} - c_{mkn}) B^{m\nu} \partial^{\rho} B^{k\sigma} \right]$$

$$\partial^{\mu}J_{\mu}^{n} \; = \; \frac{1}{48\pi^{2}} \sum_{mk} \left(1 - (-1)^{n+m+k}\right) F_{\mu\nu}^{m} \widetilde{F}^{k\mu\nu} \qquad \qquad \partial^{\mu}J_{\mu}^{n \; CS} \; = \; \frac{1}{48\pi^{2}} \sum_{m,k} (c_{nmk} - c_{mnk} + c_{nkm} - c_{knm}) F_{\mu\nu}^{m} \widetilde{F}^{k\mu\nu}$$

KK-mode anomalies:

$$\partial^{\mu} \tilde{J}_{\mu}^{n} = \frac{1}{24\pi^{2}} \sum_{m,k} d_{nmk} F_{\mu\nu}^{m} \tilde{F}^{k\mu\nu}$$

$$d_{nmk} = \frac{1}{2} \left[(1 - (-1)^{n+m+k}) + (c_{nmk} - c_{mnk} + c_{nkm} - c_{knm}) \right]$$

$$= \frac{3}{2} [(-1)^{n+m+k} - 1] \frac{n^2(k^2 + m^2 - n^2)}{(k+m-n)(k+m+n)(k+n-m)(k-m-n)}$$

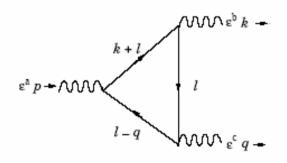
$$= \frac{3}{2} c_{nmk}$$
 Anomaly coefficient

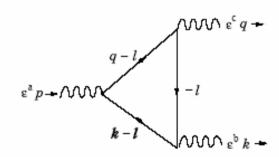
$$c_{0mk} = 0 \qquad \partial^{\mu} J_{\mu}^{5} \, = \, \frac{1}{16\pi^{2}} \left(c_{100} F_{\gamma \; \mu\nu} \widetilde{F}_{\gamma}^{k\mu\nu} + c_{111} F_{B \; \mu\nu} \widetilde{F}_{B}^{k\mu\nu} \right) \, = \, \frac{1}{8\pi^{2}} F_{\gamma \; \mu\nu} \widetilde{F}_{\gamma}^{\mu\nu} + \frac{1}{24\pi^{2}} F_{B \; \mu\nu} \widetilde{F}_{B}^{\mu\nu}$$

D=4 Effective Theory in large m limit

$$S_{tree} = \int d^4x \left[\frac{1}{12\pi^2} \sum_{nmk} \overline{c}_{nmk} B^n_{\mu} B^m_{\nu} \widetilde{F}^{k\mu\nu} - \frac{1}{4e^2} F^0_{\mu\nu} F^{0\mu\nu} - \frac{1}{4e'^2} \sum_{n\geq 1} F^n_{\mu\nu} F^{n\mu\nu} + \sum_{n=0} \frac{1}{2e^2_n} M^2_n B^n_{\mu} B^{n\mu} \right]$$

Integrate out the Fermions: Dirac Determinant effective interactions





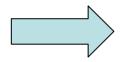
Dirac Determinant effective interaction: (integrate out the fermions)

$$\mathcal{O}_3 = -\frac{1}{12\pi^2} \epsilon^{\mu\nu\rho\sigma} \sum_{nmk} (e_n e_m e_k) a_{nmk} B^n_\mu B^m_\nu \partial_\rho B^k_\sigma$$

$$a_{nmk} = \frac{1}{2}(1-(-1)^{n+m+k})(-1)^{m+k}$$

This operator is equivalent to $(-1/6\pi^2)\epsilon_{\mu\nu\rho\sigma}A^{\mu}V^{\nu}\partial^{\rho}V^{\sigma}$

Dirac Determinant effective interaction is equivalent to (-1)x Bardeen's counterterm: consistent -> covariant



Full Effective Theory

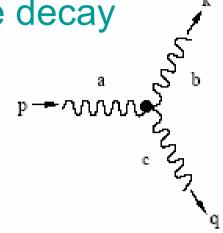
$$\overline{c}_{nmk} = c_{nmk} - a_{nmk}$$
 (massive spinors)

$$\overline{c}_{nmk} = \left[(-1)^{(k+n+m)} - 1 \right] \left(\frac{n^2(k^2 + m^2 - n^2)}{(n+m+k)(n+m-k)(n-k-m)(n-m+k)} + \frac{1}{2} (-1)^{m+k} \right)$$

Two Examples: Compute KK-Mode decay

Feynman rule for a vertex $B^a \rightarrow B^b + B^c$:

$$B^a \rightarrow B^b + B^c$$
:



$$T_{CS} = -\frac{ee'^2}{12\pi^2} \left[\left(-\overline{c}_{abc} + \overline{c}_{bac} + \overline{c}_{bca} - \overline{c}_{cba} \right) [B] + \left(\overline{c}_{acb} - \overline{c}_{cab} + \overline{c}_{bca} - \overline{c}_{cba} \right) [A] \right]$$

$$[A] = \epsilon^{\mu\nu\rho\sigma} \epsilon^a_\mu \epsilon^b_\nu \epsilon^\gamma_\rho k^\sigma \qquad [B] = \epsilon^{\mu\nu\rho\sigma} \epsilon^a_\mu \epsilon^b_\nu \epsilon^\gamma_\rho q^\sigma$$

Decay of KK-mode to KK-mode plus γ

c = photon

$$\begin{split} T_{CS} &= -\frac{ee'^2}{12\pi^2} \big[(-\overline{c}_{ab0} + \overline{c}_{ba0} + \overline{c}_{b0a} - \overline{c}_{0ba})[B] + (\overline{c}_{a0b} - \overline{c}_{0ab} + \overline{c}_{b0a} - \overline{c}_{0ba})[A] \big] \\ &= \frac{ee'^2}{2\pi^2} \left(\frac{M_b^2}{M_a^2 - M_b^2} - \frac{1}{2} ((-1)^b - 1) \right) [B]. \end{split} \qquad \text{Gauge invariant in photon}$$

$$\Gamma_{1-\to 1+\gamma} = \frac{2\alpha^3}{3\pi^3} \left(\frac{M_a^3}{M_b^2}\right)$$

$$\Gamma_{1+\to 1^{-\gamma}} = \frac{2\alpha^3}{3\pi^3} M_b$$

$$M_a^2 >> M_b^2$$

$$\Gamma_{1^{\pm} \to 1^{\mp} \gamma} = \frac{2\alpha^3}{3\pi^3} \Delta M$$

$$\Delta M = M_a - M_b << M_a$$

$$\Gamma_{1^- \to 1^+ \gamma} \; = \; \frac{\alpha(0) \alpha'^2(M_a)}{6\pi^3} \left(\frac{M_a}{R^2 M_b^2} \right) \qquad \quad \Gamma_{1^+ \to 1^- \gamma} \; = \; \frac{\alpha(0) \alpha'^2(M_a)}{6\pi^3} \left(\frac{M_b}{R^2 M_a^2} \right)$$

B. Zero Mode + Zero Mode → KK-Mode Vanishes

$$T_{CS} = -\frac{ee^{2}}{12\pi^{2}} \left[(-\overline{c}_{a00} + \overline{c}_{0a0} + \overline{c}_{00a} - \overline{c}_{00a})[B] + (\overline{c}_{a00} - \overline{c}_{0a0} + \overline{c}_{00a} - \overline{c}_{00a})[A] \right]$$

= 0 gauge invariance (Landau-Yang theorem)

Summary of D=5 QED:

The KK-mode parity is locked to the parity of spacetime:

T-parity is no longer an independent symmetry

Lightest KK-modes are not stable

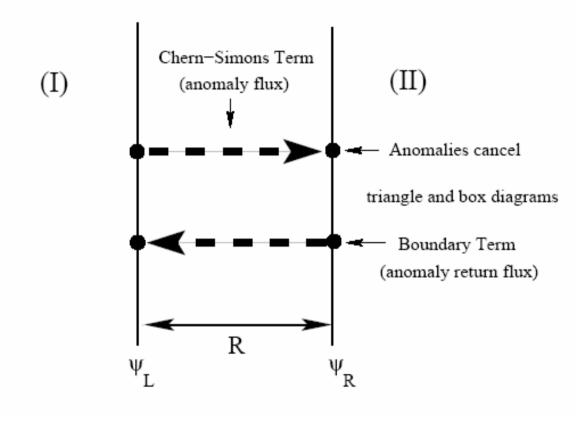
Destabilized dark matter candidates

Topological interactions are a general feature of extra dimensions, containing both holographic (boundary only) and bulk effects.

Yang-Mills gauge theory of quark flavor in D=5:

Generic compactification; include B₅ zero-mode

Derivation of the full Wess-Zumino-Witten term directly from the Yang-Mills theory



Theory Requires Chern-Simons Term:

$$\mathcal{L}_{CS} = c\epsilon^{ABCDE} \operatorname{Tr} \left(A_A \partial_B A_C \partial_D A_E - \frac{3i}{2} A_A A_B A_C \partial_D A_E - \frac{3}{5} A_A A_B A_C A_D A_E \right)$$

$$= \frac{c}{4} \epsilon^{ABCDE} \operatorname{Tr} \left(A_A G_{BC} G_{DE} + i A_A A_B A_C G_{DE} - \frac{2}{5} A_A A_B A_C A_D A_E \right).$$

Gauge transformation:

$$A_A \rightarrow V(A_A + i\partial_A)V^{\dagger}$$
 where: $V = \exp(i\theta^a T^a)$

$$V = \exp(i\theta^a T^a)$$

$$\delta S_{CS} = c \epsilon^{\mu\nu\rho\sigma} \theta^a \operatorname{Tr} \left[T^a (\partial_\mu A_\nu \partial_\rho A_\sigma - \frac{i}{2} (\partial_\mu A_\nu A_\rho A_\sigma - A_\mu \partial_\nu A_\rho A_\sigma + A_\mu A_\nu \partial_\rho A_\sigma) \right]_0^R$$

Consistent Anomaly; To cancel against fermion anomalies:

$$c = \frac{N_c}{24\pi^2} \; .$$

Transforming to Axial Gauge, $B_5 \rightarrow 0$

$$V(x^{\mu},y) = P \exp \left(-i \int_{0}^{y} dx^{5} \ B_{5}^{0}(x^{\mu},x^{5})\right)$$

$$\psi_L' = \psi_L, \qquad \psi_R' = V(R)\psi_R$$

$$\tilde{B}_{\mu}(x^{\mu}, y) = V(B_{\mu} + i\partial_{\mu})V^{\dagger}$$

$$\tilde{B}_{5}(x^{\mu}, y) = V(B_{5} + i\partial_{y})V^{\dagger} = 0$$

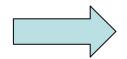
$$\overline{\psi}(i\partial\!\!\!/ + B\!\!\!/)\psi = \overline{\psi}'(i\partial\!\!\!/ + \bar{B}\!\!\!/)\psi' \qquad \overline{\psi}_L W \psi_R = \overline{\psi}'_L \psi'_R \qquad W \to V(0)WV^\dagger(R) = 1.$$

B is now a tower of vector mesons comingled with the spin-0 mesons; must extract the physical mesons:

Redefinition: $\tilde{B}_{\mu}(x^{\mu},y) = \tilde{U}(y)(A_{\mu}(x^{\mu},y) + i\partial_{\mu})\tilde{U}^{\dagger}(y)$ $\tilde{U} = \exp(2i\tilde{\pi}y/f_{\pi})$

Compactification Decomposition of Chern-Simons Term:

$$\begin{split} S_{CS} &= c \int d^5x \, \epsilon^{ABCDE} \, \mathrm{Tr} \Big(B_A \partial_B B_C \partial_D B_E - \frac{3i}{2} B_A B_B B_C \partial_D B_E - \frac{3}{5} B_A B_B B_C B_D B_E) \Big) \\ &= \frac{c}{2} \, \mathrm{Tr} \int d^4x \int_0^R dy \, \Big[(\partial_5 B_\mu) K^\mu + \frac{3}{2} \epsilon^{\mu\nu\rho\sigma} \, \mathrm{Tr} (B_5 G_{\mu\nu} G_{\rho\sigma}) \Big], \\ K^\mu &\equiv \epsilon^{\mu\nu\rho\sigma} \, \big(i B_\nu B_\rho B_\sigma + G_{\nu\rho} B_\sigma + B_\nu G_{\rho\sigma} \big) \,. \end{split}$$
 CTH and Zachos

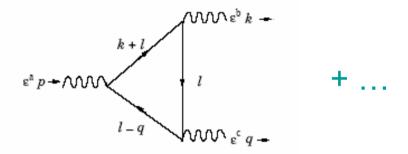


Axial Gauge:

$$S_{CS} = \frac{c}{2} \epsilon^{\mu\nu\rho\sigma} \int d^4x \int_0^R dy \operatorname{Tr} \left[\partial_y \tilde{B}_{\mu} \left(i\tilde{B}_{\nu} \tilde{B}_{\rho} \tilde{B}_{\sigma} + G(\tilde{B})_{\nu\rho} \tilde{B}_{\sigma} + \tilde{B}_{\nu} G(\tilde{B})_{\rho\sigma} \right) \right]$$
$$= \frac{c}{2} \operatorname{Tr} \int d^4x \int_0^R dy \, (\partial_y \tilde{B}) (2d\tilde{B}\tilde{B} + 2\tilde{B}d\tilde{B} - 3i\tilde{B}^3)$$

Form notation: $G(\tilde{B}) = 2d\tilde{B} - 2i\tilde{B}^2$.

Integrate out the Fermions: Dirac Determinant effective interactions



Dirac Determinant effective interaction is (-1) x Bardeen Counterterm as in QED:

$$S_{boundary} = -\frac{c}{2} \int \text{Tr} \left(\frac{1}{2} (G_R \tilde{B}_R + \tilde{B}_R G_R) \tilde{B}_L - \frac{1}{2} (G_L \tilde{B}_L + \tilde{B}_L G_L) \tilde{B}_R + i \tilde{B}_R^3 \tilde{B}_L - i \tilde{B}_L^3 \tilde{B}_R - \frac{i}{2} (\tilde{B}_R \tilde{B}_L)^2 \right)$$

"Boundary term"

Notation:

$$\tilde{B}_{\mu} = \tilde{A}_{\mu} - i\alpha_{\mu}$$

$$\tilde{A}_{\mu} = \tilde{U} A_{\mu} \tilde{U}^{\dagger}$$

$$\tilde{A}_{L\mu} = A_{L\mu} = A_{\mu}(x^{\mu}, 0)$$

$$\tilde{A}_{R\mu} = U A_{\mu}(x^{\mu}, R) U^{\dagger}$$

$$\alpha_{\mu} = -\tilde{U}\partial_{\mu}\tilde{U}^{\dagger}$$

$$\beta_{\mu} = U^{\dagger} \partial_{\mu} U = U^{\dagger} \alpha_{\mu} U$$

$$\tilde{U} = \exp(2i\tilde{\pi}y/f_{\pi})$$

$$S_{CS} \Longrightarrow \frac{c}{2} \operatorname{Tr} \int d^4x \, dy \, [-i(\partial_y \alpha) + (\partial_y \tilde{A})]$$

$$\times (2d\tilde{A}\tilde{A} - 2i\alpha^2 \tilde{A} - 2id\tilde{A}\alpha - 4\alpha^3 + 2\tilde{A}d\tilde{A} - 2i\tilde{A}\alpha^2 - 2i\alpha d\tilde{A}$$

$$-3i\tilde{A}^3 - 3\alpha\tilde{A}^2 - 3\tilde{A}\alpha\tilde{A} - 3\tilde{A}^2\alpha + 3i\alpha^2\tilde{A} + 3i\alpha\tilde{A}\alpha + 3i\tilde{A}\alpha^2 + 3\alpha^3)$$

$$S_{boundary} \Longrightarrow \frac{c}{2} \int \text{Tr} \left[(dA_L A_L + A_L dA_L) U A_R U^{\dagger} - (dA_R A_R + A_R dA_R) U^{\dagger} A_L U \right.$$
$$\left. - i (dA_L A_L + A_L dA_L) \alpha - A_L^3 \alpha - A_L \alpha^3 + i A_R^3 U^{\dagger} A_L U - i A_L^3 U A_R U^{\dagger} \right.$$
$$\left. - i (dA_R dU^{\dagger} A_L U - dA_L dU A_R U^{\dagger}) - (A_R U^{\dagger} A_L U A_R \beta + A_L U A_R U^{\dagger} A_L \alpha) \right.$$
$$\left. + \frac{i}{2} A_L \alpha A_L \alpha + \frac{i}{2} U A_R U^{\dagger} A_L U A_R U^{\dagger} A_L - i (A_L U A_R U^{\dagger} \alpha^2 - A_R U^{\dagger} A_L U \beta^2) \right]$$

We first isolate the term:

$$S_{CS0} = i \frac{c}{2} \operatorname{Tr} \int (\partial_y \alpha) \alpha^3$$

$$\partial_y \alpha = \partial_y \tilde{U} d\tilde{U}^{\dagger} = \frac{2i}{Rf_{\pi}} \tilde{U} d\tilde{\pi} \tilde{U}^{\dagger} \qquad \qquad \alpha \approx \frac{2iy}{f_{\pi}} d\tilde{\pi} - \frac{2y^2}{f_{\pi}^2} [\tilde{\pi}, d\tilde{\pi}] + \dots$$

$$S_{CS0} = -\frac{2N_c}{3\pi^2 f_{\pi}^5} \int d^4x \, dyy^4 \operatorname{Tr}(\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi}) + \dots$$
$$= -\frac{2N_c}{15\pi^2 f_{\pi}^5} \int d^4x \, \operatorname{Tr}(\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi}) + \dots$$

$$S_{CS \alpha^{3}\tilde{A}} = -i\frac{c}{2}\operatorname{Tr}\int(\partial_{y}\alpha)(-2id\tilde{A}\alpha - 2i\alpha d\tilde{A} - 2i\alpha^{2}\tilde{A} - 2i\tilde{A}\alpha^{2} + 3i(\alpha^{2}\tilde{A} + \alpha\tilde{A}\alpha + \tilde{A}\alpha^{2}))$$
$$-\frac{c}{2}\operatorname{Tr}\int(\partial_{y}\tilde{A})[\alpha^{3}]$$
(42)

Note that, upon integrating in D=4 by parts:

$$\operatorname{Tr} \int (\partial_y \alpha) (d\tilde{A}\alpha + \alpha d\tilde{A}) = 2 \operatorname{Tr} \int (\partial_y \alpha) (\alpha \tilde{A}\alpha)$$

Thus, we can immediately write:

$$S_{CS \alpha^3 \tilde{A}} = -i\frac{c}{2} \operatorname{Tr} \int (\partial_y \alpha) (i\alpha^2 \tilde{A} + i\tilde{A}\alpha^2 - i\alpha\tilde{A}\alpha) - \frac{c}{2} \operatorname{Tr} \int d^4 x dy (\partial_y \tilde{A}) [\alpha^3]$$
$$= \frac{c}{2} \operatorname{Tr} \int d^4 x \int_0^1 dy \, \partial_y (\alpha^3 \tilde{A})$$

If we now explicitly perform this integral we obtain:

$$S_{CS \alpha^3 \tilde{A}} = -\frac{c}{2} \operatorname{Tr}(A_R \beta^3)$$

where use has been made $\operatorname{Tr}(\alpha^3 \tilde{A}_R) = \operatorname{Tr}(\alpha^3 U A_R U^{\dagger}) = \operatorname{Tr}(U^{\dagger} \alpha^3 U A_R) = \operatorname{Tr}(\beta^3 A_R) = -\operatorname{Tr}(A_R \beta^3)$. We see the operational parity asymmetry of our gauge tranformation leads to the absence of a corresponding parity conjugate term, $-\operatorname{Tr}(A_L \alpha^3)$. As mentioned above, this term will come from the boundary term, and the overall final result will be parity symmetric.

Obtain the full Wess-Zumino-Witten Term

$$\tilde{S} = S_{CS} + S_{boundary} = S_{WZW} + S_{bulk}$$

$$S_{WZW} = S_{CS0} + \frac{N_c}{48\pi^2} \operatorname{Tr} \int d^4x [-(A_L\alpha^3 + A_R\beta^3) - (A_L^3\alpha + A_R^3\beta) - i((dA_LA_L + A_LdA_L)\alpha + dA_RA_R + A_RdA_R)\beta) + \frac{i}{2} [(A_L\alpha)^2 - (A_R\beta)^2] - i(A_L^3UA_RU^\dagger - A_R^3U^\dagger A_LU) + (dA_LA_L + A_LdA_L)UA_RU^\dagger - (dA_RA_R + A_RdA_R)U^\dagger A_LU - i(dA_RdU^\dagger A_LU - dA_LdUA_RU^\dagger) - (A_LUA_RU^\dagger A_L\alpha + A_RU^\dagger A_LUA_R\beta) + \frac{i}{2}UA_RU^\dagger A_LUA_RU^\dagger A_L - i(A_LUA_RU^\dagger \alpha^2 - A_RU^\dagger A_LU\beta^2)]$$

$$\tilde{S}_{CS0} = -\frac{2N_c}{15\pi^2 f_{\pi}^5} \int d^4x \operatorname{Tr}(\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi} d\tilde{\pi}) + \dots$$

in complete agreement with Kaymakcalan, Rajeev and Schechter

Effective brane (holographic) interaction

Normal Derivation of WZW term:

- promote full theory of mesons to D=5.
- In D=5, a certain manifestly chirally invariant and topologically interesting Chern-Simons term occurs, which is included into the theory.
- Compactify the fifth dimension with the Chern-Simons term, back into to D=4, resulting in the Wess-Zumino term.
- Perform gauge transformations upon the resulting object, and infer how to ``integrate in" the gauge fields by brute force and some guess work.

$$S_{bulk} = -i\frac{c}{2}\operatorname{Tr}\int (\partial_y \alpha)(\tilde{U}(3dAA + 3AdA - 4iA^3)\tilde{U}^{\dagger}) + \frac{c}{2}\operatorname{Tr}\int (\partial_y \tilde{A})[\tilde{U}(2dAA + 2AdA - 3iA^3)\tilde{U}^{\dagger}]$$

$$\partial_y \alpha = \frac{2i}{f_\pi} \tilde{U}(d\tilde{\pi}) \tilde{U}^\dagger \qquad \qquad \partial_y \tilde{A} = \partial_y \tilde{U} A \tilde{U}^\dagger = \frac{2i}{f_\pi} \tilde{U}([\tilde{\pi}, A]) \tilde{U}^\dagger$$

$$S_{bulk} = -\frac{3c}{2f_{\pi}} \int d^4x \int_0^1 dy \operatorname{Tr}(\tilde{\pi}GG) + \frac{c}{2} \int d^4x \int_0^1 dy \operatorname{Tr}(\partial_y A)(2dAA + 2AdA - 3iA^3))$$

$$(6)$$

Effective bulk interaction

Suppose we don't integrate out the quarks?

Parity symmetric redefinition field: $\tilde{U}(y) = \exp\left(\frac{2i\tilde{\pi}(y-1/2)}{f_{\pi}}\right)$

$$\tilde{B}_L = \xi A_L \xi^{\dagger} - j_L$$
 $\tilde{B}_R = \xi^{\dagger} A_L \xi - j_R$

chiral currents $j_L = i\xi d\xi^{\dagger}$ $j_R = -i\xi^{\dagger} d\xi$

$$S = S_{CS0} + S'_{WZW} + S_{bulk}$$

$$+ \int_{I} d^{4}x \, \overline{\psi}_{L} (i\partial \!\!\!/ + \xi A\!\!\!/_{L} \xi^{\dagger} - j_{L}) \psi_{L} + \int_{II} d^{4}x \, \overline{\psi}_{R} (i\partial \!\!\!/ + \xi^{\dagger} A\!\!\!/_{R} \xi - j_{R}) \psi_{R}$$

$$S'_{WZW} = -\frac{c}{2} \operatorname{Tr}(A_{R} j_{R}^{3} + A_{L} j_{L}^{3}) - \frac{c}{2} \operatorname{Tr}(A_{R}^{3} j_{R} + A_{L}^{3} j_{L}) - i \frac{c}{4} \operatorname{Tr}(A_{R} j_{R} A_{R} j_{R} - A_{L} j_{L} A_{L} j_{L})$$

$$-i \frac{c}{2} \operatorname{Tr}[(dA_{R} A_{R} + A_{R} dA_{R}) j_{R} + (dA_{L} A_{L} + A_{L} dA_{L}) j_{L}]$$
(67)

Effective theory with unintegrated massless fermions

Summary:

- (1)Wess-Zumino-Witten termderived from D=5 Chern-Simons Term+ Dirac Determinant (= -1 x Bardeen c.t.)
- (2) Exact matching of D=5 Y-M to D=4 Chiral L
- (3) D=5 C-S term yields new bulk interactions
- (4) Will be present in most models of e.d.'s

.

Some Envisioned applications:

- (1) Little Higgs Theories. (CTH & Richard Hill to appear)
- (2) RS Models
- (3) A WZW Term for the Goldstone-Wilczek Current
- (4) Skyrme/instanton baryogenesis/b+L violation in extra dimensional theories

.