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The “Other” g — 2

gﬂ —2 e — 2
team of 200, costs $10° team of 4, costs $10°
10'" 4~ orbit in L ~ 10 m storage ring 1 e” inatrap of size L ~ 0.0l m
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achieves Ag,/g, ~ 10717 achieves Ag,/g, ~ 10713

Since (m,/m,)* ~ 10%, “generic” BSM sensitivity of g, — 2 higher,
but g, — 2 can scale up, presents different theory questions
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A Brief History of Measuring QED Couplings
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Precision QED Today
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Electron in a Penning Trap
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Electron placed in uniform, stable magnetic field
Confined in axial direction by electric field

Cooled to ground state with dilution fridge
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Measuring the g-factor

Electron g determines spacing w, between spin states

Can cause transitions by applying oscillating driving fields
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w, ~ (g/2)eB/m

Trick: measure the “anomaly” o,
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Cancels dependence on B and m,,
precision on g multiplied by 10°



Corrections to Ideal Result

Current measurements must account for any effect that shifts . or @, at 107!° level

magnetron motion
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= :‘1’*—* axial motion
cyclotron motion
o Aw,. kinetic energy @, meV
Relativistic effects: ~ ~
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Effects of the Cavity

Enclosing electron in a cavity increases lifetime if . between
cavity modes, but it also yields a “cavity shift” of w, itself!
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Estimating the longitudinal effect (w.R ~ 10):
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Negligible, though dominant for ion traps
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Estimating the transverse effect:
“longitudinal”
(mage charge) A%  Fra 4°a,Q/(47R) NN 107120
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Important, and can be resonantly enhanced!
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classical: radiation self-field

must remove divergent self-field

done for plates, spherical and
cylindrical cavities in 1980s

matches quantum result,
at least for plates

hard to generalize to
realistic cavities

Computing the Cavity Shift

A S

Photon (free space)

Photon (in cavity)

Electron in B field (Schwinger propagator)

quantum: modification of self-energy

must renormalize divergent loop diagram

QED between conducting plates: Corrections to radiative mass and g —2

Magnetic effects in non-relativistic quantum electrodynamics: uaNTUM ELECTROMAGNETICS OF AN ELECTRON NEAR MIRRORS

image corrections to the electron moment 1,5 and magnetic moment of localised electrons near

The interaction of an atom conductors
with electromagnetic vacuum fluctuations in the presence
of a pair of perfectly conducting plates ON THE APPARATUS DEPENDENCE

OF THE ANOMALOUS MAGNETIC MOMENT OF THE ELECTRON
Apparatus-dependent contributions to g —2 and other phenomena

Mass and Anomalous Magnetic Moment of an Electron
between Two Conducting Parallel Plates

subtle: many papers initially disagreed for plate

never attempted for closed cavity — too hard?

9



Starting Over From Relativistic QED

m — m Electron energy levels can be extracted

from poles of self-energy diagrams

Photon (free space)

Photon (in cavity) (usual g — 2 can also be found this way)
Electron in B field (Schwinger propagator)

SE, = de dx' i, (x)Z (X, X" )u,(x") 2 (X, X E) ~ e de iS4 (X, X; T);/”DW(X, X" 7)e't?,

)

photon propagator

electron state eee——="

Schwinger’s exact propagator in external B ="

y o 5(k

Di(w, k) ~ ) ui(0) ul(0)* — ( 2) —.
Finite after subtracting off free space N W= — Wy .+ e
self-energy, and the B = 0 self-energy approximates electron as localized

sum over cavity modes s 0



The Nonrelativistic Limit

Delicately taking the nonrelativistic limit recovers the answer
one would get in nonrelativistic quantum mechanics

g o LA [0 0)?
" m?2 E,—(E, + w,)

s.n’

Result is linearly divergent, but convergent when cavity and free space subtracted

Not a foregone conclusion!

Lamb shift is log divergent in the

| - nonrelativistic theory, needs UV
- ‘j:% & Prsgat matching to get quantitatively right
650! < 11 oy , 0.0 Z‘W f S bl
D ST e e e
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Example: Spherical Cavity of Radius a

e? < | (n,1,|A - x|n0) |

OE, ~ — Aw,=6E,,  — OE,
m? ~ E -(E/+w)

In cavity: only the TM,;, modes In free space: integrate over

are nonzero at cavity center plane waves (w, k)

AN 8 « Aw'ree 8 1™ c?
__ By T S I
W, 37 ma W, 3w ma 2)y c*—27?

L I S M B h

= p) = wherec, = w.a, 7= w.a, ¢c = wad

p=1 p=1 ¢y =2 J55(cy) ¢y — 22 P P ‘

Smooth regulator should treat ¢, and ¢ the same way

How can we subtract the divergent sum and integral analytically?
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Subtracting the Sum and Integral

°° S 1 1 [ ¢? c.=w.d
S — — P 1=_J de p p
Zf(p) 2 2 _ 2 . c2 — 72 c=md

First trick: define a continuous analogue of the spherical Bessel root ¢,

d (si X
2L cosx = () Gty c(p) + arctan < (p) ) = 7p
dx \ x e c(p)?—1

1 de 2

after Bessel identities: f(p) = > D2

Second trick: relate both the regulated sum and integral to the same contour integral
Will keep the regulator (damping at large c) implicit

Physical difference arises at low ¢, regulator independent
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Contour Integration for the Spherical Cavity

J(p)

—2mip _
c e P 1

Consider contour integral A = [ dp A

Analytic regulator lets us close at infinity, A = S + (pole)

C

1

[»

2 Dz 3
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Contour Integration for the Spherical Cavity

J(p)

—2mip _
c e P 1

dp A

Consider contour integral A = [

Analytic regulator lets us close at infinity, A = S + (pole)

C2

1
Changing variables to ¢ gives A = [ g(c)dc

Co

z C3

1 (c?*—=1) cosc—c sinc
g(c)=5 -1+ l

ccosc+(c?—1)sinc
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Contour Integration for the Spherical Cavity

. . B J(p)
Consider contour integral A = [ R pr— dp C, ‘ C
Analytic regulator lets us close at infinity, A = S + (pole) C
_I_
Changing variables to ¢ gives A = | ~— d
anging variables to ¢ gives A = EyE g(c)dc 1 Co C3
>
©) 1 1_I_(cz—l)c:osc—csinc,
cC)=—1 — l
5 2 ccosc+(c?—1)sinc
C_
Push contour to imaginary axis, g(—iy) + 1 = — g(iy)
1 c?
Pull out +1 and cancel, A = pole — dc
c 2cr-72
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Contour Integration for the Spherical Cavity

Consider contour integral A = [ f(p)
c e—2nip — |

dp

Analytic regulator lets us close at infinity, A = § + (pole)

1
Changing variables to c gives A = [ g(c)dc

22— 2 Combining results:
C

j—s=2%
4

(1 —z%) cosz+ z sinz 3
X : +
(1-27%)sinz—zcosz 273

perfectly matches
classical answer!

(c>=1) cosc —c sinc
gio)=—| -1+ — 1
2 ccosc+(c?—1)sinc

Push contour to imaginary axis, g(—iy) + 1 = — g(iy)

1 2
Pull out +1 and cancel, A = pole — J - dc
c 2cr-72
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New Features for the Cylindrical Cavity

Real cavity is approximately cylindrical, more complicated

TE,,, and TM,,, modes contribute, giving two double sums

Sum over p can be performed exactly
Separate out part of sum that depends on aspect ratio L/a
Subtract against integral of plane waves in cylindrical coordinates

Make summand analytic using Bessel identities and

) _ o gy + 2 _ g

tan(zn) + = —
Y 1 (Cn) Y i (Cn)

Sum and integral contain square roots, giving branch cuts
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Sketch: Contour Integration for the Cylindrical Cavity

Sre(r) dp = St — (poles) )

For TE modes, let Ap = [ ,
C e—2min _ |
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Sketch: Contour Integration for the Cylindrical Cavity

For TE modes, let A = [ Sre(r)

—2rin __
c€ 1

dp = Stg — (poles) C

1
Changing variables to c gives A = 5,[ \/ - g(c)dc
cA/c?— 272

()__1<1+Yi(c).> i)+ 1 = a(iy)
8(c) = =3 7o g(—iy) + 1 = g(iy

Deform contour left, extract +1, use symmetry
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Sketch: Contour Integration for the Cylindrical Cavity

Jre()
For TE modes, let Ap = T dp = Stg — (poles) C, C, ‘ C
C e Tin __
. . . 1 C
Changing variables to c gives Ag = — g(c)dc
2 )e Ve —z2
1 Y]
glc) =—— (1 + ,1(6) i> g(—=iy) + 1 = g(iy) Ch, €1 2 €3
2 Ji(c)
Z

Deform contour left, extract +1, use symmetry

Point contour up for exponentially damped remainder

c
Arg = Itg + Re[ g(c)dc
c,\/c?— 22
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Final Results for the Cylindrical Cavity

New quantum result

Aw, a
= —-——(AS+J)
W, ma

. 2 ;
rocy—zz)w T KO- KOy y-in K-
0

22

Y

Ly—iz) L) 22 \/y2=2iyz Li(y—i2)

exponentially damped

finite + damped

o0 Ly/&2 —z7° 1 L\/7*> - ¢
as= Y (mh( — ) _ 1) Fop(n) + 2tan< — )ifTE(n) 4+ (TM terms)
n=n*+1 n=1
Existing classical result
Aw, 2a |1 ) _( sin(né) cos(né) —1 > | Ki(p,a)  k;
o mL[ log(4 cos (g/z))+2( 1) ( e e >_Reg‘)[li(upa) + p.
{=wL k,=2p+ Da/L u, =1/ky — o;

Ki(0)  Ki(k,a)
La) Ik
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Quantum and Classical Comparison

0 i

| — Classical

....... QU antum

—(Awe/ wc)l/ (/ma)

10
5 -
O -
—5 A
_10 ' I I I I
0 2 4 6 3 10 12

2= W, a

Analytic match possible in special cases; in general, perfect numeric match
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Sphere with Concrete Cutoffs

Now that we know the quantum answer (with frequency-dependent cutoff)
matches the classical one, we can efficiently evaluate it with specific cutoffs

4
2_
O_

0.54 Cmax — Cpg

~ 10~ 2 variation

0.0

—0.59 Cmax = Cpo+1

—(Aw,/we)/(a/ma)

0.004 - -

0.002 - po = 10
/ _15 ° °
=25 | ~ 107" variation

0.000 — e ————————————————

For sphere, hard cutoff in the right place gives highly accurate result with few terms



Cylinder with Concrete Cutoffs

For the cylinder, need to cut off parts of the integral differently,
depending on if they correspond to TE or TM modes

—(Bwe/we)/(afma)

4
2_
O_

0.54 L cutoff

TE and TM cutoffs

—0.51 TM cutoff
—1.0 - . .
| Po =295
0.005 o = 10
0 2 4 6 8 10
Z = W.a

12

~ 10~ 1% variation

~ 1071 variation

Again, highly accurate results with small number of terms
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discrepancy (%)

Next Steps

Results with low cutoff are still very accurate, because the
exact § — I only depends on exponentially damped quantities

I LI I | |
4 — TE, m=0
- else .
2 L ® °
- ) () 0. . '.. ‘.
0 — g o ‘ ’ ‘~. ‘..’. ‘::“
_2 — ® L
4 .
| | 11 1 | | - | | | 1 1 | | | | | | | | |

O 20 40 60 80 100 120 140 160 180
cyclotron frequency (GHz)
Xing Fan, PhD thesis (2022)

200

Opens door to treating the real cavity,
which is not an ideal cylinder

Mode frequencies and coupling
strengths deviate by few %, and
quality factors vary

Already one of the most
Important systematics

Mode-based calculation naturally
accommodates these features!
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Dark Matter “Background-Induced” Forces are Also Classical

Tree-level coupling to external axions is formally a background-corrected loop diagram

+ _I’I_
5 = X
_"—I_ _I—’—I_

Recent claim: axion-mediated potential Looks quantum, but isn’t: short classical
can become 1/r, spin independent calculation gives exact same result!

(02+m§)a=J

AT S T J(x,1) = 9,V - 8) PV (x — r(1)).
P . P3 P1 P3 P1 _ P3
K k-q K k-q k k-q dV F gd §
: dt m m

(e1) o (e2) 2 (e3)

Classical analogues for ultralight DM effects essentially always exist
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Dark Matter “Background-Induced” g — 2 Shifts are Also Classical
Claim: DM background yields very strong shifts of electron g — 2 and EDMs

2302.08746, PRL (2024)
2308.05375, JHEP (2025)

PpM )
Age~—5— 58 2410.10715
DM™e 2412.14664
2509.12869

Sold as intrinsically quantum, but again can be derived classically!
KZ, JHEP (2025)

ds 2
P _ (B +vxB) —S><<qge (B— ! (V-B)V—VXE)+ 4 an).

dt dr 2m, y+ 1 y+ 1

Like the ponderomotive force or gravitational wave memory,
derived by carefully solving for classical motion at second order

Classical derivation also reveals IR cutoff, making effect negligible in practice
28



Conclusion

Physics works: QED knows about subtle long-distance phenomena

Classical physics wor

-

KS better than many think, especially in the infrared

But derivations wit

Future work

N “quantum” language can have benefits as well

can model cavity and trap imperfections,

improving systematic uncertainty for future measurements

From the Lamb shift to

the cavity shift: 75 years of the rich physics of g — 2
29



