The Cavity Shift of Electron g-2

Kevin Zhou

UC Davis QMAP Seminar — November 3, 2025

arXiv:2511.xxxxx, with Hannah Day, Roni Harnik, Yonatan Kahn, Shashin Pavaskar

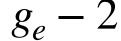
The "Other" g-2

$$g_{\mu}-2$$

team of 200, costs $$10^8$

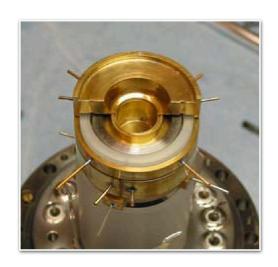
 $10^{11} \, \mu^-$ orbit in $L \sim 10 \, \mathrm{m}$ storage ring

achieves $\Delta g_{\mu}/g_{\mu} \sim 10^{-10}$



team of 4, costs $$10^6$

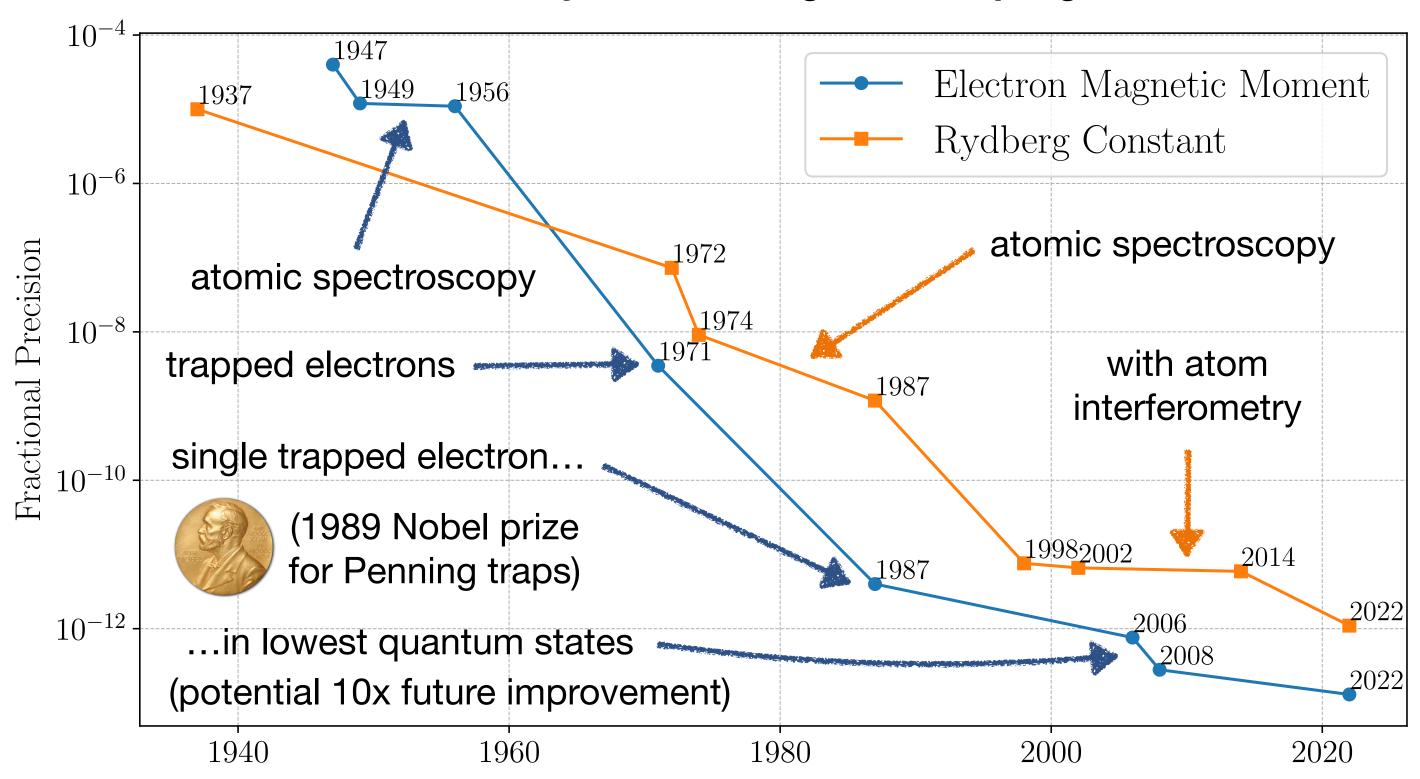
 $1~e^-$ in a trap of size $L \sim 0.01~\mathrm{m}$



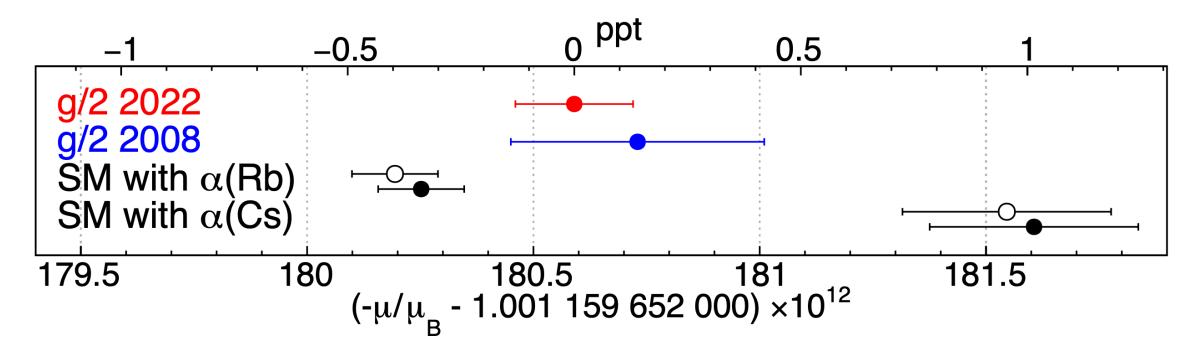
achieves $\Delta g_e/g_e \sim 10^{-13}$

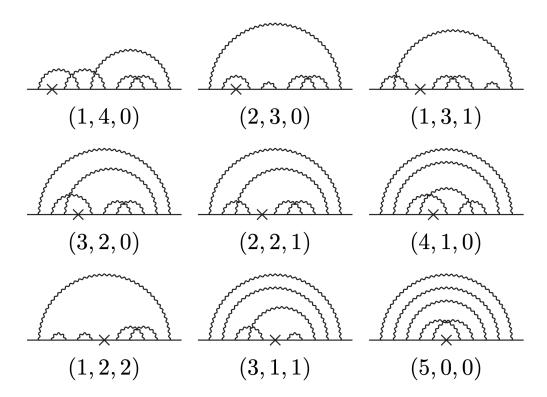
Since $(m_{\mu}/m_e)^2 \sim 10^4$, "generic" BSM sensitivity of $g_{\mu} - 2$ higher, but $g_e - 2$ can scale up, presents different theory questions

A Brief History of Measuring QED Couplings



Precision QED Today



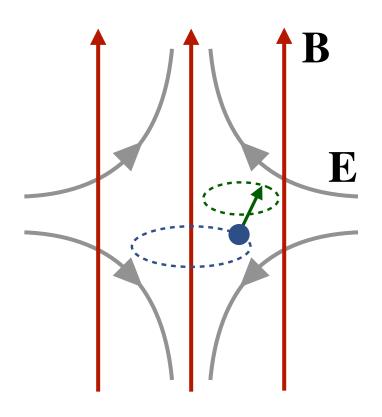


Current measurements of electron g-2 are sensitive to 5-loop QED corrections, and ~TeV scale electron compositeness

Comparison to SM limited by theory uncertainty (but not hadronic), discrepancies in measurements of α

2209.13084

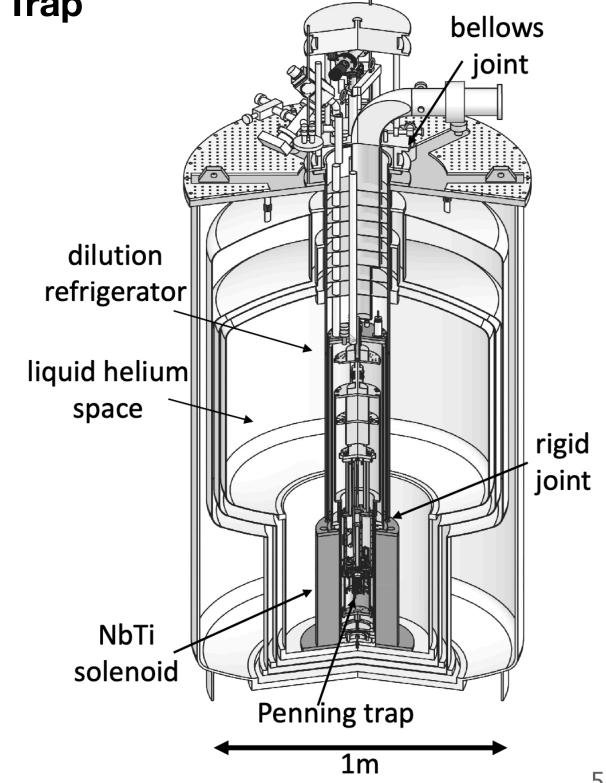
Electron in a Penning Trap



Electron placed in uniform, stable magnetic field

Confined in axial direction by electric field

Cooled to ground state with dilution fridge

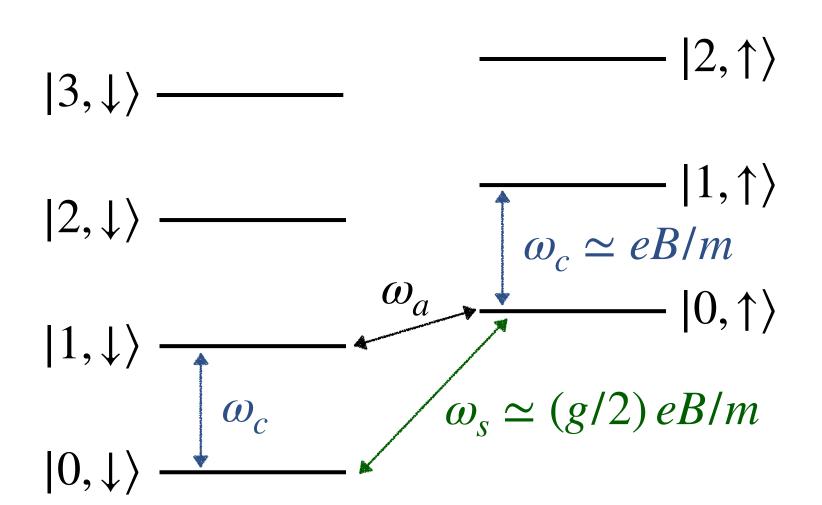


2209,13084

Measuring the g-factor

Electron g determines spacing ω_s between spin states

Can cause transitions by applying oscillating driving fields



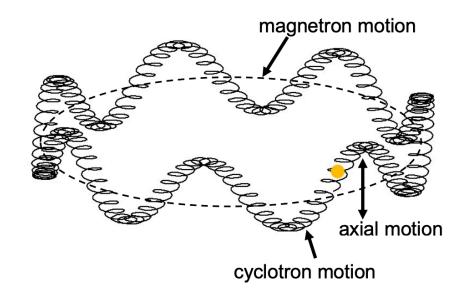
Trick: measure the "anomaly" ω_a

$$\frac{g-2}{2} = \frac{\omega_a}{\omega_c} \sim 10^{-3}$$

Cancels dependence on B and m_e , precision on g multiplied by 10^3

Corrections to Ideal Result

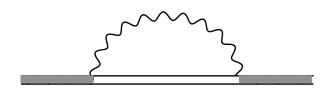
Current measurements must account for any effect that shifts ω_c or ω_s at 10^{-13} level



Slow axial motion: $\frac{\Delta \omega_c}{\omega_c} \sim \frac{\omega_z^2}{\omega_c^2} \sim 10^{-6}$

Relativistic effects:

$$\frac{\Delta \omega_c}{\omega_c} \sim \frac{\text{kinetic energy}}{\text{mass energy}} \sim \frac{\omega_c}{m} \sim \frac{\text{meV}}{\text{MeV}} \sim 10^{-9}$$



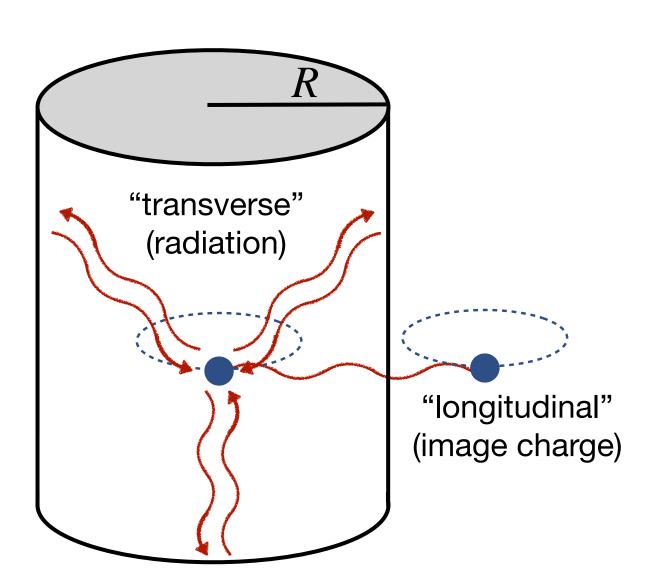
Self-energy in *B*:
$$\frac{\Delta \omega_c}{\omega_c} \sim \alpha \left(\frac{\omega_c}{m}\right)^2 \log(m/\omega_c) \sim 10^{-19}$$

Finite lifetime from radiation emission:

$$\frac{\delta\omega_c}{\omega_c}\sim\frac{\Gamma}{\omega_c}\sim\frac{\alpha\omega_c}{m}\sim 10^{-11}$$
 uncertainty, not shift!

Effects of the Cavity

Enclosing electron in a cavity increases lifetime if ω_c between cavity modes, but it also yields a "cavity shift" of ω_c itself!



Estimating the longitudinal effect ($\omega_c R \sim 10$):

$$\frac{\Delta\omega_c}{\omega_c} \sim \frac{F_{\text{image}}}{F} \sim \frac{q^2 r_e/(4\pi R^3)}{m\omega_c^2 r_e} \sim \frac{\alpha}{m\omega_c^2 R^3} \sim 10^{-14}$$

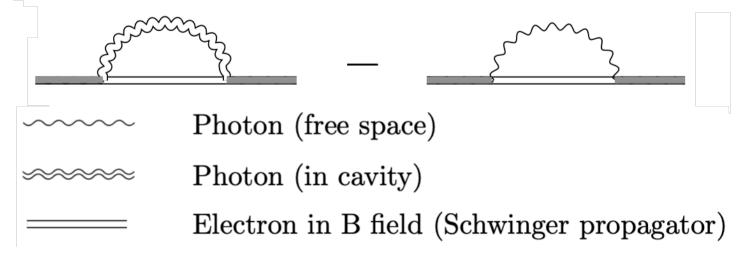
Negligible, though dominant for ion traps

Estimating the transverse effect:

$$\frac{\Delta\omega_c}{\omega_c} \sim \frac{F_{\rm rad}}{F} \sim \frac{q^2 a_e Q/(4\pi R)}{ma_e} \sim \frac{Q\alpha}{mR} \sim 10^{-12} Q$$

Important, and can be resonantly enhanced!

Computing the Cavity Shift



classical: radiation self-field

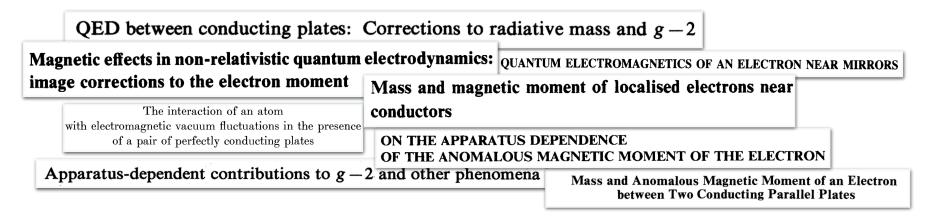
must remove divergent self-field

done for plates, spherical and cylindrical cavities in 1980s

matches quantum result, at least for plates

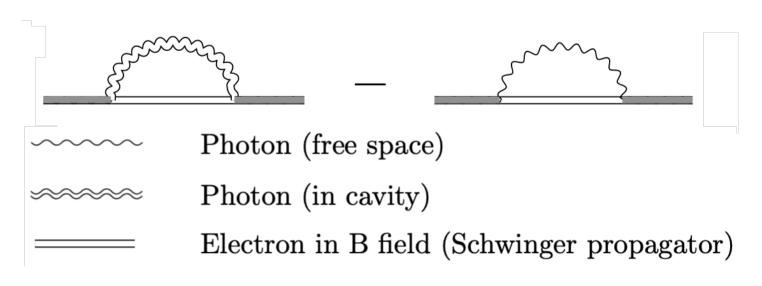
hard to generalize to realistic cavities

quantum: modification of self-energy must renormalize divergent loop diagram



subtle: many papers initially disagreed for plate **never** attempted for closed cavity — too hard?

Starting Over From Relativistic QED



Electron energy levels can be extracted from poles of self-energy diagrams

(usual g-2 can also be found this way)

$$\delta E_n = \int d\mathbf{x} \, d\mathbf{x}' \, \overline{u}_n(\mathbf{x}) \Sigma_A(\mathbf{x}, \mathbf{x}') u_n(\mathbf{x}') \qquad \Sigma_A(\mathbf{x}, \mathbf{x}'; E) \sim e^2 \int d\tau \, \gamma^\mu S_A(\mathbf{x}, \mathbf{x}'; \tau) \gamma^\nu D_{\mu\nu}(\mathbf{x}, \mathbf{x}'; \tau) e^{iE\tau},$$
 electron state

Schwinger's exact propagator in external B

Finite after subtracting off free space self-energy, and the B=0 self-energy

photon propagator

$$D^{ij}(\omega, \mathbf{k}) \sim \sum_{s} u_s^i(\mathbf{0}) u_s^j(\mathbf{0})^* \frac{\delta(\mathbf{k})}{\omega^2 - \omega_s^2 + i\epsilon}.$$

approximates electron as localized sum over cavity modes *s*

The Nonrelativistic Limit

Delicately taking the nonrelativistic limit recovers the answer one would get in nonrelativistic quantum mechanics

$$\delta E_n \simeq \frac{e^2}{m^2} \sum_{s,n'} \frac{\left| \langle n', 1_s | \mathbf{A} \cdot \boldsymbol{\pi} | n, 0 \rangle \right|^2}{E_n - (E_{n'} + \omega_s)}$$

Result is linearly divergent, but convergent when cavity and free space subtracted

Lambe Notes on Shelser Island Conference.

Kemble & Present

to explain 0.010 cm 1 shift of S level

cutting protential off flat, or replace by infinite

Not a foregone conclusion!

Lamb shift is log divergent in the nonrelativistic theory, needs UV matching to get quantitatively right

Example: Spherical Cavity of Radius a

$$\delta E_n \simeq \frac{e^2}{m^2} \sum_{s,n'} \frac{|\langle n', 1_s | \mathbf{A} \cdot \pi | n, 0 \rangle|^2}{E_n - (E_{n'} + \omega_s)}$$

$$\Delta\omega_c = \delta E_{n+1} - \delta E_n$$

In cavity: only the TM_{11p} modes are nonzero at cavity center

$$\frac{\Delta\omega_c^{\text{cav}}}{\omega_c} = -\frac{8}{3\pi} \frac{\alpha}{ma} S$$

$$S = \sum_{p=1}^{\infty} f(p) = \sum_{p=1}^{\infty} \frac{c_p^3}{c_p^2 - 2} \frac{1}{J_{3/2}^2(c_p)} \frac{1}{c_p^2 - z^2}$$

In free space: integrate over plane waves (ω, \mathbf{k})

$$\frac{\Delta\omega_c^{\text{free}}}{\omega_c} = -\frac{8}{3\pi} \frac{\alpha}{ma} I \qquad I = \frac{1}{2} \int_0^\infty dc \, \frac{c^2}{c^2 - z^2}$$

where
$$c_p = \omega_p a$$
, $z = \omega_c a$, $c = \omega a$

Smooth regulator should treat c_p and c the same way

How can we subtract the divergent sum and integral analytically?

Subtracting the Sum and Integral

$$S = \sum_{p=1}^{\infty} f(p) = \sum_{p=1}^{\infty} \frac{c_p^3}{c_p^2 - 2} \frac{1}{J_{3/2}^2(c_p)} \frac{1}{c_p^2 - z^2} \qquad I = \frac{1}{2} \int_0^{\infty} dc \, \frac{c^2}{c^2 - z^2} \qquad c_p = \omega_p a$$

First trick: define a continuous analogue of the spherical Bessel root c_p

$$\frac{d}{dx} \left(\frac{\sin x}{x} - \cos x \right)_{x=c_n} = 0 \qquad (c(p) + \arctan\left(\frac{c(p)}{c(p)^2 - 1} \right) = \pi p$$

after Bessel identities:
$$f(p) = \frac{1}{2} \frac{dc}{dp} \frac{c^2}{c^2 - z^2}$$

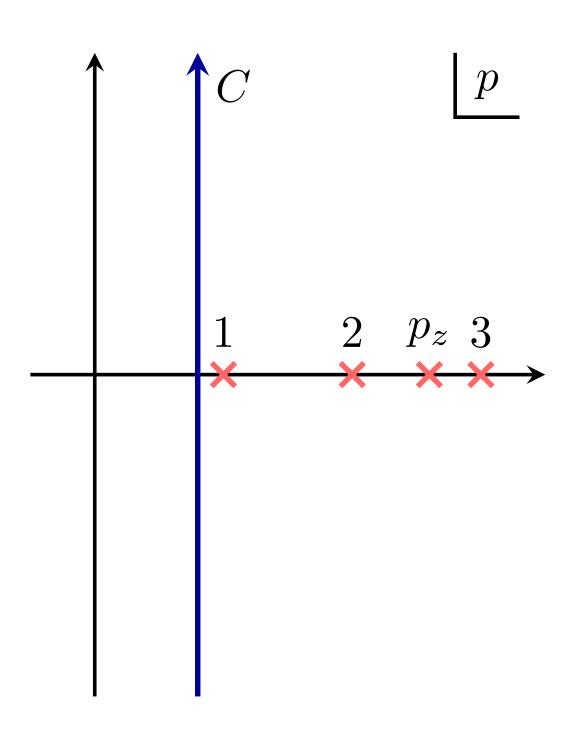
Second trick: relate both the regulated sum and integral to the same contour integral

Will keep the regulator (damping at large c) implicit

Physical difference arises at low c, regulator independent

Consider contour integral
$$A = \int_C \frac{f(p)}{e^{-2\pi i p} - 1} dp$$

Analytic regulator lets us close at infinity, A = S + (pole)

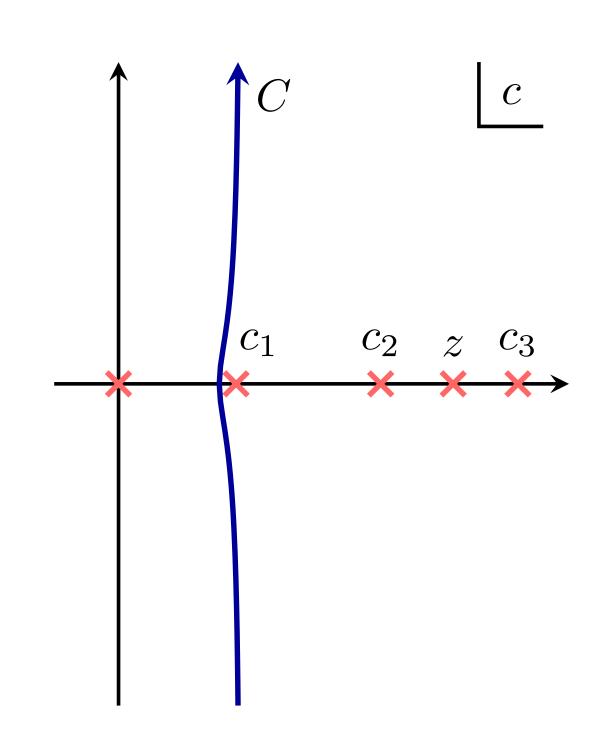


Consider contour integral
$$A = \int_C \frac{f(p)}{e^{-2\pi i p} - 1} dp$$

Analytic regulator lets us close at infinity, A = S + (pole)

Changing variables to
$$c$$
 gives $A = \int_C \frac{1}{2} \frac{c^2}{c^2 - z^2} g(c) dc$

$$g(c) = \frac{1}{2} \left(-1 + \frac{(c^2 - 1)\cos c - c\sin c}{c\cos c + (c^2 - 1)\sin c} i \right)$$



Consider contour integral
$$A = \int_C \frac{f(p)}{e^{-2\pi i p} - 1} dp$$

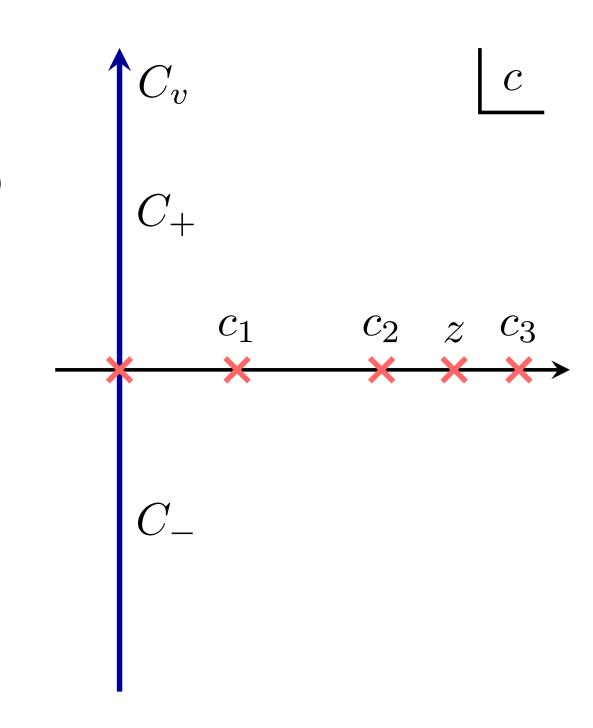
Analytic regulator lets us close at infinity, A = S + (pole)

Changing variables to
$$c$$
 gives $A = \int_C \frac{1}{2} \frac{c^2}{c^2 - z^2} g(c) dc$

$$g(c) = \frac{1}{2} \left(-1 + \frac{(c^2 - 1)\cos c - c\sin c}{c\cos c + (c^2 - 1)\sin c} i \right)$$

Push contour to imaginary axis, g(-iy) + 1 = -g(iy)

Pull out +1 and cancel,
$$A = \text{pole} - \int_C \frac{1}{2} \frac{c^2}{c^2 - z^2} dc$$



Consider contour integral
$$A = \int_C \frac{f(p)}{e^{-2\pi i p} - 1} dp$$

Analytic regulator lets us close at infinity, A = S + (pole)

Changing variables to c gives $A = \int_C \frac{1}{2} \frac{c^2}{c^2 - z^2} g(c) dc$

$$g(c) = \frac{1}{2} \left(-1 + \frac{(c^2 - 1)\cos c - c\sin c}{c\cos c + (c^2 - 1)\sin c}i \right)$$

Push contour to imaginary axis, g(-iy) + 1 = -g(iy)

Pull out +1 and cancel,
$$A = \text{pole} - \int_C \frac{1}{2} \frac{c^2}{c^2 - z^2} dc$$

Combining results:

$$I - S = \frac{\pi z}{4}$$

$$\times \left(\frac{(1 - z^2) \cos z + z \sin z}{(1 - z^2) \sin z - z \cos z} + \frac{3}{2z^3} \right)$$

perfectly matches classical answer!

New Features for the Cylindrical Cavity

Real cavity is approximately cylindrical, more complicated

 TE_{1np} and TM_{1np} modes contribute, giving two double sums

Sum over p can be performed exactly

Separate out part of sum that depends on aspect ratio L/a

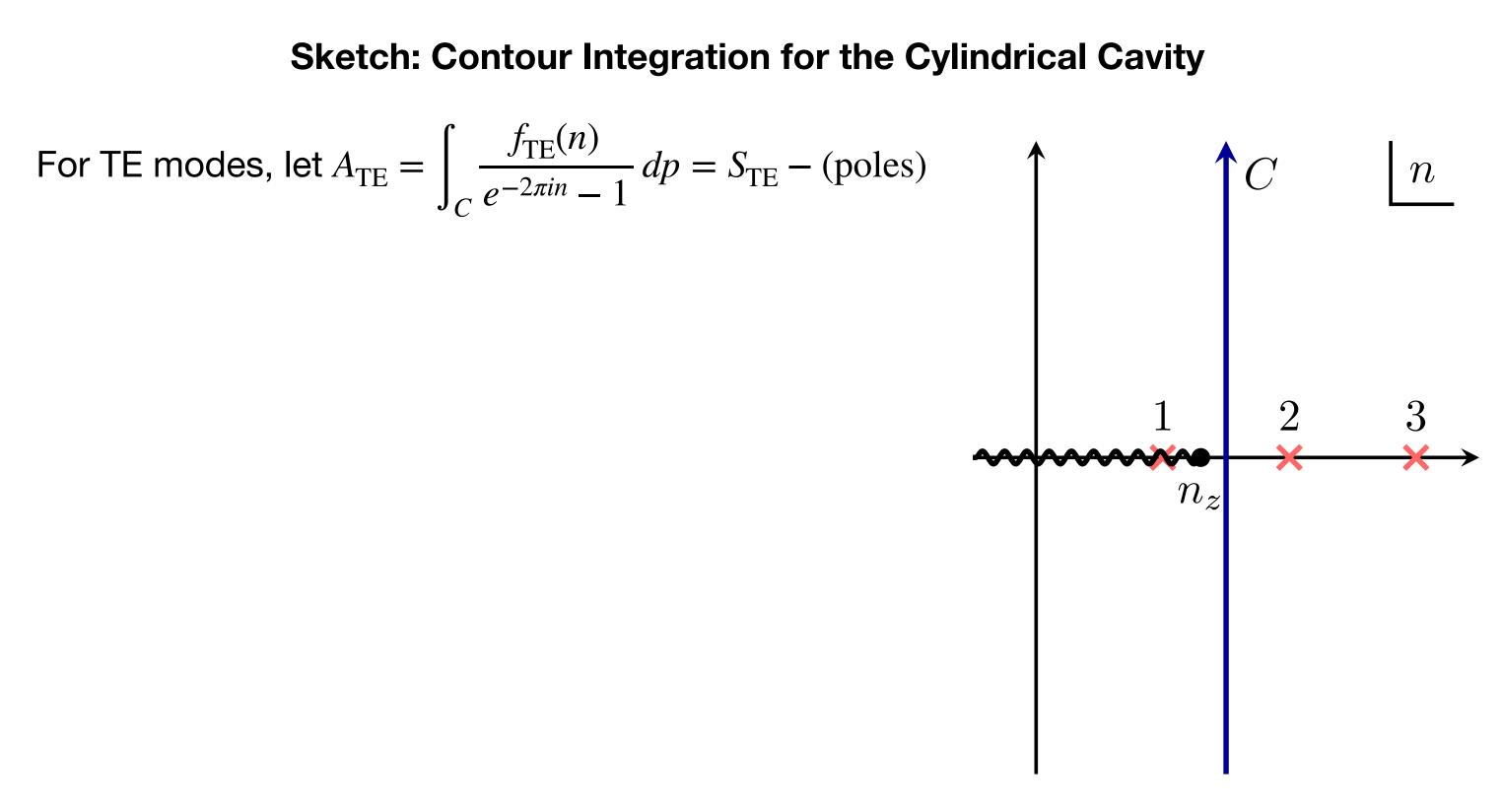
Subtract against integral of plane waves in cylindrical coordinates

Make summand analytic using Bessel identities and

$$\tan(\pi n) + \frac{J_1(c_n)}{Y_1(c_n)} = 0 \qquad \tan(\pi n) + \frac{J_1'(\bar{c}_n)}{Y_1'(\bar{c}_n)} = 0$$

Sum and integral contain square roots, giving branch cuts

For TE modes, let
$$A_{\rm TE} = \int_C \frac{f_{\rm TE}(n)}{e^{-2\pi i n}-1} \, dp = S_{\rm TE}$$
 – (poles)



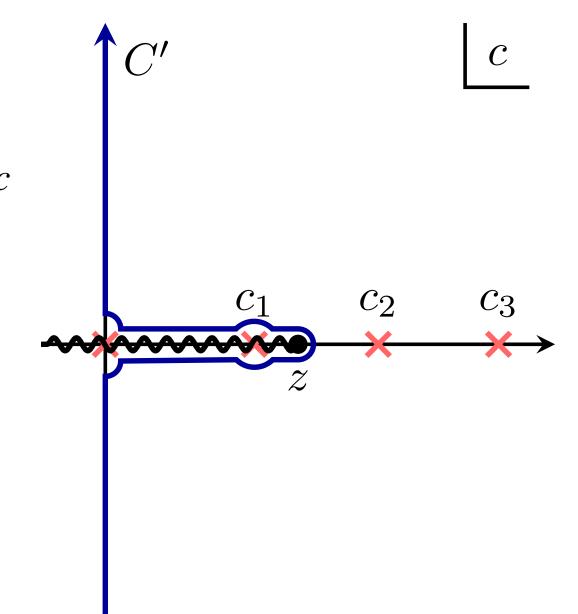
Sketch: Contour Integration for the Cylindrical Cavity

For TE modes, let
$$A_{\rm TE} = \int_C \frac{f_{\rm TE}(n)}{e^{-2\pi i n}-1} \, dp = S_{\rm TE} - ({\rm poles})$$

Changing variables to
$$c$$
 gives $A_{\text{TE}} = \frac{1}{2} \int_{C} \frac{c}{\sqrt{c^2 - z^2}} g(c) dc$

$$g(c) = -\frac{1}{2} \left(1 + \frac{Y_1'(c)}{J_1'(c)} i \right) \qquad g(-iy) + 1 = g(iy)$$

Deform contour left, extract +1, use symmetry



Sketch: Contour Integration for the Cylindrical Cavity

For TE modes, let
$$A_{\text{TE}} = \int_C \frac{f_{\text{TE}}(n)}{e^{-2\pi i n} - 1} dp = S_{\text{TE}}$$
 (poles)

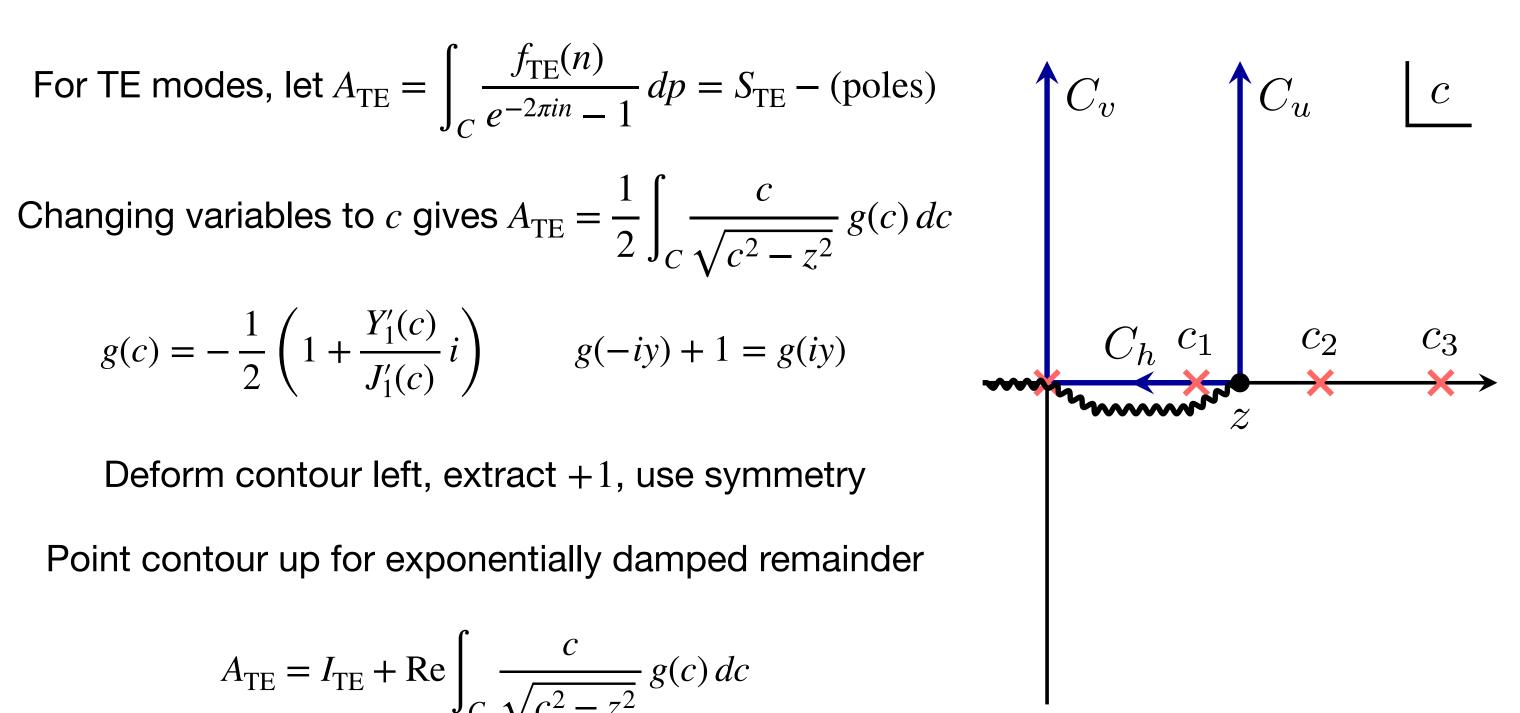
Changing variables to
$$c$$
 gives $A_{\text{TE}} = \frac{1}{2} \int_{C} \frac{c}{\sqrt{c^2 - z^2}} g(c) dc$

$$g(c) = -\frac{1}{2} \left(1 + \frac{Y_1'(c)}{J_1'(c)} i \right) \qquad g(-iy) + 1 = g(iy)$$

Deform contour left, extract +1, use symmetry

Point contour up for exponentially damped remainder

$$A_{\text{TE}} = I_{\text{TE}} + \text{Re} \int_{C_u} \frac{c}{\sqrt{c^2 - z^2}} g(c) dc$$



Final Results for the Cylindrical Cavity

New quantum result

$$\frac{\Delta\omega_c}{\omega_c} = -\frac{\alpha}{ma}(\Delta S + J)$$

$$J = \frac{1}{\pi} \operatorname{Re} \int_0^\infty \frac{(y - iz)\sqrt{y^2 - 2iyz}}{z^2} \frac{K_1(y - iz)}{I_1(y - iz)} - \frac{K_1(y)}{I_1(y)} \frac{y^2}{z^2} + \frac{y - iz}{\sqrt{y^2 - 2iyz}} \frac{K'_1(y - iz)}{I'_1(y - iz)} dy$$
 exponentially damped

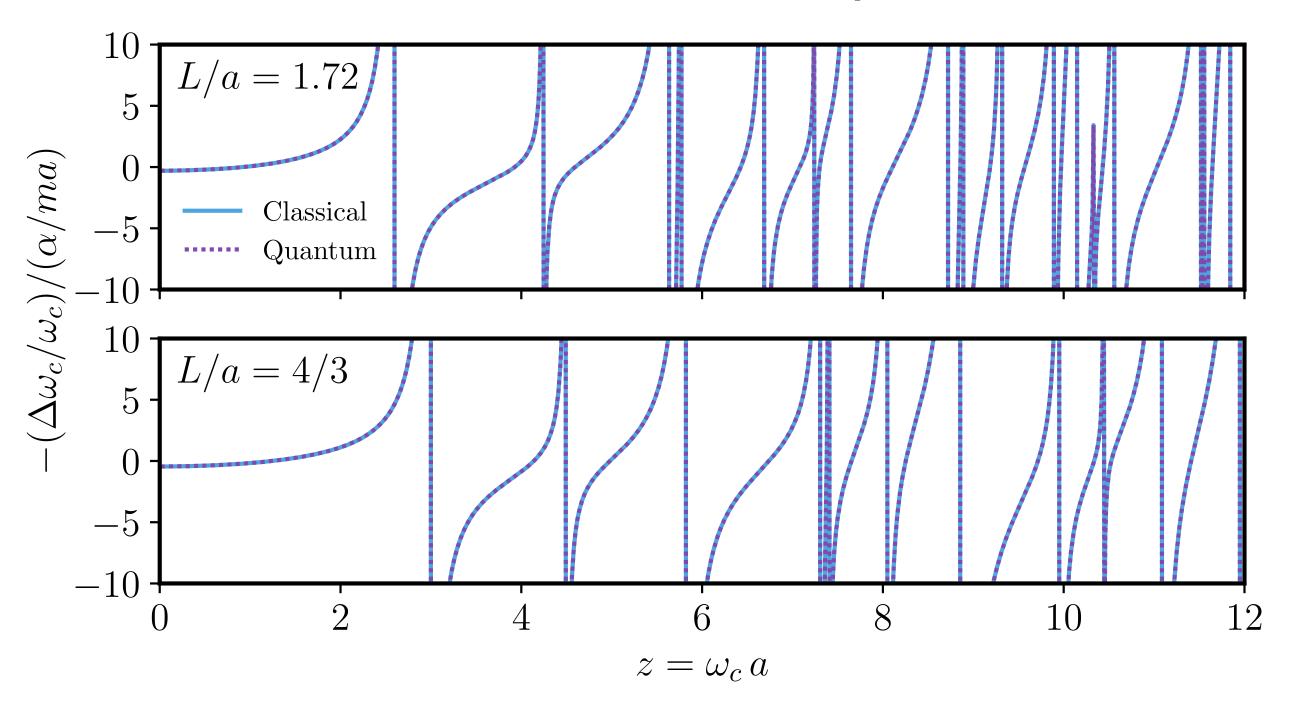
$$\Delta S = \sum_{n=\bar{z}^*+1}^{\infty} \left(\tanh\left(\frac{L\sqrt{\bar{c}_n^2 - z^2}}{2a}\right) - 1 \right) f_{\text{TE}}(n) + \sum_{n=1}^{\bar{n}^*} \tan\left(\frac{L\sqrt{z^2 - \bar{c}_n^2}}{2a}\right) i f_{\text{TE}}(n) + (\text{TM terms}) \qquad \text{finite + damped}$$

Existing classical result

$$\frac{\Delta \omega_c}{\omega_c} = \frac{2\alpha}{mL} \left[\frac{1}{2} \log(4\cos^2(\xi/2)) + \sum_{n=1}^{\infty} (-1)^n \left(\frac{\sin(n\xi)}{n^2 \xi} + \frac{\cos(n\xi) - 1}{n^3 \xi^2} \right) - \text{Re} \sum_{p=0}^{\infty} \left(\frac{K_1'(\mu_p a)}{I_1'(\mu_p a)} + \frac{k_p^2}{\omega_c^2} \left(\frac{K_1(\mu_p a)}{I_1(\mu_p a)} - \frac{K_1(k_p a)}{I_1(k_p a)} \right) \right) \right]$$

$$\xi = \omega_c L \qquad k_p = (2p+1)\pi/L \qquad \mu_p = \sqrt{k_p^2 - \omega_c^2}$$

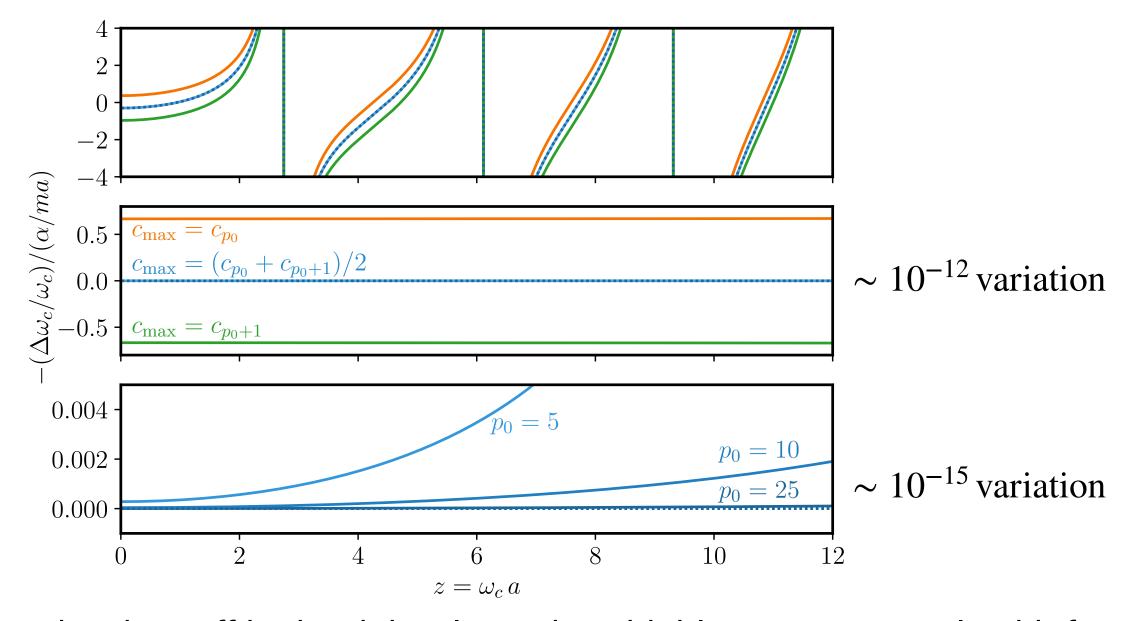
Quantum and Classical Comparison



Analytic match possible in special cases; in general, perfect numeric match

Sphere with Concrete Cutoffs

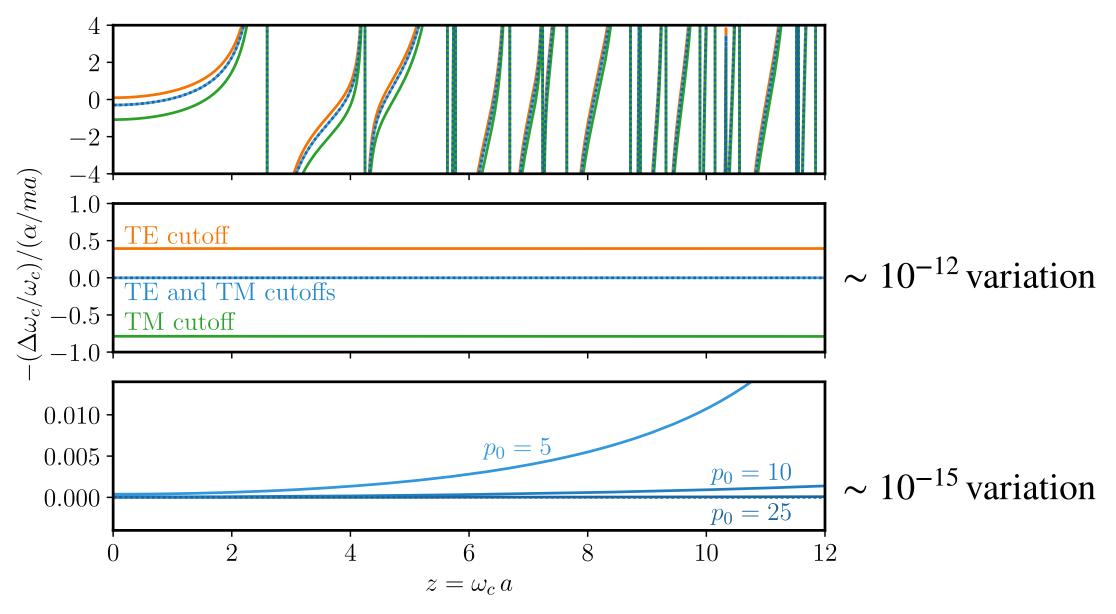
Now that we know the quantum answer (with frequency-dependent cutoff) matches the classical one, we can efficiently evaluate it with specific cutoffs



For sphere, hard cutoff in the right place gives highly accurate result with few terms

Cylinder with Concrete Cutoffs

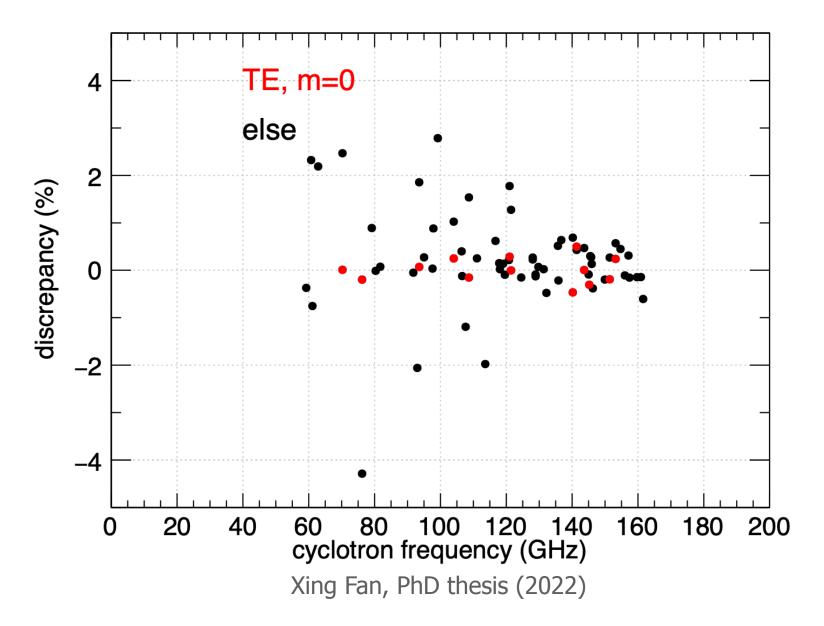
For the cylinder, need to cut off parts of the integral differently, depending on if they correspond to TE or TM modes



Again, highly accurate results with small number of terms

Next Steps

Results with low cutoff are still very accurate, because the exact S-I only depends on exponentially damped quantities



Opens door to treating the real cavity, which is **not** an ideal cylinder

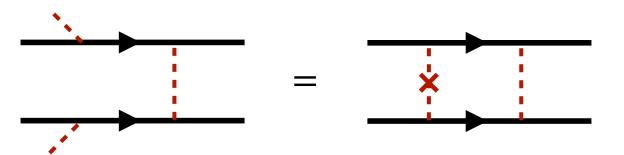
Mode frequencies and coupling strengths deviate by few %, and quality factors vary

Already one of the most important systematics

Mode-based calculation naturally accommodates these features!

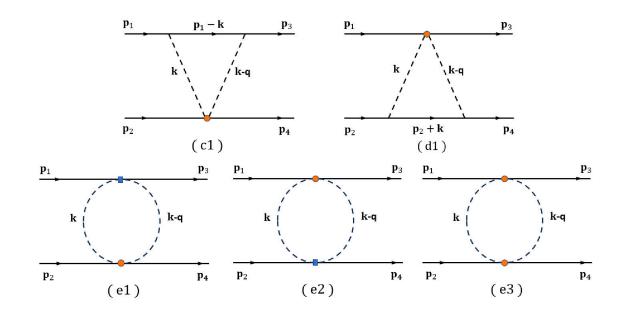
Dark Matter "Background-Induced" Forces are Also Classical

Tree-level coupling to external axions is formally a background-corrected loop diagram



Recent claim: axion-mediated potential can become 1/r, spin independent

Looks quantum, but isn't: short classical calculation gives exact same result!



$$(\partial^2 + m_a^2) a = J$$

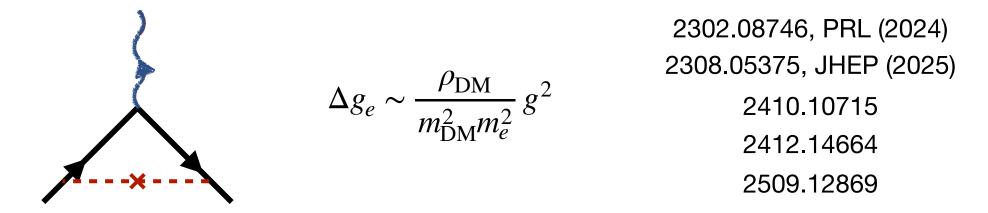
$$J(\mathbf{x}, t) = \partial_t (\mathbf{v} \cdot \hat{\mathbf{s}}) \, \delta^{(3)} (\mathbf{x} - \mathbf{r}(t)).$$

$$\frac{d\mathbf{v}}{dt} = \frac{\mathbf{F}}{\mathbf{r}} = \frac{g \, \ddot{a} \, \hat{\mathbf{s}}}{\mathbf{r}}$$

Classical analogues for ultralight DM effects essentially always exist

Dark Matter "Background-Induced" g-2 Shifts are Also Classical

Claim: DM background yields very strong shifts of electron g-2 and EDMs



Sold as intrinsically quantum, but again can be derived classically!

KZ, JHEP (2025)

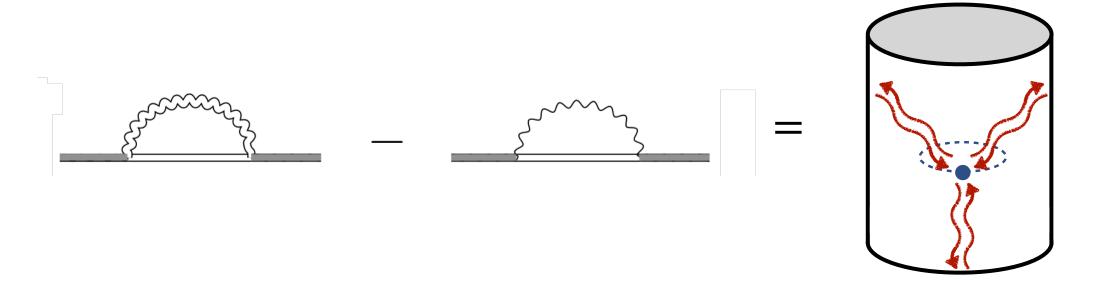
$$\frac{d\mathbf{p}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \qquad \frac{d\mathbf{S}}{dt} = \mathbf{S} \times \left(\frac{qg_e}{2m_e} \left(\mathbf{B} - \frac{\gamma}{\gamma + 1} (\mathbf{v} \cdot \mathbf{B}) \mathbf{v} - \mathbf{v} \times \mathbf{E}\right) + \frac{\gamma^2}{\gamma + 1} \mathbf{v} \times \mathbf{a}\right).$$

Like the ponderomotive force or gravitational wave memory, derived by carefully solving for classical motion at second order

Classical derivation also reveals IR cutoff, making effect negligible in practice

Conclusion

Physics works: QED knows about subtle long-distance phenomena



Classical physics works better than many think, especially in the infrared But derivations with "quantum" language can have benefits as well

Future work can model cavity and trap imperfections, improving systematic uncertainty for future measurements

From the Lamb shift to the cavity shift: 75 years of the rich physics of g-2