
The Cavity Shift of Electron g − 2

UC Davis QMAP Seminar — November 3, 2025

1

Kevin Zhou

arXiv:2511.xxxxx, with Hannah Day, Roni Harnik, Yonatan Kahn, Shashin Pavaskar



2

The “Other” g − 2

gμ − 2 ge − 2
team of , costs 200 $108 team of , costs 4 $106

  orbit in  storage ring1011 μ− L ∼ 10 m   in a trap of size 1 e− L ∼ 0.01 m

achieves Δgμ/gμ ∼ 10−10 achieves Δge/ge ∼ 10−13

Since , “generic” BSM sensitivity of  higher, 
but  can scale up, presents different theory questions 

(mμ/me)2 ∼ 104 gμ − 2
ge − 2
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A Brief History of Measuring QED Couplings

single trapped electron…

…in lowest quantum states

atomic spectroscopy

trapped electrons

(1989 Nobel prize 
for Penning traps)

(potential 10x future improvement)

atomic spectroscopy

with atom 
interferometry
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Precision QED Today

Current measurements of electron  are 
sensitive to 5-loop QED corrections, and 

~TeV scale electron compositeness

g − 2

Comparison to SM limited by theory 
uncertainty (but not hadronic), 

discrepancies in measurements of α

2209.13084
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Electron in a Penning Trap

2209.13084

Electron placed in uniform, stable magnetic field

Confined in axial direction by electric field

Cooled to ground state with dilution fridge

B

E
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Measuring the -factorg

g − 2
2

=
ωa

ωc
∼ 10−3

Electron  determines spacing  between spin statesg ωs

Trick: measure the “anomaly” ωa

Cancels dependence on  and , 
precision on  multiplied by 

B me
g 103

Can cause transitions by applying oscillating driving fields
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Corrections to Ideal Result

Current measurements must account for any effect that shifts  or  at  levelωc ωs 10−13

Relativistic effects:
Δωc

ωc
∼

kinetic energy
mass energy

∼
ωc

m
∼

meV
MeV

∼ 10−9

Finite lifetime from radiation emission:
δωc

ωc
∼

Γ
ωc

∼
αωc

m
∼ 10−11

Slow axial motion:
Δωc

ωc
∼

ω2
z

ω2
c

∼ 10−6

Self-energy in :B
�S

(renorm.)
A = –

Figure 2. One-loop contribution to the cavity shift. The double straight line represents the Schwinger
propagator SA in the presence of the external magnetic field, and the [YK: pick notation] external
legs are the approximate eigenstates of the full trapping potential, including the axial confinement.
The double wavy line represents the photon propagator modified by the presence of the conducting
boundaries, while the single wavy line is the ordinary free-space photon propagator.

• We must perform an additional renormalization to subtract the electron self-energy in the
absence of an external magnetic field. This is exactly analogous to mass renormalization
in the standard treatment of the Lamb shift [28], and is absent in the non-relativistic
calculation where the electron mass is not treated as a contribution to the energy.

• The contribution of the axial modes does not appear to be parametrically suppressed
compared to the radial modes. This is an unphysical artifact arising from the fact that
the Schwinger propagator does not know about the axial confinement of the electron,
and thus the “internal” energy eigenstates from the propagator are not orthogonal to
the external legs of the one-loop diagram.

After accounting for these two features, we show that taking the nonrelativistic limit !�s,!c ⌧

m recovers the nonrelativistic results of Sec. 3.

4.1 Energy Shifts from Self-Energy Diagrams
First, we review the arguments of Weinberg [27] for how self-energy diagrams compute energy-
level shifts. The exact position-space propagator for a fermion  is defined as the time-ordered
correlation function of fields

iS
0
A(X,X

0) = hT{ (X), (X 0)}iA, (4.1)

where X
µ = (t,x), X

0µ = (t0,x0), and the expectation value is taken with respect to the
interacting vacuum in the presence of an external field Aµ which has both a classical background
value and quantum fluctuations. Performing the time Fourier transform yields the mixed
energy-position propagator

S
0
A(x,x

0;E) =
X

n

Un(x)Un(x0)

E0
n � E + i✏

�

X

n

Vn(x)V n(x0)

E0
n + E + i✏

(4.2)

where Un and Vn are the 4-component spinor eigenstates of the full Hamiltonian with energies
E

0
n and �E

0
n respectively, and the energy denominators arise from the time-ordering and the

time Fourier transform integral. In this form, it is clear that poles in the mixed propagator
correspond to energy eigenvalues.

The exact electron propagator S
0
A may be expressed as a perturbative series in the

electromagnetic coupling e,

S
0
A(X,X

0) = SA(X,X
0) + �SA(X,X

0) + . . . , (4.3)
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Figure 2. One-loop contribution to the cavity shift. The double straight line represents the Schwinger
propagator SA in the presence of the external magnetic field, and the [YK: pick notation] external
legs are the approximate eigenstates of the full trapping potential, including the axial confinement.
The double wavy line represents the photon propagator modified by the presence of the conducting
boundaries, while the single wavy line is the ordinary free-space photon propagator.
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The double wavy line represents the photon propagator modified by the presence of the conducting
boundaries, while the single wavy line is the ordinary free-space photon propagator.

• We must perform an additional renormalization to subtract the electron self-energy in the
absence of an external magnetic field. This is exactly analogous to mass renormalization
in the standard treatment of the Lamb shift [28], and is absent in the non-relativistic
calculation where the electron mass is not treated as a contribution to the energy.

• The contribution of the axial modes does not appear to be parametrically suppressed
compared to the radial modes. This is an unphysical artifact arising from the fact that
the Schwinger propagator does not know about the axial confinement of the electron,
and thus the “internal” energy eigenstates from the propagator are not orthogonal to
the external legs of the one-loop diagram.

After accounting for these two features, we show that taking the nonrelativistic limit !�s,!c ⌧

m recovers the nonrelativistic results of Sec. 3.
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absence of an external magnetic field. This is exactly analogous to mass renormalization
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Figure 2. One-loop contribution to the cavity shift. The double straight line represents the Schwinger
propagator SA in the presence of the external magnetic field, and the [YK: pick notation] external
legs are the approximate eigenstates of the full trapping potential, including the axial confinement.
The double wavy line represents the photon propagator modified by the presence of the conducting
boundaries, while the single wavy line is the ordinary free-space photon propagator.

The difference of Feynman diagrams in Fig. 2 represent �SA, the one-loop correction to SA,
with the free-space correction subtracted from the cavity correction to obtain the physical
cavity shift.2 In the case where Aµ corresponds to a constant B-field, Schwinger derived a
non-perturbative expression for SA as an integral over a Schwinger proper time variable, which
we will use in detail in Sec. 4.2 below and refer to as the Schwinger propagator [38, 39]. The
effect of �SA is to shift the energy eigenvalues away from ±En, the poles of the Schwinger
propagator (namely the relativistic Landau levels), and will also shift the spinor eigenstates
un, vn of SA. Taking E

0
n = En + �En and Un = un + �un in Eq. (4.2) and expanding to first

order in �’s, we have

S
0
A(x,x

0;E) = SA(x,x
0;E)�

X

n

un(x)un(x0)

(En � E)2
�En +O(�2) (4.5)

so to find the first-order shift �En of energy level n, we need to isolate the coefficient of
un(x)un(x0)/(En � E)2 in the exact propagator.

The position-space interpretation of Fig. 2 is an un-amputated diagram where the external
legs contribute factors of the Schwinger propagator,

�SA(x,x
0;E) =

Z
d
3w d

3w0
SA(x,w;E)⌃A(w,w0;E)SA(w

0
,x0;E), (4.6)

and �i⌃A represents the amputated part of the one-loop diagram, also in the mixed energy-
position representation. The two factors of SA provide the required energy denominators, and
taking inner products with a particular unperturbed eigenstate un to isolate En, the energy
shift is given by

�En =

Z
d
3x d

3x0
un(x)⌃A(x,x

0;En)un(x
0). (4.7)

2At one-loop, there is an additional diagram correspond to vacuum polarization, but as argued in Sec. 2, its
effects are negligible. Indeed, one can verify that it vanishes identically in the limit of no quadrupole fields.
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Figure 2. One-loop contribution to the cavity shift. The double straight line represents the Schwinger
propagator SA in the presence of the external magnetic field, and the [YK: pick notation] external
legs are the approximate eigenstates of the full trapping potential, including the axial confinement.
The double wavy line represents the photon propagator modified by the presence of the conducting
boundaries, while the single wavy line is the ordinary free-space photon propagator.

• We must perform an additional renormalization to subtract the electron self-energy in the
absence of an external magnetic field. This is exactly analogous to mass renormalization
in the standard treatment of the Lamb shift [28], and is absent in the non-relativistic
calculation where the electron mass is not treated as a contribution to the energy.

• The contribution of the axial modes does not appear to be parametrically suppressed
compared to the radial modes. This is an unphysical artifact arising from the fact that
the Schwinger propagator does not know about the axial confinement of the electron,
and thus the “internal” energy eigenstates from the propagator are not orthogonal to
the external legs of the one-loop diagram.

After accounting for these two features, we show that taking the nonrelativistic limit !�s,!c ⌧

m recovers the nonrelativistic results of Sec. 3.

4.1 Energy Shifts from Self-Energy Diagrams
First, we review the arguments of Weinberg [27] for how self-energy diagrams compute energy-
level shifts. The exact position-space propagator for a fermion  is defined as the time-ordered
correlation function of fields
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where Un and Vn are the 4-component spinor eigenstates of the full Hamiltonian with energies
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n and �E

0
n respectively, and the energy denominators arise from the time-ordering and the
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• We must perform an additional renormalization to subtract the electron self-energy in the
absence of an external magnetic field. This is exactly analogous to mass renormalization
in the standard treatment of the Lamb shift [28], and is absent in the non-relativistic
calculation where the electron mass is not treated as a contribution to the energy.

• The contribution of the axial modes does not appear to be parametrically suppressed
compared to the radial modes. This is an unphysical artifact arising from the fact that
the Schwinger propagator does not know about the axial confinement of the electron,
and thus the “internal” energy eigenstates from the propagator are not orthogonal to
the external legs of the one-loop diagram.
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• We must perform an additional renormalization to subtract the electron self-energy in the
absence of an external magnetic field. This is exactly analogous to mass renormalization
in the standard treatment of the Lamb shift [28], and is absent in the non-relativistic
calculation where the electron mass is not treated as a contribution to the energy.

• The contribution of the axial modes does not appear to be parametrically suppressed
compared to the radial modes. This is an unphysical artifact arising from the fact that
the Schwinger propagator does not know about the axial confinement of the electron,
and thus the “internal” energy eigenstates from the propagator are not orthogonal to
the external legs of the one-loop diagram.

After accounting for these two features, we show that taking the nonrelativistic limit !�s,!c ⌧

m recovers the nonrelativistic results of Sec. 3.
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Figure 2. One-loop contribution to the cavity shift. The double straight line represents the Schwinger
propagator SA in the presence of the external magnetic field, and the [YK: pick notation] external
legs are the approximate eigenstates of the full trapping potential, including the axial confinement.
The double wavy line represents the photon propagator modified by the presence of the conducting
boundaries, while the single wavy line is the ordinary free-space photon propagator.

The difference of Feynman diagrams in Fig. 2 represent �SA, the one-loop correction to SA,
with the free-space correction subtracted from the cavity correction to obtain the physical
cavity shift.2 In the case where Aµ corresponds to a constant B-field, Schwinger derived a
non-perturbative expression for SA as an integral over a Schwinger proper time variable, which
we will use in detail in Sec. 4.2 below and refer to as the Schwinger propagator [38, 39]. The
effect of �SA is to shift the energy eigenvalues away from ±En, the poles of the Schwinger
propagator (namely the relativistic Landau levels), and will also shift the spinor eigenstates
un, vn of SA. Taking E

0
n = En + �En and Un = un + �un in Eq. (4.2) and expanding to first

order in �’s, we have

S
0
A(x,x

0;E) = SA(x,x
0;E)�

X

n

un(x)un(x0)

(En � E)2
�En +O(�2) (4.5)

so to find the first-order shift �En of energy level n, we need to isolate the coefficient of
un(x)un(x0)/(En � E)2 in the exact propagator.

The position-space interpretation of Fig. 2 is an un-amputated diagram where the external
legs contribute factors of the Schwinger propagator,

�SA(x,x
0;E) =

Z
d
3w d

3w0
SA(x,w;E)⌃A(w,w0;E)SA(w

0
,x0;E), (4.6)

and �i⌃A represents the amputated part of the one-loop diagram, also in the mixed energy-
position representation. The two factors of SA provide the required energy denominators, and
taking inner products with a particular unperturbed eigenstate un to isolate En, the energy
shift is given by

�En =

Z
d
3x d

3x0
un(x)⌃A(x,x

0;En)un(x
0). (4.7)

2At one-loop, there is an additional diagram correspond to vacuum polarization, but as argued in Sec. 2, its
effects are negligible. Indeed, one can verify that it vanishes identically in the limit of no quadrupole fields.
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Δωc

ωc
∼ α ( ωc

m )
2

log(m/ωc) ∼ 10−19

uncertainty, 
not shift!
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Effects of the Cavity

Enclosing electron in a cavity increases lifetime if  between 
cavity modes, but it also yields a “cavity shift” of  itself!

ωc
ωc

“longitudinal” 
(image charge)

“transverse” 
(radiation)

R
Δωc

ωc
∼

Fimage

F
∼

q2re/(4πR3)
mω2

c re
∼

α
mω2

c R3
∼ 10−14

Estimating the longitudinal effect ( ):ωcR ∼ 10

Estimating the transverse effect:

Δωc

ωc
∼

Frad

F
∼

q2aeQ/(4πR)
mae

∼
Qα
mR

∼ 10−12 Q

Negligible, though dominant for ion traps

Important, and can be resonantly enhanced!



classical: radiation self-field quantum: modification of self-energy

must remove divergent self-field must renormalize divergent loop diagram

done for plates, spherical and 
cylindrical cavities in 1980s

matches quantum result, 
at least for plates

9

Computing the Cavity Shift

subtle: many papers initially disagreed for plate

never attempted for closed cavity — too hard?
hard to generalize to 

realistic cavities
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Starting Over From Relativistic QED

Schwinger’s exact propagator in external B photon propagator

δEn = ∫ dx dx′￼un(x)ΣA(x, x′￼)un(x′￼) ΣA(x, x′￼; E) ∼ e2 ∫ dτ γμSA(x, x′￼; τ)γνDμν(x, x′￼; τ)eiEτ,

Electron energy levels can be extracted 
from poles of self-energy diagrams

(usual  can also be found this way)g − 2

electron state

Dij(ω, k) ∼ ∑
s

ui
s(0) uj

s(0)*
δ(k)

ω2 − ω2
s + iϵ

.

sum over cavity modes s

Finite after subtracting off free space 
self-energy, and the  self-energyB = 0 approximates electron as localized



11

The Nonrelativistic Limit

Delicately taking the nonrelativistic limit recovers the answer 
one would get in nonrelativistic quantum mechanics

δEn ≃
e2

m2 ∑
s,n′￼

|⟨n′￼,1s |A ⋅ π |n,0⟩ |2

En − (En′￼
+ ωs)

Result is linearly divergent, but convergent when cavity and free space subtracted

Not a foregone conclusion!

Lamb shift is log divergent in the 
nonrelativistic theory, needs UV 

matching to get quantitatively right
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Example: Spherical Cavity of Radius a

In cavity: only the  modes 
are nonzero at cavity center

TM11p

δEn ≃
e2

m2 ∑
s,n′￼

|⟨n′￼,1s |A ⋅ π |n,0⟩ |2

En − (En′￼
+ ωs)

Δωc = δEn+1 − δEn

In free space: integrate over 
plane waves (ω, k)

Δωcav
c

ωc
= −

8
3π

α
ma

S

S =
∞

∑
p=1

f(p) =
∞

∑
p=1

c3
p

c2
p − 2

1
J2

3/2(cp)
1

c2
p − z2

Δωfree
c

ωc
= −

8
3π

α
ma

I I =
1
2 ∫

∞

0
dc

c2

c2 − z2

where , , cp = ωpa z = ωca c = ωa

How can we subtract the divergent sum and integral analytically?

Smooth regulator should treat  and  the same waycp c
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Subtracting the Sum and Integral

d
dx ( sin x

x
− cos x)

x=cp

= 0 c(p) + arctan ( c(p)
c(p)2 − 1 ) = πp

f(p) =
1
2

dc
dp

c2

c2 − z2

First trick: define a continuous analogue of the spherical Bessel root cp

S =
∞

∑
p=1

f(p) =
∞

∑
p=1

c3
p

c2
p − 2

1
J2

3/2(cp)
1

c2
p − z2 I =

1
2 ∫

∞

0
dc

c2

c2 − z2
cp = ωpa
c = ω a

after Bessel identities:

Second trick: relate both the regulated sum and integral to the same contour integral

Will keep the regulator (damping at large ) implicitc

Physical difference arises at low , regulator independentc
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Contour Integration for the Spherical Cavity

C p

1 2 3pz

Consider contour integral A = ∫C

f(p)
e−2πip − 1

dp

Analytic regulator lets us close at infinity, A = S + (pole)
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Contour Integration for the Spherical Cavity

Consider contour integral A = ∫C

f(p)
e−2πip − 1

dp

Analytic regulator lets us close at infinity, A = S + (pole)

Changing variables to  gives c A = ∫C

1
2

c2

c2 − z2
g(c) dc

c

c1 c2 c3z

C

g(c) =
1
2 (−1 +

(c2 − 1) cos c − c sin c
c cos c + (c2 − 1) sin c

i)
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Contour Integration for the Spherical Cavity

Consider contour integral A = ∫C

f(p)
e−2πip − 1

dp

Analytic regulator lets us close at infinity, A = S + (pole)

Changing variables to  gives c A = ∫C

1
2

c2

c2 − z2
g(c) dc

Cv

C+

C�

c

c1 c2 c3z

Push contour to imaginary axis, g(−iy) + 1 = − g(iy)

Pull out  and cancel, +1 A = pole − ∫C−

1
2

c2

c2 − z2
dc

g(c) =
1
2 (−1 +

(c2 − 1) cos c − c sin c
c cos c + (c2 − 1) sin c

i)
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Contour Integration for the Spherical Cavity

Consider contour integral A = ∫C

f(p)
e−2πip − 1

dp

Analytic regulator lets us close at infinity, A = S + (pole)

Changing variables to  gives c A = ∫C

1
2

c2

c2 − z2
g(c) dc

g(c) =
1
2 (−1 +

(c2 − 1) cos c − c sin c
c cos c + (c2 − 1) sin c

i)
Push contour to imaginary axis, g(−iy) + 1 = − g(iy)

Pull out  and cancel, +1 A = pole − ∫C−

1
2

c2

c2 − z2
dc

I − S =
πz
4

× ( (1 − z2) cos z + z sin z
(1 − z2) sin z − z cos z

+
3

2z3 )
perfectly matches 
classical answer!

Combining results:
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New Features for the Cylindrical Cavity

 and  modes contribute, giving two double sumsTE1np TM1np

tan(πn) +
J1(cn)
Y1(cn)

= 0

Sum over  can be performed exactlyp

Subtract against integral of plane waves in cylindrical coordinates

Separate out part of sum that depends on aspect ratio L/a

Make summand analytic using Bessel identities and

tan(πn) +
J′￼1(c̄n)
Y′￼1(c̄n)

= 0

Sum and integral contain square roots, giving branch cuts

Real cavity is approximately cylindrical, more complicated
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Sketch: Contour Integration for the Cylindrical Cavity

C n

1 2 3

nz

For TE modes, let ATE = ∫C

fTE(n)
e−2πin − 1

dp = STE − (poles)
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C 0 c

c1 c2 c3

z

g(−iy) + 1 = g(iy)

Deform contour left, extract , use symmetry+1

Sketch: Contour Integration for the Cylindrical Cavity

Changing variables to  gives c ATE =
1
2 ∫C

c

c2 − z2
g(c) dc

g(c) = −
1
2 (1 +

Y′￼1(c)
J′￼1(c)

i)

For TE modes, let ATE = ∫C

fTE(n)
e−2πin − 1

dp = STE − (poles)
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Deform contour left, extract , use symmetry+1

Sketch: Contour Integration for the Cylindrical Cavity

Changing variables to  gives c ATE =
1
2 ∫C

c

c2 − z2
g(c) dc

For TE modes, let ATE = ∫C

fTE(n)
e−2πin − 1

dp = STE − (poles) Cv

Ch

Cu c

c1 c2 c3

z

ATE = ITE + Re∫Cu

c

c2 − z2
g(c) dc

g(−iy) + 1 = g(iy)g(c) = −
1
2 (1 +

Y′￼1(c)
J′￼1(c)

i)

Point contour up for exponentially damped remainder
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Final Results for the Cylindrical Cavity

Δωc

ωc
= −

α
ma

(ΔS + J)

ΔS =
∞

∑
n=n̄*+1

(tanh(
L c̄2

n − z2

2a ) − 1) fTE(n) +
n̄*

∑
n=1

tan(
L z2 − c̄2

n

2a ) ifTE(n) + (TM terms)

J =
1
π

Re∫
∞

0

(y − iz) y2 − 2iyz

z2

K1(y − iz)
I1(y − iz)

−
K1(y)
I1(y)

y2

z2
+

y − iz

y2 − 2iyz

K′￼1(y − iz)
I′￼1(y − iz)

dy

Δωc

ωc
=

2α
mL [ 1

2
log(4 cos2(ξ/2)) +

∞

∑
n=1

(−1)n( sin(nξ)
n2ξ

+
cos(nξ) − 1

n3ξ2 ) − Re
∞

∑
p=0

K′￼1(μpa)
I′￼1(μpa)

+
k2

p

ω2
c (

K1(μpa)
I1(μpa)

−
K1(kpa)
I1(kpa) ) ]

ξ = ωcL kp = (2p + 1)π/L μp = k2
p − ω2

c

 New quantum result

Existing classical result

exponentially damped

finite + damped
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Quantum and Classical Comparison

°10

°5

0

5

10
L/a = 1.72

Classical

Quantum

0 2 4 6 8 10 12
z = !c a

°10

°5

0

5

10
L/a = 4/3

°
(¢

!
c/

!
c)

/(
Æ
/m

a)

Analytic match possible in special cases; in general, perfect numeric match
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Sphere with Concrete Cutoffs
Now that we know the quantum answer (with frequency-dependent cutoff) 

matches the classical one, we can efficiently evaluate it with specific cutoffs

°4

°2

0

2

4

°0.5

0.0

0.5 cmax = cp0

cmax = (cp0 + cp0+1)/2

cmax = cp0+1

0 2 4 6 8 10 12
z = !c a

0.000

0.002

0.004

p0 = 25

p0 = 10
p0 = 5

°
(¢

!
c/

!
c)

/(
Æ
/m

a)

For sphere, hard cutoff in the right place gives highly accurate result with few terms

∼ 10−12 variation

∼ 10−15 variation
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Cylinder with Concrete Cutoffs
For the cylinder, need to cut off parts of the integral differently, 

depending on if they correspond to TE or TM modes

Again, highly accurate results with small number of terms

°4

°2

0

2

4

°1.0

°0.5

0.0

0.5

1.0
TE cutoÆ

TE and TM cutoÆs
TM cutoÆ

0 2 4 6 8 10 12
z = !c a

0.000

0.005

0.010

p0 = 25

p0 = 10
p0 = 5

°
(¢

!
c/

!
c)

/(
Æ
/m

a)

∼ 10−12 variation

∼ 10−15 variation
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Next Steps

Results with low cutoff are still very accurate, because the 
exact  only depends on exponentially damped quantitiesS − I

Opens door to treating the real cavity, 
which is not an ideal cylinder

Mode frequencies and coupling 
strengths deviate by few %, and 

quality factors vary

Xing Fan, PhD thesis (2022)

Mode-based calculation naturally 
accommodates these features!

Already one of the most 
important systematics
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Tree-level coupling to external axions is formally a background-corrected loop diagram 

=

Recent claim: axion-mediated potential 
can become , spin independent1/r

Looks quantum, but isn’t: short classical 
calculation gives exact same result!

Classical analogues for ultralight DM effects essentially always exist

J(x, t) = ∂t(v ⋅ ̂s) δ(3)(x − r(t)) .

dv
dt

=
F
m

=
g ··a ̂s

m

(∂2 + m2
a) a = J

Dark Matter “Background-Induced” Forces are Also Classical  
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Claim: DM background yields very strong shifts of electron  and EDMsg − 2

2302.08746, PRL (2024)
2308.05375, JHEP (2025)

2410.10715
2412.14664
2509.12869

Δge ∼
ρDM

m2
DMm2

e
g2

Sold as intrinsically quantum, but again can be derived classically!
KZ, JHEP (2025)

dS
dt

= S × ( qge

2me (B −
γ

γ + 1
(v ⋅ B)v − v × E) +

γ2

γ + 1
v × a) .dp

dt
= q(E + v × B)

Like the ponderomotive force or gravitational wave memory, 
derived by carefully solving for classical motion at second order

Classical derivation also reveals IR cutoff, making effect negligible in practice

Dark Matter “Background-Induced”  Shifts are Also Classical  g − 2
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Conclusion

Classical physics works better than many think, especially in the infrared

Future work can model cavity and trap imperfections, 
improving systematic uncertainty for future measurements

Physics works: QED knows about subtle long-distance phenomena

From the Lamb shift to the cavity shift: 75 years of the rich physics of g − 2

=

But derivations with “quantum” language can have benefits as well


