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Research Programs
• New physics beyond the Standard Model

- New models (scenarios) for electroweak 
symmetry breaking

- Precision electroweak and other experimental 
constraints

- Experimental signatures of new physics

• Cosmology from the particle physics perspective

- New candidates for dark matter

- Dark energy or modification of gravity

- Models of inflation



Introduction
New physics is expected at the TeV scale and will be 
discovered at LHC and other upcoming experiments.

• Hierarchy problem requires new physics to cut 
off the quadratically divergent contributions to 
the Higgs mass^2 from the SM interactions at or 
below ~ 1 TeV.

• Dark matter in the universe is currently the 
strongest experimental evidence for new physics 
beyond the SM.  It also points to the TeV scale as 
a WIMP of TeV mass gives the right thermal relic 
aboundance.

ΩWIMP ∼
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1
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Introduction

Supersymmetry (SUSY) has been the favorite new 
physics beyond the SM. However, there are many 
new candidate theories proposed in recent years.

- Extra dimensions: Flat or Warped, gravitation 
only or SM propagating

- Higgs as a PNGB: Little Higgs, Twin Higgs

- No Higgs: Technicolor, Higgsless

- Combinations of these ideas



Introduction
Many of these new theories can also provide good 
dark matter candidates, if they contain some new 
(discrete) symmetries.

- Universal Extra Dimensions: KK-parity

Appelquist, HC, Dobrescu;  HC, Matchev, Schmaltz 

- Little Higgs Theories with T-Parity

HC, Low

Such a new symmetry is also highly motivated from 
the precision electroweak constraints: New 
particles charged under the new symmetry do not 
contribute to EW observables at tree level.



Landscape of Alternative Theories

Among so many possible theories and variations 
among each scenario, which ones deserve more 
detailed phenomenological studies in preparation 
for the LHC?

It would be beneficial if there is a unified approach 
to many different theories.

In fact, most of the known non-SUSY models can be 
represented or approximated by moose diagrams.



Technicolor:

Little M-theory 5

H with a non-linear sigma field Σ
Σ = vEWeiπiσi/vEW , (3)

where !σ are the Pauli matrices. In the language of CCWZ [24, 25], Σ describes the Goldstone boson
arising from the spontaneous breakdown of SU(2)L × SU(2)R to the diagonal SU(2)V . Important for our
purposes, there are many ways to get a non-linear sigma model from a high energy theory. For example,
in technicolor the Σ field arises from a fermion condensate

Global : SU(2)L SU(2)R!"#$%&'( !!

ψ )*+,-./012345678 !!

ψc !"#$%&'(
Gauged : SU(2) SU(Nc)

(4)

where beneath ΛTC , we can identify Σ with fluctuations about the condensate 〈ψψc〉. We can also generate
a non-linear sigma model from a Wilson line in a flat or warped extra dimension. Imposing the appropriate
boundary conditions on an interval with a bulk SU(2) gauge fields

SU(2) SU(2) ∅

Neumann Dirichlet

Bulk
(5)

the Wilson line ei
R

A5dx5 has the same transformation properties as Σ. A particularly interesting extra
dimensional geometry is AdS5, and Eq. (5) is expected to be dual to a quasi-CFT with a gauged SU(2)L
symmetry that is spontaneously broken in the infrared, i.e. the higgsless dual of technicolor.

We can generate moose diagrams with additional sites but the same light degrees of freedom by
deconstructing these extra dimensions. The geometry of the extra dimension is encoded in the different
pion decay constants on the various links

Global : SU(2)1 SU(2)2 SU(2)N SU(2)N+1!"#$%&'( !!

Σ1 !"#$%&'( !!

Σ2

· · · !!

ΣN−1 !"#$%&'( !!

ΣN !"#$%&'(
Gauged : SU(2) SU(2) SU(2)

(6)

The original Σ field is given by
Σ = Σ1Σ2 · · ·ΣN (7)

and we can explicitly recover Eq. (1) from Eq. (6) by integrating out sites corresponding to heavy gauge
bosons.1

Finally, we can use the trick of hidden local symmetry [26] or little technicolor [15] to convert any
non-linear sigma model into a moose diagram. Using CCWZ, any spontaneous symmetry breaking pattern

1In general, integrating out sites from a moose will induce non-local interactions in theory space because the wave function
of heavy gauge bosons span the entire space. In the special case of AdS5, these non-localities are suppressed because the
heavy mode wave functions are localized [ref?]. In any case, we can always capture the effect of theory space non-locality by
introducing new interactions at higher order in the Σ fields.

Extra dimensions: by deconstruction
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Little Higgs:
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It is now straightforward to see how Eq. (12) can interpolate between the three different theories
mentioned above. If we take the gm gauge coupling to infinity, then we can integrate out the ultra-massive
SU(3)m gauge bosons. If we ignore the mechanism for generating the Higgs quartic, then this yields the
correct gauge structure for the Minimal Moose:

Global : SU(3) SU(3)!"#$%&'( !!

Σ !"#$%&'(
Gauged : SU(2)1 SU(2)2

(14)

where
Σ = Σ1Σ2. (15)

The Minimal Moose exhibits a collective symmetry breaking structure, in that both g1 and g2 must be
non-zero for the Higgs boson in Σ to get a radiative potential from gauge loops.

If we take the g1 and g2 gauge couplings to infinity, then we can integrate out the ultra-massive SU(2)i
gauge bosons. This will yield the Simple Group little Higgs. In order to see this, recall from Eq. (8), that
in the little technicolor or hidden local symmetry construction, the moose

Global : SU(3) SU(3)!"#$%&'( !! !"#$%&'(
Gauged : SU(2)ρ

(16)

turns into a SU(3)/SU(2) nonlinear sigma model when the SU(2)ρ gauge boson is integrated out. There-
fore, when the SU(2)i gauge bosons are integrated out, we get a theory without an obvious moose descrip-
tion:

(SU(3)/SU(2))2 NLΣM with SU(3)V gauged (17)

which is indeed the Simple Group theory. Unlike the Minimal Moose, this theory does not exhibit ordinary
collective symmetry breaking. However, the Higgs potential is not quadratically divergent because both
f1 and f2 must be nonzero for the Higgs boson not to be eaten.

Finally, Eq. (12) can turn into the Original Holographic Higgs if we take f1 > f2. To see this, note
that Eq. (12) can be thought of as the three-site deconstruction of a warped extra dimension with bulk
gauge fields and appropriate boundary conditions:

SU(2) SU(2)

Bulk

IR BraneUV Brane

SU(3)

(18)

The warp factor is reflected in the different pion decay constants on the links [ref?], so there is no natural
T -parity limit in this case. The Original Holographic Higgs exhibits AdS/CFT collective breaking, in the
sense that both the IR brane and UV brane boundary conditions must violate the bulk SU(3) symmetry

Warp factor can be represented by different Goldstone decay constant
on the links.

Landscape of Alternative Theories



Landscape of Alternative Theories

Mooses are a convenient framework to describe 
spin-1 and spin-0 degrees of freedom. 

Precision EW constraints indicate that the scale of 
strong dynamics may be out of the reach of the 
LHC, and in the case of extra dimensions, LHC will 
be able to discover only a few KK modes at most.

At low energies (accessible to LHC) , most non-
SUSY models can be well represented by some 
simple moose models, and many models can be 
described by the same moose diagram.



Little Higgs Theories

• Higgs field(s) are pseudo-Nambu-Goldstone 
bosons (PNGBs) of a spontaneouly broken global 
symmetry G     H.

• Higgs mass is protected from one-loop quadratic 
divergence so that the cutoff can be pushed up to 
~10 TeV.

• The quadratic divergences are cancelled by new 
particles which are partners of the SM top quark, 
gauge bosons and Higgs. Unlike SUSY, they have 
the same spins as the SM particles.



Many different little Higgs models bases on various G/H

and the gauged subgroup F ⊂ G.

 (The unbroken gauge group: ( =SM))

Minimal moose:
F = (SU(2)× U(1))2

Littlest Higgs:
F = (SU(2)× U(1))2

SU(5)/SO(5)

Simple little Higgs: [SU(3)/SU(2)]2

F = SU(3) (×U(1))

I = F ∩H

Arkani-Hamed et al,
hep-ph/0206021

Arkani-Hamed et al,
hep-ph/0206020

Kaplan & Schmaltz
hep-ph/0302049

SU(3)2/SU(3)

Little Higgs Theories



CCWZG G

G G

F F

F

H H

H

I I

I

(G + H −H)− (F + H − I)

(G + G−G)− (F + H − I)

HC & Low, hep-ph/0405243
Low, hep-ph/ 0409025
Thaler, hep-ph/0502175
Thaler & Cheung, hep-ph/0604259

# of PNGBs:

# of PNGBs:

I

Using CCWZ (or hidden local symmetry, AdS/CFT) 
they can all be converted into moose models. 

(G−H)− (F − I)
# of PNGBs:



A Universal Moose Model
(Little M-Theory)

(HC, Thaler, Wang)

The above moose diagram can describe several very 
different looking models by taking various limits.

Little M-theory 7

diagram, and in certain cases, one can interpolate between different models by taking different limits of
the same M-theory. In this subsection, we will show how this interpolation works in a toy little M-theory
without hypercharge or fermions.

This toy model is based on the coset space SU(3)/SU(2). In particular, imagine a triplet of a global
SU(3) that takes a vev.

Φ = eiΠ/f




0
0
f



 (10)

The SU(3)/SU(2) goldstone matrix contains a doublet h and a singlet η under the unbroken SU(2).

Π =
1√
2




0 0 h1

0 0 h2

h†
1 h†

2 0



 +
1
4




η 0 0
0 η 0
0 0 −2η



 (11)

There are at least three theories based on this coset space, namely the Simple Group Little Higgs [19], the
Minimal Moose Little Higgs [20], and the Original Holographic Higgs [7]. As we will see, they can all be
described by the same three-site M-theory. Further variations are discussed in [15].

At first, it seems implausible that these three theories could arise as different limits of the same theory
because they all have different fundamental gauge symmetries. The Minimal Moose is based on gauging a
product group SU(2)×SU(2), the Simple Group has the simple group SU(3) gauged, whereas the Original
Holographic Higgs is dual to a CFT with a single copy of SU(2) gauged. How can these theories come
from the same M-theory if they have different gauge structures?

The point is that for LHC phenomenology, we only require the low energy degrees of freedom of the
three theories to be the same, and indeed, immediately above the electroweak symmetry breaking scale
all three theories have only massless SU(2) gauge bosons. The heavy gauge fields will appear at the
LHC as new heavy spin-1 modes, and in the spirit of Abbott-Fahri, to first approximation we are free to
interpret these heavy modes as either gauge bosons that get a mass via spontaneous symmetry breaking
or resonances from some strong dynamics. The little M-theory description will include an SU(3)×SU(2)s
worth of massive gauge bosons, but we can decouple any of the modes that are irrelevant by changing some
appropriate gauge couplings.

The toy SU(3)/SU(2) little M-theory can be described by the following moose diagram:

Global : SU(3) SU(3) SU(3)!"#$%&'( !!

Σ1 !"#$%&'( !!

Σ2 !"#$%&'(
Gauged : SU(2)1 SU(3)m SU(2)2

(12)

In unitary gauge, an SU(3) × SU(2)s worth of Goldstone are eaten, yielding SU(3) × SU(2) massive
gauge bosons and massless SU(2) gauge bosons. The link fields are parametrized in terms of the uneaten
Goldstones as

Σ1 = eiΠ/f1 , Σ2 = eiΠ/f2 . (13)

The T -parity limit of this theory is achieved when the gauge couplings g1 and g2 and the decay constants
f1 and f2 are taken to be equal.
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Simple little Higgs: g1,2 of SU(2)1,2 →∞

Minimal moose: gm of SU(3)m →∞
The middle site can be integrated out.

Little M-theory 8

It is now straightforward to see how Eq. (12) can interpolate between the three different theories
mentioned above. If we take the gm gauge coupling to infinity, then we can integrate out the ultra-massive
SU(3)m gauge bosons. If we ignore the mechanism for generating the Higgs quartic, then this yields the
correct gauge structure for the Minimal Moose:

Global : SU(3) SU(3)!"#$%&'( !!

Σ !"#$%&'(
Gauged : SU(2)1 SU(2)2

(14)

where
Σ = Σ1Σ2. (15)

The Minimal Moose exhibits a collective symmetry breaking structure, in that both g1 and g2 must be
non-zero for the Higgs boson in Σ to get a radiative potential from gauge loops.

If we take the g1 and g2 gauge couplings to infinity, then we can integrate out the ultra-massive SU(2)i
gauge bosons. This will yield the Simple Group little Higgs. In order to see this, recall from Eq. (8), that
in the little technicolor or hidden local symmetry construction, the moose

Global : SU(3) SU(3)!"#$%&'( !! !"#$%&'(
Gauged : SU(2)ρ

(16)

turns into a SU(3)/SU(2) nonlinear sigma model when the SU(2)ρ gauge boson is integrated out. There-
fore, when the SU(2)i gauge bosons are integrated out, we get a theory without an obvious moose descrip-
tion:

(SU(3)/SU(2))2 NLΣM with SU(3)V gauged (17)

which is indeed the Simple Group theory. Unlike the Minimal Moose, this theory does not exhibit ordinary
collective symmetry breaking. However, the Higgs potential is not quadratically divergent because both
f1 and f2 must be nonzero for the Higgs boson not to be eaten.

Finally, Eq. (12) can turn into the Original Holographic Higgs if we take f1 > f2. To see this, note
that Eq. (12) can be thought of as the three-site deconstruction of a warped extra dimension with bulk
gauge fields and appropriate boundary conditions:

SU(2) SU(2)

Bulk

IR BraneUV Brane

SU(3)

(18)

The warp factor is reflected in the different pion decay constants on the links [ref?], so there is no natural
T -parity limit in this case. The Original Holographic Higgs exhibits AdS/CFT collective breaking, in the
sense that both the IR brane and UV brane boundary conditions must violate the bulk SU(3) symmetry

T-parity:

Little M-theory 8
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If we take the g1 and g2 gauge couplings to infinity, then we can integrate out the ultra-massive SU(2)i
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turns into a SU(3)/SU(2) nonlinear sigma model when the SU(2)ρ gauge boson is integrated out. There-
fore, when the SU(2)i gauge bosons are integrated out, we get a theory without an obvious moose descrip-
tion:

(SU(3)/SU(2))2 NLΣM with SU(3)V gauged (17)

which is indeed the Simple Group theory. Unlike the Minimal Moose, this theory does not exhibit ordinary
collective symmetry breaking. However, the Higgs potential is not quadratically divergent because both
f1 and f2 must be nonzero for the Higgs boson not to be eaten.

Finally, Eq. (12) can turn into the Original Holographic Higgs if we take f1 > f2. To see this, note
that Eq. (12) can be thought of as the three-site deconstruction of a warped extra dimension with bulk
gauge fields and appropriate boundary conditions:

SU(2) SU(2)

Bulk

IR BraneUV Brane

SU(3)

(18)

The warp factor is reflected in the different pion decay constants on the links [ref?], so there is no natural
T -parity limit in this case. The Original Holographic Higgs exhibits AdS/CFT collective breaking, in the
sense that both the IR brane and UV brane boundary conditions must violate the bulk SU(3) symmetry

g1 = g2, 〈Σ1〉 = 〈Σ2〉

Holographic PNGB Higgs: 

HC & Low

Contino, Nomura & Pomarol

Little M-Theory



Little M-theory

Simple little Higgs

Minimal moose

T-parity

Holographic Higgs

UEDs

RS

M=Moose
It also reveals a larger model space than the individual 
corners.



Little M-theory
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(qi) (t′c, t′) (b′c, b′) (!i) (ν ′c, ν ′) (τ ′c, τ ′)

qm tm bm qc
i tci bc

i !m νm τm !c
i νc

i τ c
i
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SU(2)ρ 2 – – – – – 2 – – – – –

SU(2)Li – – – 2 – – – – – 2 – –

U(1)ρ 0 1
2 −1

2 0 0 0 0 1
2 −1

2 0 0 0

U(1)X 1
6

1
6

1
6 −1

6 −2
3

1
3 −1

2 −1
2 −1

2
1
2 0 1

Figure 1: The anomaly-free fermion charges for the Sp(4)/SO(4) moose. Note that we have decomposed
Sp(4)ρ as SU(2)ρ × U(1)ρ.

standard model fields. In order to do so, we will assume that the λis are nearly degenerate for all three
generations, then will we use a see-saw mechanism to decrease the effective Yukawa coupling for the lighter
fermions. While this may see like excessive model building for a phenomenological model, we emphasize
that our goal is to have a description of non-SUSY LHC physics that is aware of the various model building
challenges that the little hierarchy problem presents.

Visually, for each generation, the complete fermion sector is

Gauged : SU(2)L1 × U(1)R Sp(4)ρ SU(2)L2 × U(1)R!"#$%&'( !!

Σ1 !"#$%&'( !!

Σ2 !"#$%&'(
Quarks : Q1, Qc

1 Qm Q2, Qc
2

Leptons : L1, Lc
1 Lm L2, Lc

2

(30)

with floating fermions Q′, Q′c, L′, L′c to enable the flavor see-saw mechanism. Using the third generation
as an example, the fermions are imbedded as are

Qi =




qi

0
0



 , Qc
i =




qc
i

tci
bc
i



 , Qm =




qm

tm
bm



 , Q′ =




0
t′

b′



 , Q′c =




0
t′c

b′c



 , (31)

Li =




!i

0
0



 , Lc
i =




!c
i

νc
i

τ c
i



 , Lm =




!m

νm

τm



 , L′ =




0
ν ′

τ ′



 , L′c =




0
ν ′c

τ ′c



 . (32)

The anomaly-free fermion charges are given in Figure 1. Note that Q′, Q′c, L′, L′c contain only the lower
two components which are only charged under U(1)X , so they do not need to be associated with any site.

We we will now write down all couplings local in theory space as well as the leading non-local interac-
tion. Each of these couplings preserves enough of an Sp(4) global symmetry to avoid one-loop quadratically
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as an example, the fermions are imbedded as are

Qi =




qi

0
0



 , Qc
i =




qc
i

tci
bc
i



 , Qm =




qm

tm
bm



 , Q′ =




0
t′

b′



 , Q′c =




0
t′c

b′c



 , (31)

Li =




!i

0
0



 , Lc
i =




!c
i

νc
i

τ c
i



 , Lm =




!m

νm

τm



 , L′ =




0
ν ′

τ ′



 , L′c =




0
ν ′c

τ ′c



 . (32)

The anomaly-free fermion charges are given in Figure 1. Note that Q′, Q′c, L′, L′c contain only the lower
two components which are only charged under U(1)X , so they do not need to be associated with any site.

We we will now write down all couplings local in theory space as well as the leading non-local interac-
tion. Each of these couplings preserves enough of an Sp(4) global symmetry to avoid one-loop quadratically

A representative model: Sp(4)/SO(4) moose
with a custodial SU(2) symmetry



Phenomenology
It has rich phenomenology, can serve as a framework 
for benchmark models as the MSSM for SUSY.

• W’, Z’

• WR, X (off-diagonal) gauge bosons

• “KK” quarks and leptons

• Extra PNGB scalars

• T-parity

- Dark matter (being studied by a student, Cai)

- Similar collider signals as SUSY



SUSY vs Alternatives

With a dark parity, many alternative theories and 
SUSY will have similar collider signals at the LHC 
(jets/leptons + missing energy).

To tell what the new physics after the discovery, it’s 
important to find ways to distinguish different 
scenarios. In particular, we want to measure the 
spins of the new particles in addition to their 
masses and couplings.

- Dark matter searches may provide some 
information.  

- It’s a challenge at the LHC.



Indirect Dark Matter DetectionsDark matter as a Discriminator

• Predicted positron signals

(Cheng, Feng, Matchev, hep-ph/0207125)

• SUSY: helicity-suppressed annihilation amplitudes

• A peak in the e+ spectrum:

– A smoking gun for γ1 dark matter
– can rule out neutralinos as the source



Measuring Spins at LHC

With 2 or more missing particles in a process, it’s 
difficult to reconstruct the spins of the particles 
involved in the production and decays.

There have been attempts by looking at various 
invariant mass distributions of the observed 
particles. (e.g., Barr; Smille & Webber; Datta, Kong & Matchev; 

Meade & Reece; Alves, Eboli & Plehn; Wang & Yavin;...) 

(HC, Gunion, Marandella, McElrath &Han)



Measuring Spins at LHC

We are currently investigating a different approach: 
By finding intersections of consistent regions of all 
events, one can reconstruct the full kinematics of 
each event. 

Not only does it allow us to measure the masses 
(not just mass differences) of the produced 
particles, but one can also look at the angular 
distributions in any rest frame of the produced 
particles by performing an appropriate boost.

More details will be given in Bob McElrath’s talk.

(HC, Gunion, Marandella, McElrath &Han)



Conclusions

It’s an exciting time for particle physics. Many 
mysteries of our universe will finally be unveiled, 
including the origin of the electroweak symmetry 
breaking, the nature of the dark matter, and possible 
extra (bosonic or fermionic) spacetime dimensions.

We are fully engaged in the efforts of uncovering 
the true underlying theory, including investigating 
new mechanisms and models for the electroweak 
symmetry breaking, studying their experimental 
consequences, and looking for ways to identify new 
physics after the discovery.


