
Tensions, DESI, and  
new cosmological physics

Based on Cortês & Liddle, arXiv:2309.03286 (MNRAS published)    
  and arXiv:2404.08056



The standard six-parameter 
cosmological model is extraordinarily 

successful and gives a precision 
description of our Universe.Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` � 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-⇤CDM theoretical spectrum best fit to the Planck

TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` � 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-⇤CDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization e�ciencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization e�ciency at 143 ⇥ 143, c

EE

143, derived
from the EE spectrum is about 2� lower than that derived from
T E (where the � is the uncertainty of the T E estimate, of the
order of 0.02). This di↵erence may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters di↵erently in EE and T E. We have investi-
gated ways of correcting for e↵ective polarization e�ciencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization e�ciencies fixed to the e�ciencies ob-
tained from the fits on EE:

⇣
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= 1.021;
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0.966; and
⇣
c

EE

217

⌘
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= 1.040. The CamSpec likelihood, de-
scribed in the next section, uses spectrum-based e↵ective polar-
ization e�ciency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization e�ciency estimates
(which essentially di↵ers by applying to EE the e�ciencies
given above, and to T E the e�ciencies obtained fitting the T E

spectra,
⇣
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= 1.04,
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= 1.0, and
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217

⌘
TE fit

=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ⇤CDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization e�ciencies, we find small shifts in the base-⇤CDM
parameters compared with ignoring spectrum-based polariza-
tion e�ciency corrections entirely; the largest of these shifts
are +0.5� in !b, +0.1� in !c, and +0.3� in ns (to be com-
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Table 2. Parameter 68 % intervals for the base-⇤CDM model from Planck CMB power spectra, in combination with CMB lensing
reconstruction and BAO. The top group of six rows are the base parameters, which are sampled in the MCMC analysis with flat
priors. The middle group lists derived parameters. The bottom three rows show the temperature foreground amplitudes f

TT

`=2000 for
the corresponding frequency spectra (expressed as the contribution to D

TT

`=2000 in units of (µK)2). In all cases the helium mass fraction
used is predicted by BBN (posterior mean YP ⇡ 0.2454, with theoretical uncertainties in the BBN predictions dominating over the
Planck error on ⌦bh

2). The reionization redshift mid-point zre and optical depth ⌧ here assumes a simple tanh model (as discussed
in the text) for the reionization of hydrogen and simultaneous first reionization of helium. Our baseline results are based on Planck

TT,TE,EE+lowE+lensing (as also given in Table 1).

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing TT,TE,EE+lowE+lensing+BAO
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits

⌦bh
2 . . . . . . . . . . 0.02212 ± 0.00022 0.02249 ± 0.00025 0.0240 ± 0.0012 0.02236 ± 0.00015 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1206 ± 0.0021 0.1177 ± 0.0020 0.1158 ± 0.0046 0.1202 ± 0.0014 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04077 ± 0.00047 1.04139 ± 0.00049 1.03999 ± 0.00089 1.04090 ± 0.00031 1.04092 ± 0.00031 1.04101 ± 0.00029

⌧ . . . . . . . . . . . . 0.0522 ± 0.0080 0.0496 ± 0.0085 0.0527 ± 0.0090 0.0544+0.0070
�0.0081 0.0544 ± 0.0073 0.0561 ± 0.0071

ln(1010
As) . . . . . . . 3.040 ± 0.016 3.018+0.020

�0.018 3.052 ± 0.022 3.045 ± 0.016 3.044 ± 0.014 3.047 ± 0.014

ns . . . . . . . . . . . 0.9626 ± 0.0057 0.967 ± 0.011 0.980 ± 0.015 0.9649 ± 0.0044 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 [km s�1 Mpc�1] . . 66.88 ± 0.92 68.44 ± 0.91 69.9 ± 2.7 67.27 ± 0.60 67.36 ± 0.54 67.66 ± 0.42

⌦⇤ . . . . . . . . . . . 0.679 ± 0.013 0.699 ± 0.012 0.711+0.033
�0.026 0.6834 ± 0.0084 0.6847 ± 0.0073 0.6889 ± 0.0056

⌦m . . . . . . . . . . . 0.321 ± 0.013 0.301 ± 0.012 0.289+0.026
�0.033 0.3166 ± 0.0084 0.3153 ± 0.0073 0.3111 ± 0.0056

⌦mh
2 . . . . . . . . . 0.1434 ± 0.0020 0.1408 ± 0.0019 0.1404+0.0034

�0.0039 0.1432 ± 0.0013 0.1430 ± 0.0011 0.14240 ± 0.00087

⌦mh
3 . . . . . . . . . 0.09589 ± 0.00046 0.09635 ± 0.00051 0.0981+0.0016

�0.0018 0.09633 ± 0.00029 0.09633 ± 0.00030 0.09635 ± 0.00030

�8 . . . . . . . . . . . 0.8118 ± 0.0089 0.793 ± 0.011 0.796 ± 0.018 0.8120 ± 0.0073 0.8111 ± 0.0060 0.8102 ± 0.0060

S 8 ⌘ �8(⌦m/0.3)0.5 . 0.840 ± 0.024 0.794 ± 0.024 0.781+0.052
�0.060 0.834 ± 0.016 0.832 ± 0.013 0.825 ± 0.011

�8⌦
0.25
m . . . . . . . . 0.611 ± 0.012 0.587 ± 0.012 0.583 ± 0.027 0.6090 ± 0.0081 0.6078 ± 0.0064 0.6051 ± 0.0058

zre . . . . . . . . . . . 7.50 ± 0.82 7.11+0.91
�0.75 7.10+0.87

�0.73 7.68 ± 0.79 7.67 ± 0.73 7.82 ± 0.71

109
As . . . . . . . . . 2.092 ± 0.034 2.045 ± 0.041 2.116 ± 0.047 2.101+0.031

�0.034 2.100 ± 0.030 2.105 ± 0.030

109
Ase
�2⌧ . . . . . . . 1.884 ± 0.014 1.851 ± 0.018 1.904 ± 0.024 1.884 ± 0.012 1.883 ± 0.011 1.881 ± 0.010

Age [Gyr] . . . . . . . 13.830 ± 0.037 13.761 ± 0.038 13.64+0.16
�0.14 13.800 ± 0.024 13.797 ± 0.023 13.787 ± 0.020

z⇤ . . . . . . . . . . . 1090.30 ± 0.41 1089.57 ± 0.42 1087.8+1.6
�1.7 1089.95 ± 0.27 1089.92 ± 0.25 1089.80 ± 0.21

r⇤ [Mpc] . . . . . . . . 144.46 ± 0.48 144.95 ± 0.48 144.29 ± 0.64 144.39 ± 0.30 144.43 ± 0.26 144.57 ± 0.22

100✓⇤ . . . . . . . . . 1.04097 ± 0.00046 1.04156 ± 0.00049 1.04001 ± 0.00086 1.04109 ± 0.00030 1.04110 ± 0.00031 1.04119 ± 0.00029

zdrag . . . . . . . . . . 1059.39 ± 0.46 1060.03 ± 0.54 1063.2 ± 2.4 1059.93 ± 0.30 1059.94 ± 0.30 1060.01 ± 0.29

rdrag [Mpc] . . . . . . 147.21 ± 0.48 147.59 ± 0.49 146.46 ± 0.70 147.05 ± 0.30 147.09 ± 0.26 147.21 ± 0.23

kD [Mpc�1] . . . . . . 0.14054 ± 0.00052 0.14043 ± 0.00057 0.1426 ± 0.0012 0.14090 ± 0.00032 0.14087 ± 0.00030 0.14078 ± 0.00028

zeq . . . . . . . . . . . 3411 ± 48 3349 ± 46 3340+81
�92 3407 ± 31 3402 ± 26 3387 ± 21

keq [Mpc�1] . . . . . . 0.01041 ± 0.00014 0.01022 ± 0.00014 0.01019+0.00025
�0.00028 0.010398 ± 0.000094 0.010384 ± 0.000081 0.010339 ± 0.000063

100✓s,eq . . . . . . . . 0.4483 ± 0.0046 0.4547 ± 0.0045 0.4562 ± 0.0092 0.4490 ± 0.0030 0.4494 ± 0.0026 0.4509 ± 0.0020

f
143
2000 . . . . . . . . . . 31.2 ± 3.0 29.5 ± 2.7 29.6 ± 2.8 29.4 ± 2.7

f
143⇥217
2000 . . . . . . . . 33.6 ± 2.0 32.2 ± 1.9 32.3 ± 1.9 32.1 ± 1.9

f
217
2000 . . . . . . . . . . 108.2 ± 1.9 107.0 ± 1.8 107.1 ± 1.8 106.9 ± 1.8

3.2. Hubble constant and dark-energy density

The degeneracy between ⌦m and H0 is not exact, but the con-
straint on these parameters individually is substantially less pre-
cise than Eq. (12), giving

H0 = (67.27 ± 0.60) km s�1Mpc�1,

⌦m = 0.3166 ± 0.0084,

)
68 %, TT,TE,EE
+lowE. (13)

It is important to emphasize that the values given in Eq. (13) as-
sume the base-⇤CDM cosmology with minimal neutrino mass.

These estimates are highly model dependent and this needs to
be borne in mind when comparing with other measurements, for
example the direct measurements of H0 discussed in Sect. 5.4.
The values in Eq. (13) are in very good agreement with the inde-
pendent constraints of Eq. (6) from Planck CMB lensing+BAO.
Including CMB lensing sharpens the determination of H0 to a
0.8 % constraint:

H0 = (67.36 ± 0.54) km s�1Mpc�1 (68 %, TT,TE,EE
+lowE+lensing). (14)
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 ………… and parameter constraints.



Dreams of new physics

LambdaCDM has been the standard 
cosmological model for two decades. 

We cosmologists are all desperate to find 
something new that goes beyond it.

Tensions between parameters determined by different 
methods, especially the Hubble tension [`5 sigma’]. 

`Tantalizing suggestion’ of evolving dark energy claimed 
by the DESI collaboration (2024)  [`3 to 4 sigma’].



Part I: On dataset tensions and signatures 
of new cosmological physics

Marina Cortês and Andrew R Liddle,  
arXiv:2309.03286, MNRAS 531 (2024) L52



Dataset tensions
Tensions amongst datasets are one of the defining 
characteristics and drivers of current cosmology. 

In the last year, `Hubble tension’ has appeared in the title of 
66 papers and in the abstract of 250. 

Figure by Pablo Lemos, from Lahav-Liddle, Review of Particle Physics 2023

Planck (2018) 
H0 = 67.4 ± 0.5 

SH0ES (2022) 
H0 = 73.0 ± 1.0 

9 25. Cosmological Parameters

Universe and a lower H0 from the early Universe, which has led some researchers to propose a time-
variation of the dark energy component or other exotic scenarios. Ongoing studies are addressing
the question of whether the Hubble tension is due to systematics in at least one of the probes, or
a signature of new physics. Figure 25.1 shows a selection of recent H0 values, summarizing the
current status of the Hubble constant tension. See Ref. [30] for a review.

60 65 70 75 80

H0 [km s�1 Mpc�1]

Planck 2018 – CMB

DES Year 3 – 3x2pt+BAO+BBN

SH0ES 2022 – Cepheids

CCHP – TRGB

TDCOSMO + SLACS – Time delays

Figure 25.1: A selection of recent H0 measurements from the various projects as described in
the text. The standard-siren determinations are omitted as they are too wide for the plot. Figure
courtesy of Pablo Lemos.

25.3.2 Supernovae as cosmological probes
Empirically, the peak luminosity of SNe Ia can be used as an e�cient distance indicator

(e.g., Ref. [31]), thus allowing cosmology to be constrained via the distance–redshift relation. The
favorite theoretical explanation for SNe Ia is the thermonuclear disruption of carbon–oxygen white
dwarfs. Although not perfect ‘standard candles,’ it has been demonstrated that by correcting for
a relation between the light-curve shape, color, and luminosity at maximum brightness, the dis-
persion of the measured luminosities can be greatly reduced. There are several possible systematic
e�ects that may a�ect the accuracy of the use of SNe Ia as distance indicators, e.g., evolution with
redshift and interstellar extinction in the host galaxy and in the Milky Way.

In the late 1990s two major studies, the Supernova Cosmology Project and the High-z Supernova
Search Team, found evidence for an accelerating Universe [32], interpreted as due to a cosmological
constant or a dark energy component. When combined with the CMB data (which indicate near
flatness, i.e., �m + �� ƒ 1), the best-fit values were �m ƒ 0.3 and �� ƒ 0.7. Most results in
the literature are consistent with the w = ≠1 cosmological constant case. The leading sample
currently is the Pantheon+ compilation [33]. This set of 1550 spectroscopically-confirmed SNe Ia
gives �m = 0.334 ± 0.018 (stat+sym) for an assumed flat �CDM model, while in combination with
the CMB, for a flat wCDM model these data give w = ≠0.98+0.2

≠0.3 [34]. Future experiments (e.g.
DES year 5 SNIa) will refine constraints on the cosmic equation of state w(z).

26th March, 2024



Dataset tensions are frequently invoked as 
signalling new physics. `Alleviating the 

tension’ is a common phrase.

Statistical fluke. 

Underreported systematic uncertainties. 

Data analysis pipeline errors. 

Inadequate cosmological model. 

There are numerous reasons why datasets might be in tension.
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Figure 4. Whisker plot with the 68% marginalized Hubble constant constraints for
the models of Section 4. The cyan vertical band corresponds to the H0 value measured
by R20 [2] and the light pink vertical band corresponds to the H0 value estimated
by Planck 2018 [11] in a ⇤CDM scenario. For each line, when more than one error
bar is shown, the dotted one corresponds to the Planck only constraint on the Hubble
constant, while the solid one to the di↵erent dataset combinations reported in the red
legend, in order to appreciate the shift due to the additional datasets.

of the scale factor ac ⌘ (1 + zc)�1 at which the transition occurs are, respectively [215]:

⌦�(a) =
2⌦�(ac)

(a/ac)
3(1+wn) + 1

, (2)

w�(a) = � 1 +
1 + wn

1 + (ac/a)3(1+wn)
. (3)

At early times a ! 0, the scalar field behaves as a cosmological constant with the

equation of state w�(a) ! �1, while for a � ac we have w�(a) ! wn. Hence, the

energy density is constant at early times, and decays as a�3(1+wn) when the scalar field

becomes dynamical [216]. The EDE component dilutes like matter (wn = 0) for n = 1 ,

like radiation (wn = 1/3) for n = 2, and faster than radiation for n � 3; for n ! 1, the

Di Valentino et al., 
arXiv:2103.01183

Schöneberg et al., 
arXiv:2107.10291

Model �Nparam MB
Gaussian

Tension

QDMAP

Tension
��

2 �AIC Finalist

⇤CDM 0 �19.416± 0.012 4.4� 4.5� X 0.00 0.00 X X

�Nur 1 �19.395± 0.019 3.6� 3.8� X �6.10 �4.10 X X

SIDR 1 �19.385± 0.024 3.2� 3.3� X �9.57 �7.57 X X
mixed DR 2 �19.413± 0.036 3.3� 3.4� X �8.83 �4.83 X X

DR-DM 2 �19.388± 0.026 3.2� 3.1� X �8.92 �4.92 X X

SI⌫+DR 3 �19.440+0.037
�0.039 3.8� 3.9� X �4.98 1.02 X X

Majoron 3 �19.380+0.027
�0.021 3.0� 2.9� X �15.49 �9.49 X X

primordial B 1 �19.390+0.018
�0.024 3.5� 3.5� X �11.42 �9.42 X X

varying me 1 �19.391± 0.034 2.9� 2.9� X �12.27 �10.27 X X
varying me+⌦k 2 �19.368± 0.048 2.0� 1.9� X �17.26 �13.26 X X
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�0.035 3.6� 1.6� X �21.98 �15.98 X X
NEDE 3 �19.380+0.023

�0.040 3.1� 1.9� X �18.93 �12.93 X X
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DM ! DR 2 �19.410± 0.011 4.3� 4.5� X �0.53 3.47 X X

Table 1: Test of the models based on dataset Dbaseline (Planck 2018 + BAO + Pantheon), using the direct mea-
surement of Mb by SH0ES for the quantification of the tension (3rd column) or the computation of the AIC (5th
column). Eight models pass at least one of these three tests at the 3� level.

Before declaring the o�cial finalists, let us briefly comment on models that do not make it to the
final, starting with late-universe models. The CPL parameterization, our “late-universe defending
champion” only reduces the tension to 3.7�, inducing a minor improvement to the global fit. The
PEDE model noticeably degrades the �

2 of BAO and Pantheon data, leading to an overall worse
fit than ⇤CDM. Thus, according to the general rules defined at the end of the previous subsection,
we must exclude PEDE from the final. We further comment on this choice in Section 4.2 and
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not include ⇤CDM as a limit. Ideally, one should always perform a test equivalent to the �AIC
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SH0ES likelihood on H0 rather than Mb incorrectly yields more favorable results for these late-
time models, a result consistent with the claims of Refs. [42–44, 50, 51, 53]. Finally, the models
of decaying dark matter studied here are only capable of reducing the tension from 4.4� to 4.2�,
despite only introducing two new parameters. Consequently, the �AIC criteria disfavors both
DDM models. We thus conclude that the late-time DE and dark matter decay models considered
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Secondly, the class of models invoking extra relativistic degrees of freedom perform significantly bet-
ter than late-universe models, but a majority are not successful enough to pass our pre-determined

12

An incredible variety of theoretical models have been examined 
to see if they can alleviate the Hubble tension. No compelling 
option has arisen.
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1 INTRODUCTION

One of the driving forces in current cosmology is the existence
of tensions amongst various datasets, where fits appear to point to
di�erent values of one or more parameters. Most prominent are
the Hubble tension between early- and late-Universe probes of the
expansion rate (see (Verde et al. 2019), (Di Valentino et al. 2021),
and references therein), and the mismatch in power spectrum am-
plitude between microwave background and weak-lensing obser-
vations. Possible explanations include statistical fluke, omitted or
underreported systematic errors, mistakes in data analysis pipelines,
or inadequacy of the physical model being fit to data.

To quantify the level of tension between two datasets ⇡� and
⇡⌫ (which for simplicity only we will take to be fully independent)
interpreted under model "1, a popular tension metric is the Bayes
ratio introduced by Marshall et al. It is vital throughout to keep in
mind that any dataset tension is associated also to the model(s) being
assumed, so we always note these dependencies explicitly, datasets
by letters and models by numbers, writing the tension metric as

'�⌫
1 ⌘ %(⇡�,⇡⌫ |"1)

%(⇡� |"1)%(⇡⌫ |"1)
. (1)

Written like this, it invites the interpretation that the numerator
requires the two datasets to be fit by a single set of parameter
values, while the denominator permits (within the same overall
model) each dataset to be fit by di�erent parameter values as if
each dataset lived in a distinct universe, a statement which is hard
to interpret. However, as several authors have pointed out, Bayes
theorem immediately lets it be rewritten as

'�⌫
1 =

%(⇡� |⇡⌫ ,"1)
%(⇡� |"1)


=

%(⇡⌫ |⇡�,"1)
%(⇡⌫ |"1)

�
. (2)

This asks, under a particular model assumption "1, whether the
existence of dataset ⇡⌫ makes dataset ⇡� more or less probable

than if dataset ⇡⌫ didn’t exist. This now sounds like a very natural
formulation of what one would mean by datasets being in tension.
It is also nicely symmetric under exchange of datasets. Hence this
tool has been widely applied.

[MENTION OTHER TENSION METRICS, ESP OUR DES
PAPER]

The Bayes tension ratio was introduced to assess the compati-
bility of two datasets, its use exemplified by the Dark Energy Survey
(DES) Y1 analysis where the ratio was required to exceed a certain
threshold before the datasets were deemed to be combinable (again
all within the context of whatever model has been chosen to explain
the datasets). In this view, the tension ratio alerts us to the possibil-
ity of dataset incompatibility, though without telling us its origin or
selecting a culprit.

However, the tension ratio has since been co-opted to a di�erent
purpose, which is to provide support for one model over another.
The idea is that if the dataset tension is less under a di�erent model
assumption "2 than it is under "1, this supports "2 as a better
description of the combined data. A typical statement is of the type
‘Our new model reduced the Hubble tension from 4.3f to 2.4f
so our model is favoured over ⇤CDM’. If this new model features
additional parameters, these will be associated to the discovery of
new physical processes relevant to the datasets. Our purpose here is
to challenge the usefulness, and correctness, of this view.

2 TENSION IS ONLY PART OF MODEL PROBABILITY

UPDATING

2.1 Bayesian model probability updating

To use tension as an indicator of new physics, the working hypothesis
now is that both datasets are taken as correct, something that the
tension metric was originally intended to diagnose. The rest of this

© 2022 The Authors
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We are going to focus on a fully Bayesian analysis, though the 
same issues apply to the many partly Bayesian or non-Bayesian 
tension metrics that have been defined.

The level of tension depends both on the datasets, labelled 
A and B, and on the model being assumed, labelled 1,2, etc.

It’s much more easily interpreted by rewriting using Bayes’ theorem:
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The original idea of the tension metric was to validate that two 
datasets are consistent with each other before they are combined 
into a joint analysis.

But more recently the tension metric has been co-opted to a 
different purpose. If the tension is less under a different model 
assumption, M2,  ie.  R2AB > R1AB, this is taken as support for 
Model 2.

The reduced tension is said to signal the 
new physics encoded in Model 2.
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tension metric was originally intended to diagnose. The rest of this
article will operate under that assumption, though at the end of an
analysis seeking new physics one should reconsider whether the
tensions might have other or multiple causes.

As everything is already within a Bayesian framework,
the question of which model is a better description is
uniquely answered by the posterior model probability ratio
%("1 |⇡�,⇡⌫)/%("2 |⇡�,⇡⌫) after application of all available
data. Via Bayes’ theorem this is related to the prior model probabil-
ity ratio as

%("1 |⇡�,⇡⌫)
%("2 |⇡�,⇡⌫)

= ⌫�⌫
12

%("1)
%("2)

, (3)

where the Bayes’ factor

⌫�⌫
12 =

%(⇡�,⇡⌫ |"1)
%(⇡�,⇡⌫ |"2)

(4)

is the ratio of model likelihoods and %("1) and %("2) are the
prior model probabilities. The model likelihoods are the likelihoods
averaged over each model’s prior parameter space; nested sampling
is a popular algorithm for carrying this out [Skilling, CosmoNest,
MultiNest,PolyChord].

As usual in a Bayesian calculation everyone is entitled to their
own opinion on the prior model probability ratio,1 whose freedom
then propagates to the posterior ratio. But everyone will agree on
the Bayes’ factor and hence on which model has been favoured
by any newly-incorporated data. The Bayes’ factor is somewhat
analogous to a derivative of the model comparison – it indicates the
direction in which the new data has taken the conclusion, saying for
example that "2 has become ten times more probable relative to
"1 as a result of new data, regardless of how likely you might have
considered it to be beforehand or indeed whether there are other
as-yet-unconsidered models.

2.2 Tension metric ratios

Taking reduction of tension as support for one model over another
is inviting us to think that '�⌫

1 /'�⌫
2 is akin to the posterior model

probability ratio, or rather to the corresponding Bayes’ factor which
is the unambiguously calculable quantity. But is it?

Directly from the definition in equation (1) above, we can write

⌫�⌫
12 =

'�⌫
1

'�⌫
2

%(⇡� |"1)%(⇡⌫ |"1)
%(⇡� |"2)%(⇡⌫ |"2)

. (5)

This seems a small step, since it is just taking the ratio of the defi-
nition of the tension metric (itself already a ratio) for two di�erent
models. But it permits a novel interpretation. Written using Bayes’
factors we have

⌫�⌫
12 =

'�⌫
1

'�⌫
2

⌫�
12⌫

⌫
12 . (6)

If we just had dataset ⇡�, we would update the prior model proba-
bility ratio by multiplying by ⌫�

12, and likewise for ⇡⌫ .
To interpret this, recall the common view of the Bayesian

methodology as of repeated updating under new knowledge, where
the posterior of one analysis becomes the prior of the next. This

1 As well as the parameter priors which we are assuming have been agreed
on in advance.

works straightforwardly in parameter estimation where the previ-
ous posterior probability distribution becomes the new prior. One
might therefore have expected the Bayes’ factor of the combined
experiments to decompose into the product of those of each ex-
periment. But this same concept does not work straightforwardly
for model probabilities, as a posterior model probability does not
on its own carry enough information to be further updated by the
next experiment — the parameter distributions that tell us where in
parameter space the model fit the data well are also required. That
is, ⌫�⌫

12 < ⌫�
12⌫

⌫
12. Equation (6) shows that the tension ratio is,

essentially by definition, an exact quantification of the failure of the
update product.

From this equation we now see that the combined dataset can
lead to a favouring of (say) "2 over "1 in several ways. "2 could be
a better explanation of dataset A, ⌫�

12 ⌧ 1, or of dataset B, ⌫⌫
12 ⌧ 1,

or it could reduce the tension relative to "1, '�⌫
1 ⌧ '�⌫

2 . But
conversely we see that a reduction of tension on its own is not
su�cient to demonstrate a preference for "2, because that reduction
might be accompanied by a worse Bayes’ factor against one or both
datasets. Indeed in the particular case of extensions to ⇤CDM such
a worsening is rather likely since the extensions necessarily involve
a wider parameter space, and hence reduced predictiveness, usually
without much improving the best-fit to the individual datasets.

From this perspective, we see that it requires some level of
coincidence for the overall Bayes’ factor to be significantly di�erent
from one due to the tension term alone, without the preferred model
showing up in either of the datasets independently. This requires
that the ‘wrong’ model fits each of the independent datasets as well
as does the ‘right’ model,2 while failing drastically when the two
datasets are combined. This would not be particularly surprising
for data which only constrains the Hubble constant ⌘, which is es-
sentially an unpredicted free parameter in any cosmological model.
This data can hence be perfectly fit by selecting the parameter to
coincide with the observed value (though the priors on ⌘ implied
by each model may not always be identical, so the statement is not
completely trivial even in this case). But it would be a substantial
coincidence for the complicated multi-parameter fits required by
complex datasets such as the microwave background and structure
formation.

To see the magnitude of the imbalance for the Hubble tension,
we can look at Planck’s information gain, i.e. the compression of
the posterior volume versus the prior. It is a staggering 2 ⇥ 1014

for its six-parameter ⇤CDM fit (Planck 2018 VI Table 2, 5th data
column), averaging better than a factor of a hundred per parameter
direction. Admittedly their prior choices (Table 1 of Planck 2013
XVI, with a later adjustment on the perturbation amplitude prior)
are very broad, especially on the sound horizon at last scattering.
But even the narrower choices made in the similar analysis in the
DES Y3 paper (which are explicitly stated to have been to some
extent motivated by knowing the outcome of previous datasets)
lead to a compression of 107 (in five parameters, the optical depth
not being quoted) when fit to data including Planck. By contrast,
Hubble constant probes address only one direction in parameter
space giving an overall volume compression of around 20.

It is hence a priori unlikely that new physics would be of such
a type as to evade detection in an experiment as constraining as
Planck, yet be revealed when adding the much less constraining

2 And this is ‘fit’ in the model-level sense, requiring equality of the like-
lihoods averaged over the whole prior model space, not simply equality of
the likelihoods of the best fits within each model.
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might be accompanied by a worse Bayes’ factor against one or both
datasets. Indeed in the particular case of extensions to ⇤CDM such
a worsening is rather likely since the extensions necessarily involve
a wider parameter space, and hence reduced predictiveness, usually
without much improving the best-fit to the individual datasets.

From this perspective, we see that it requires some level of
coincidence for the overall Bayes’ factor to be significantly di�erent
from one due to the tension term alone, without the preferred model
showing up in either of the datasets independently. This requires
that the ‘wrong’ model fits each of the independent datasets as well
as does the ‘right’ model,2 while failing drastically when the two
datasets are combined. This would not be particularly surprising
for data which only constrains the Hubble constant ⌘, which is es-
sentially an unpredicted free parameter in any cosmological model.
This data can hence be perfectly fit by selecting the parameter to
coincide with the observed value (though the priors on ⌘ implied
by each model may not always be identical, so the statement is not
completely trivial even in this case). But it would be a substantial
coincidence for the complicated multi-parameter fits required by
complex datasets such as the microwave background and structure
formation.

To see the magnitude of the imbalance for the Hubble tension,
we can look at Planck’s information gain, i.e. the compression of
the posterior volume versus the prior. It is a staggering 2 ⇥ 1014

for its six-parameter ⇤CDM fit (Planck 2018 VI Table 2, 5th data
column), averaging better than a factor of a hundred per parameter
direction. Admittedly their prior choices (Table 1 of Planck 2013
XVI, with a later adjustment on the perturbation amplitude prior)
are very broad, especially on the sound horizon at last scattering.
But even the narrower choices made in the similar analysis in the
DES Y3 paper (which are explicitly stated to have been to some
extent motivated by knowing the outcome of previous datasets)
lead to a compression of 107 (in five parameters, the optical depth
not being quoted) when fit to data including Planck. By contrast,
Hubble constant probes address only one direction in parameter
space giving an overall volume compression of around 20.

It is hence a priori unlikely that new physics would be of such
a type as to evade detection in an experiment as constraining as
Planck, yet be revealed when adding the much less constraining

2 And this is ‘fit’ in the model-level sense, requiring equality of the like-
lihoods averaged over the whole prior model space, not simply equality of
the likelihoods of the best fits within each model.
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The correct Bayesian quantity to judge if 
one model is preferred over another is the 
posterior model probability ratio taking 
into account all the data we have.

This is determined via the relation

The model likelihoods, also known as the Bayesian evidence, 
can be computed for example by nested sampling. The prior 
model probabilities are to be chosen as you wish.



Tension ratio and Bayes factors
Using the tension ratio to diagnose new physics is saying that it can 
be taken as a proxy for the model probability ratio. Can it?
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tension metric was originally intended to diagnose. The rest of this
article will operate under that assumption, though at the end of an
analysis seeking new physics one should reconsider whether the
tensions might have other or multiple causes.

As everything is already within a Bayesian framework,
the question of which model is a better description is
uniquely answered by the posterior model probability ratio
%("1 |⇡�,⇡⌫)/%("2 |⇡�,⇡⌫) after application of all available
data. Via Bayes’ theorem this is related to the prior model probabil-
ity ratio as

%("1 |⇡�,⇡⌫)
%("2 |⇡�,⇡⌫)

= ⌫�⌫
12

%("1)
%("2)

, (3)

where the Bayes’ factor

⌫�⌫
12 =

%(⇡�,⇡⌫ |"1)
%(⇡�,⇡⌫ |"2)

(4)

is the ratio of model likelihoods and %("1) and %("2) are the
prior model probabilities. The model likelihoods are the likelihoods
averaged over each model’s prior parameter space; nested sampling
is a popular algorithm for carrying this out [Skilling, CosmoNest,
MultiNest,PolyChord].

As usual in a Bayesian calculation everyone is entitled to their
own opinion on the prior model probability ratio,1 whose freedom
then propagates to the posterior ratio. But everyone will agree on
the Bayes’ factor and hence on which model has been favoured
by any newly-incorporated data. The Bayes’ factor is somewhat
analogous to a derivative of the model comparison – it indicates the
direction in which the new data has taken the conclusion, saying for
example that "2 has become ten times more probable relative to
"1 as a result of new data, regardless of how likely you might have
considered it to be beforehand or indeed whether there are other
as-yet-unconsidered models.

2.2 Tension metric ratios

Taking reduction of tension as support for one model over another
is inviting us to think that '�⌫

1 /'�⌫
2 is akin to the posterior model

probability ratio, or rather to the corresponding Bayes’ factor which
is the unambiguously calculable quantity. But is it?

Directly from the definition in equation (1) above, we can write

⌫�⌫
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'�⌫
1

'�⌫
2

%(⇡� |"1)%(⇡⌫ |"1)
%(⇡� |"2)%(⇡⌫ |"2)

. (5)

This seems a small step, since it is just taking the ratio of the defi-
nition of the tension metric (itself already a ratio) for two di�erent
models. But it permits a novel interpretation. Written using Bayes’
factors we have

⌫�⌫
12 =

'�⌫
1

'�⌫
2

⌫�
12⌫

⌫
12 . (6)

If we just had dataset ⇡�, we would update the prior model proba-
bility ratio by multiplying by ⌫�

12, and likewise for ⇡⌫ .
To interpret this, recall the common view of the Bayesian

methodology as of repeated updating under new knowledge, where
the posterior of one analysis becomes the prior of the next. This

1 As well as the parameter priors which we are assuming have been agreed
on in advance.

works straightforwardly in parameter estimation where the previ-
ous posterior probability distribution becomes the new prior. One
might therefore have expected the Bayes’ factor of the combined
experiments to decompose into the product of those of each ex-
periment. But this same concept does not work straightforwardly
for model probabilities, as a posterior model probability does not
on its own carry enough information to be further updated by the
next experiment — the parameter distributions that tell us where in
parameter space the model fit the data well are also required. That
is, ⌫�⌫

12 < ⌫�
12⌫

⌫
12. Equation (6) shows that the tension ratio is,

essentially by definition, an exact quantification of the failure of the
update product.

From this equation we now see that the combined dataset can
lead to a favouring of (say) "2 over "1 in several ways. "2 could be
a better explanation of dataset A, ⌫�

12 ⌧ 1, or of dataset B, ⌫⌫
12 ⌧ 1,

or it could reduce the tension relative to "1, '�⌫
1 ⌧ '�⌫

2 . But
conversely we see that a reduction of tension on its own is not
su�cient to demonstrate a preference for "2, because that reduction
might be accompanied by a worse Bayes’ factor against one or both
datasets. Indeed in the particular case of extensions to ⇤CDM such
a worsening is rather likely since the extensions necessarily involve
a wider parameter space, and hence reduced predictiveness, usually
without much improving the best-fit to the individual datasets.

From this perspective, we see that it requires some level of
coincidence for the overall Bayes’ factor to be significantly di�erent
from one due to the tension term alone, without the preferred model
showing up in either of the datasets independently. This requires
that the ‘wrong’ model fits each of the independent datasets as well
as does the ‘right’ model,2 while failing drastically when the two
datasets are combined. This would not be particularly surprising
for data which only constrains the Hubble constant ⌘, which is es-
sentially an unpredicted free parameter in any cosmological model.
This data can hence be perfectly fit by selecting the parameter to
coincide with the observed value (though the priors on ⌘ implied
by each model may not always be identical, so the statement is not
completely trivial even in this case). But it would be a substantial
coincidence for the complicated multi-parameter fits required by
complex datasets such as the microwave background and structure
formation.

To see the magnitude of the imbalance for the Hubble tension,
we can look at Planck’s information gain, i.e. the compression of
the posterior volume versus the prior. It is a staggering 2 ⇥ 1014

for its six-parameter ⇤CDM fit (Planck 2018 VI Table 2, 5th data
column), averaging better than a factor of a hundred per parameter
direction. Admittedly their prior choices (Table 1 of Planck 2013
XVI, with a later adjustment on the perturbation amplitude prior)
are very broad, especially on the sound horizon at last scattering.
But even the narrower choices made in the similar analysis in the
DES Y3 paper (which are explicitly stated to have been to some
extent motivated by knowing the outcome of previous datasets)
lead to a compression of 107 (in five parameters, the optical depth
not being quoted) when fit to data including Planck. By contrast,
Hubble constant probes address only one direction in parameter
space giving an overall volume compression of around 20.

It is hence a priori unlikely that new physics would be of such
a type as to evade detection in an experiment as constraining as
Planck, yet be revealed when adding the much less constraining

2 And this is ‘fit’ in the model-level sense, requiring equality of the like-
lihoods averaged over the whole prior model space, not simply equality of
the likelihoods of the best fits within each model.
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conversely we see that a reduction of tension on its own is not
su�cient to demonstrate a preference for "2, because that reduction
might be accompanied by a worse Bayes’ factor against one or both
datasets. Indeed in the particular case of extensions to ⇤CDM such
a worsening is rather likely since the extensions necessarily involve
a wider parameter space, and hence reduced predictiveness, usually
without much improving the best-fit to the individual datasets.

From this perspective, we see that it requires some level of
coincidence for the overall Bayes’ factor to be significantly di�erent
from one due to the tension term alone, without the preferred model
showing up in either of the datasets independently. This requires
that the ‘wrong’ model fits each of the independent datasets as well
as does the ‘right’ model,2 while failing drastically when the two
datasets are combined. This would not be particularly surprising
for data which only constrains the Hubble constant ⌘, which is es-
sentially an unpredicted free parameter in any cosmological model.
This data can hence be perfectly fit by selecting the parameter to
coincide with the observed value (though the priors on ⌘ implied
by each model may not always be identical, so the statement is not
completely trivial even in this case). But it would be a substantial
coincidence for the complicated multi-parameter fits required by
complex datasets such as the microwave background and structure
formation.
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the posterior volume versus the prior. It is a staggering 2 ⇥ 1014

for its six-parameter ⇤CDM fit (Planck 2018 VI Table 2, 5th data
column), averaging better than a factor of a hundred per parameter
direction. Admittedly their prior choices (Table 1 of Planck 2013
XVI, with a later adjustment on the perturbation amplitude prior)
are very broad, especially on the sound horizon at last scattering.
But even the narrower choices made in the similar analysis in the
DES Y3 paper (which are explicitly stated to have been to some
extent motivated by knowing the outcome of previous datasets)
lead to a compression of 107 (in five parameters, the optical depth
not being quoted) when fit to data including Planck. By contrast,
Hubble constant probes address only one direction in parameter
space giving an overall volume compression of around 20.

It is hence a priori unlikely that new physics would be of such
a type as to evade detection in an experiment as constraining as
Planck, yet be revealed when adding the much less constraining

2 And this is ‘fit’ in the model-level sense, requiring equality of the like-
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ABSTRACT

Can new cosmic physics be uncovered through tensions amongst datasets? Tensions in pa-
rameter determinations amongst di�erent types of cosmological observation, especially the
‘Hubble tension’ between probes of the expansion rate, have been invoked as possible indi-
cators of new physics, requiring extension of the ⇤CDM paradigm to resolve. Within a fully
Bayesian framework, we show that the standard tension metric gives only part of the updating
of model probabilities, supplying a data co-dependence term that must be combined with
the Bayes factors of individual datasets. This shows that, on its own, a reduction of dataset
tension under an extension to ⇤CDM is insu�cient to demonstrate that the extended model is
favoured. Any analysis that claims evidence for new physics solely on the basis of alleviating
dataset tensions should be considered incomplete and suspect.

Key words: cosmology: theory

1 INTRODUCTION

One of the driving forces in current cosmology is the existence
of tensions amongst various datasets, where fits appear to point to
di�erent values of one or more parameters. Most prominent are
the Hubble tension between early- and late-Universe probes of the
expansion rate (see (Verde et al. 2019), (Di Valentino et al. 2021),
and references therein), and the mismatch in power spectrum am-
plitude between microwave background and weak-lensing obser-
vations. Possible explanations include statistical fluke, omitted or
underreported systematic errors, mistakes in data analysis pipelines,
or inadequacy of the physical model being fit to data.

To quantify the level of tension between two datasets ⇡� and
⇡⌫ (which for simplicity only we will take to be fully independent)
interpreted under model "1, a popular tension metric is the Bayes
ratio introduced by Marshall et al. It is vital throughout to keep in
mind that any dataset tension is associated also to the model(s) being
assumed, so we always note these dependencies explicitly, datasets
by letters and models by numbers, writing the tension metric as

'�⌫
1 ⌘ %(⇡�,⇡⌫ |"1)

%(⇡� |"1)%(⇡⌫ |"1)
. (1)

Written like this, it invites the interpretation that the numerator
requires the two datasets to be fit by a single set of parameter
values, while the denominator permits (within the same overall
model) each dataset to be fit by di�erent parameter values as if
each dataset lived in a distinct universe, a statement which is hard
to interpret. However, as several authors have pointed out, Bayes
theorem immediately lets it be rewritten as

'�⌫
1 =

%(⇡� |⇡⌫ ,"1)
%(⇡� |"1)


=

%(⇡⌫ |⇡�,"1)
%(⇡⌫ |"1)

�
. (2)

This asks, under a particular model assumption "1, whether the
existence of dataset ⇡⌫ makes dataset ⇡� more or less probable

than if dataset ⇡⌫ didn’t exist. This now sounds like a very natural
formulation of what one would mean by datasets being in tension.
It is also nicely symmetric under exchange of datasets. Hence this
tool has been widely applied.

[MENTION OTHER TENSION METRICS, ESP OUR DES
PAPER]

The Bayes tension ratio was introduced to assess the compati-
bility of two datasets, its use exemplified by the Dark Energy Survey
(DES) Y1 analysis where the ratio was required to exceed a certain
threshold before the datasets were deemed to be combinable (again
all within the context of whatever model has been chosen to explain
the datasets). In this view, the tension ratio alerts us to the possibil-
ity of dataset incompatibility, though without telling us its origin or
selecting a culprit.

However, the tension ratio has since been co-opted to a di�erent
purpose, which is to provide support for one model over another.
The idea is that if the dataset tension is less under a di�erent model
assumption "2 than it is under "1, this supports "2 as a better
description of the combined data. A typical statement is of the type
‘Our new model reduced the Hubble tension from 4.3f to 2.4f
so our model is favoured over ⇤CDM’. If this new model features
additional parameters, these will be associated to the discovery of
new physical processes relevant to the datasets. Our purpose here is
to challenge the usefulness, and correctness, of this view.

2 TENSION IS ONLY PART OF MODEL PROBABILITY

UPDATING

2.1 Bayesian model probability updating

To use tension as an indicator of new physics, the working hypothesis
now is that both datasets are taken as correct, something that the
tension metric was originally intended to diagnose. The rest of this
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tension metric was originally intended to diagnose. The rest of this
article will operate under that assumption, though at the end of an
analysis seeking new physics one should reconsider whether the
tensions might have other or multiple causes.

As everything is already within a Bayesian framework,
the question of which model is a better description is
uniquely answered by the posterior model probability ratio
%("1 |⇡�,⇡⌫)/%("2 |⇡�,⇡⌫) after application of all available
data. Via Bayes’ theorem this is related to the prior model probabil-
ity ratio as

%("1 |⇡�,⇡⌫)
%("2 |⇡�,⇡⌫)

= ⌫�⌫
12

%("1)
%("2)

, (3)

where the Bayes’ factor

⌫�⌫
12 =

%(⇡�,⇡⌫ |"1)
%(⇡�,⇡⌫ |"2)

(4)

is the ratio of model likelihoods and %("1) and %("2) are the
prior model probabilities. The model likelihoods are the likelihoods
averaged over each model’s prior parameter space; nested sampling
is a popular algorithm for carrying this out [Skilling, CosmoNest,
MultiNest,PolyChord].

As usual in a Bayesian calculation everyone is entitled to their
own opinion on the prior model probability ratio,1 whose freedom
then propagates to the posterior ratio. But everyone will agree on
the Bayes’ factor and hence on which model has been favoured
by any newly-incorporated data. The Bayes’ factor is somewhat
analogous to a derivative of the model comparison – it indicates the
direction in which the new data has taken the conclusion, saying for
example that "2 has become ten times more probable relative to
"1 as a result of new data, regardless of how likely you might have
considered it to be beforehand or indeed whether there are other
as-yet-unconsidered models.

2.2 Tension metric ratios

Taking reduction of tension as support for one model over another
is inviting us to think that '�⌫

1 /'�⌫
2 is akin to the posterior model

probability ratio, or rather to the corresponding Bayes’ factor which
is the unambiguously calculable quantity. But is it?

Directly from the definition in equation (1) above, we can write

⌫�⌫
12 =

'�⌫
1

'�⌫
2

%(⇡� |"1)%(⇡⌫ |"1)
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. (5)

This seems a small step, since it is just taking the ratio of the defi-
nition of the tension metric (itself already a ratio) for two di�erent
models. But it permits a novel interpretation. Written using Bayes’
factors we have

⌫�⌫
12 =

'�⌫
1

'�⌫
2

⌫�
12⌫

⌫
12 . (6)

If we just had dataset ⇡�, we would update the prior model proba-
bility ratio by multiplying by ⌫�

12, and likewise for ⇡⌫ .
To interpret this, recall the common view of the Bayesian

methodology as of repeated updating under new knowledge, where
the posterior of one analysis becomes the prior of the next. This

1 As well as the parameter priors which we are assuming have been agreed
on in advance.

works straightforwardly in parameter estimation where the previ-
ous posterior probability distribution becomes the new prior. One
might therefore have expected the Bayes’ factor of the combined
experiments to decompose into the product of those of each ex-
periment. But this same concept does not work straightforwardly
for model probabilities, as a posterior model probability does not
on its own carry enough information to be further updated by the
next experiment — the parameter distributions that tell us where in
parameter space the model fit the data well are also required. That
is, ⌫�⌫

12 < ⌫�
12⌫

⌫
12. Equation (6) shows that the tension ratio is,

essentially by definition, an exact quantification of the failure of the
update product.

From this equation we now see that the combined dataset can
lead to a favouring of (say) "2 over "1 in several ways. "2 could be
a better explanation of dataset A, ⌫�

12 ⌧ 1, or of dataset B, ⌫⌫
12 ⌧ 1,

or it could reduce the tension relative to "1, '�⌫
1 ⌧ '�⌫

2 . But
conversely we see that a reduction of tension on its own is not
su�cient to demonstrate a preference for "2, because that reduction
might be accompanied by a worse Bayes’ factor against one or both
datasets. Indeed in the particular case of extensions to ⇤CDM such
a worsening is rather likely since the extensions necessarily involve
a wider parameter space, and hence reduced predictiveness, usually
without much improving the best-fit to the individual datasets.

From this perspective, we see that it requires some level of
coincidence for the overall Bayes’ factor to be significantly di�erent
from one due to the tension term alone, without the preferred model
showing up in either of the datasets independently. This requires
that the ‘wrong’ model fits each of the independent datasets as well
as does the ‘right’ model,2 while failing drastically when the two
datasets are combined. This would not be particularly surprising
for data which only constrains the Hubble constant ⌘, which is es-
sentially an unpredicted free parameter in any cosmological model.
This data can hence be perfectly fit by selecting the parameter to
coincide with the observed value (though the priors on ⌘ implied
by each model may not always be identical, so the statement is not
completely trivial even in this case). But it would be a substantial
coincidence for the complicated multi-parameter fits required by
complex datasets such as the microwave background and structure
formation.

To see the magnitude of the imbalance for the Hubble tension,
we can look at Planck’s information gain, i.e. the compression of
the posterior volume versus the prior. It is a staggering 2 ⇥ 1014

for its six-parameter ⇤CDM fit (Planck 2018 VI Table 2, 5th data
column), averaging better than a factor of a hundred per parameter
direction. Admittedly their prior choices (Table 1 of Planck 2013
XVI, with a later adjustment on the perturbation amplitude prior)
are very broad, especially on the sound horizon at last scattering.
But even the narrower choices made in the similar analysis in the
DES Y3 paper (which are explicitly stated to have been to some
extent motivated by knowing the outcome of previous datasets)
lead to a compression of 107 (in five parameters, the optical depth
not being quoted) when fit to data including Planck. By contrast,
Hubble constant probes address only one direction in parameter
space giving an overall volume compression of around 20.

It is hence a priori unlikely that new physics would be of such
a type as to evade detection in an experiment as constraining as
Planck, yet be revealed when adding the much less constraining

2 And this is ‘fit’ in the model-level sense, requiring equality of the like-
lihoods averaged over the whole prior model space, not simply equality of
the likelihoods of the best fits within each model.
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This can be neatly written as

Clearly, the tension ratio and the Bayes factor are not the same.



What gives an improved model fit?

Model 2 could be favoured either because                               
it better fits dataset A, or better fits dataset B,                           
or because it reduces the tension between these datasets. 

The tension ratio only matches the Bayes factor if BA12 and BB12 
both equal one. Ie, the models fit datasets A and B equally 
well, yet one model fails when the datasets are combined. 

Reduction of tension on its own does not justify new physics, 
because the new model may fit one or both datasets less well. 
Indeed this is likely because extra parameter freedom reduces 
model predictiveness.
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tension metric was originally intended to diagnose. The rest of this
article will operate under that assumption, though at the end of an
analysis seeking new physics one should reconsider whether the
tensions might have other or multiple causes.

As everything is already within a Bayesian framework,
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prior model probabilities. The model likelihoods are the likelihoods
averaged over each model’s prior parameter space; nested sampling
is a popular algorithm for carrying this out [Skilling, CosmoNest,
MultiNest,PolyChord].

As usual in a Bayesian calculation everyone is entitled to their
own opinion on the prior model probability ratio,1 whose freedom
then propagates to the posterior ratio. But everyone will agree on
the Bayes’ factor and hence on which model has been favoured
by any newly-incorporated data. The Bayes’ factor is somewhat
analogous to a derivative of the model comparison – it indicates the
direction in which the new data has taken the conclusion, saying for
example that "2 has become ten times more probable relative to
"1 as a result of new data, regardless of how likely you might have
considered it to be beforehand or indeed whether there are other
as-yet-unconsidered models.

2.2 Tension metric ratios

Taking reduction of tension as support for one model over another
is inviting us to think that '�⌫

1 /'�⌫
2 is akin to the posterior model

probability ratio, or rather to the corresponding Bayes’ factor which
is the unambiguously calculable quantity. But is it?

Directly from the definition in equation (1) above, we can write

⌫�⌫
12 =

'�⌫
1

'�⌫
2

%(⇡� |"1)%(⇡⌫ |"1)
%(⇡� |"2)%(⇡⌫ |"2)

. (5)

This seems a small step, since it is just taking the ratio of the defi-
nition of the tension metric (itself already a ratio) for two di�erent
models. But it permits a novel interpretation. Written using Bayes’
factors we have

⌫�⌫
12 =

'�⌫
1

'�⌫
2

⌫�
12⌫

⌫
12 . (6)

If we just had dataset ⇡�, we would update the prior model proba-
bility ratio by multiplying by ⌫�

12, and likewise for ⇡⌫ .
To interpret this, recall the common view of the Bayesian

methodology as of repeated updating under new knowledge, where
the posterior of one analysis becomes the prior of the next. This

1 As well as the parameter priors which we are assuming have been agreed
on in advance.

works straightforwardly in parameter estimation where the previ-
ous posterior probability distribution becomes the new prior. One
might therefore have expected the Bayes’ factor of the combined
experiments to decompose into the product of those of each ex-
periment. But this same concept does not work straightforwardly
for model probabilities, as a posterior model probability does not
on its own carry enough information to be further updated by the
next experiment — the parameter distributions that tell us where in
parameter space the model fit the data well are also required. That
is, ⌫�⌫

12 < ⌫�
12⌫

⌫
12. Equation (6) shows that the tension ratio is,

essentially by definition, an exact quantification of the failure of the
update product.

From this equation we now see that the combined dataset can
lead to a favouring of (say) "2 over "1 in several ways. "2 could be
a better explanation of dataset A, ⌫�

12 ⌧ 1, or of dataset B, ⌫⌫
12 ⌧ 1,

or it could reduce the tension relative to "1, '�⌫
1 ⌧ '�⌫

2 . But
conversely we see that a reduction of tension on its own is not
su�cient to demonstrate a preference for "2, because that reduction
might be accompanied by a worse Bayes’ factor against one or both
datasets. Indeed in the particular case of extensions to ⇤CDM such
a worsening is rather likely since the extensions necessarily involve
a wider parameter space, and hence reduced predictiveness, usually
without much improving the best-fit to the individual datasets.

From this perspective, we see that it requires some level of
coincidence for the overall Bayes’ factor to be significantly di�erent
from one due to the tension term alone, without the preferred model
showing up in either of the datasets independently. This requires
that the ‘wrong’ model fits each of the independent datasets as well
as does the ‘right’ model,2 while failing drastically when the two
datasets are combined. This would not be particularly surprising
for data which only constrains the Hubble constant ⌘, which is es-
sentially an unpredicted free parameter in any cosmological model.
This data can hence be perfectly fit by selecting the parameter to
coincide with the observed value (though the priors on ⌘ implied
by each model may not always be identical, so the statement is not
completely trivial even in this case). But it would be a substantial
coincidence for the complicated multi-parameter fits required by
complex datasets such as the microwave background and structure
formation.

To see the magnitude of the imbalance for the Hubble tension,
we can look at Planck’s information gain, i.e. the compression of
the posterior volume versus the prior. It is a staggering 2 ⇥ 1014

for its six-parameter ⇤CDM fit (Planck 2018 VI Table 2, 5th data
column), averaging better than a factor of a hundred per parameter
direction. Admittedly their prior choices (Table 1 of Planck 2013
XVI, with a later adjustment on the perturbation amplitude prior)
are very broad, especially on the sound horizon at last scattering.
But even the narrower choices made in the similar analysis in the
DES Y3 paper (which are explicitly stated to have been to some
extent motivated by knowing the outcome of previous datasets)
lead to a compression of 107 (in five parameters, the optical depth
not being quoted) when fit to data including Planck. By contrast,
Hubble constant probes address only one direction in parameter
space giving an overall volume compression of around 20.

It is hence a priori unlikely that new physics would be of such
a type as to evade detection in an experiment as constraining as
Planck, yet be revealed when adding the much less constraining

2 And this is ‘fit’ in the model-level sense, requiring equality of the like-
lihoods averaged over the whole prior model space, not simply equality of
the likelihoods of the best fits within each model.
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Prior perspective on new physics

For new physics to show up via tension requires quite a 
coincidence. The `wrong’ model, here ΛCDM, has to fit the 
Planck data and the SH0ES data as well the new `right’ model, 
yet fail badly when they are combined. 

This is especially true because of the awesome constraining 
power of Planck: in the 6-dimensional prior parameter space 
of ΛCDM, the data reduces the allowed volume (posterior 
versus prior) by a factor of 2 x 1014! 

Hubble constant probes by contrast compress in a single 
direction, by a factor of around 20.



Conclusions: Tension as a 
signature of new physics

1. Any analysis that claims evidence for new physics solely on 
the basis of alleviating dataset tensions should be considered 
incomplete and suspect. 

2. If a new physics model is identified as explaining the tension, 
it immediately raises a new coincidence that the true 
parameters of that model were such that the deviations from 
LambdaCDM were only apparent via tensions. 

3. Because of those considerations, we believe unidentified 
systematic uncertainties in the observations are a more likely 
source of the tension than new physics.



Stop press: Wendy Freedman, preliminary CCHP results shown 
at the Royal Society Discussion meeting, April 15th 2024



Part II: Interpreting DESI’s evidence for 
evolving dark energy
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DESI BAO 2024
In April 2024, the DOE-led DESI (Dark Energy Spectroscopic 
Instrument) survey, the first Stage IV, announced cosmological 
results utilising their new baryon acoustic oscillation (BAO) 
observations.

Combining DESI BAO with Planck CMB anisotropy and Supernovae 
luminosity-redshift data, they found `tantalizing suggestions’ of 
evolving dark energy, in a phenomenological dark energy model.

The analysis has been carried out by the best researchers, whom 
we have come to know for their rigorous internal scrutiny for 
systematics and probe uncertainties. DESI’s is an exemplary 
dataset.
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1 Introduction

After over a decade of relentless verification of the standard ⇤CDM model through experiment,
cosmology is a field eagerly seeking any signs of deviation from this simple paradigm. Hence
the excitement that measurements of baryon acoustic oscillations (BAO) by the Dark Energy
Spectroscopic Instrument (DESI) [1, 2], when combined with cosmic microwave background
(CMB) and supernova observations, show tantalising hints of dark energy evolution [3]. The
deviations within a two-parameter dark energy model are estimated in Ref. [3] variously as
2.5 sigma, 3.5 sigma, and 3.9 sigma depending on the supernova dataset included in the
compilation (respectively, PantheonPlus [4], Union3 [5], and DESY5 [6]).

In this article we examine the robustness of this claim, focussing almost entirely on the
case of the flat Universe two-parameter equation of state model labelled w0waCDM.

2 Dark energy evolution in the w0waCDM model

2.1 Models, priors, and pivots

The w0waCDM model is a phenomenological model of dark energy which features a two-
parameter dark energy equation of state [7, 8]

w(a) = w0 + wa(1� a) , (2.1)

where a is the scale factor normalized to unity at present, and w0 and wa are constants.
Crucial for our discussion is the choice of prior ranges for these parameters. In Ref. [3] they
are taken to be uniform in the ranges [�3, 1] and [�3, 2] respectively, with the additional
condition w0 + wa < 0 to allow early matter domination.1 The cosmological constant, or
⇤CDM, model corresponds to w0 = �1 and wa = 0, and a regime in which w(a) < �1 is
called a ‘phantom’ regime.

Theoretical modellers typically find the non-phantom regime much simpler to model
than a phantom regime [9]. For instance, scalar fields with canonical kinetic terms, normally
called quintessence models, are necessarily non-phantom, and have already been discussed in
the context of the DESI results [10, 11] (other physically-motivated scenarios being discussed
in Ref. [12]). Ref. [13] provides a sobering assessment of how useful the w0-wa parametrization
is in developing understanding of the fundamental nature of dark energy. Models that cross

1
In practice the data go nowhere near this last condition, which would be entirely off the top of the

constraint plot shown later.
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From Cortês—Liddle

Note: when they fit a constant w model to the data, they find (e.g. 
when combined with the PantheonPlus supernova dataset)                
w = -0.997 ± 0.025, completely consistent with LambdaCDM’s w = -1.
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from DESI alone, while combining DESI BAO with BBN and ✓⇤ significantly tightens the
constraint on w to w = �1.002+0.091

�0.080
. Adding CMB data shifts the contours slightly along

the CMB degeneracy direction, giving

⌦m = 0.281 ± 0.013,

w = �1.122+0.062

�0.054
,

)

DESI BAO+CMB. (5.2)

Finally, the tightest constraints are obtained from the combination of these data with SN Ia.
For example for the PantheonPlus SN Ia dataset:

⌦m = 0.3095 ± 0.0069,

w = �0.997 ± 0.025,

)
DESI+CMB
+PantheonPlus.

(5.3)

Similar constraints are obtained when substituting PantheonPlus SN Ia for DESY5 or Union3
(though with slightly larger uncertainties in the latter case). These results are summarised
in Table 3. In summary, DESI data, both alone and in combination with other cosmological
probes, do not show any evidence for a constant equation of state parameter di↵erent from
�1 when a flat wCDM model is assumed.

5.2 Flat w0waCDM model

Taking into account the physical dynamics of dark energy, the parametrization w(a) = w0 +
wa (1 � a) was derived and has been demonstrated to match the background evolution of
distances arising from exact dark energy equations of motion to an accuracy of ⇠ 0.1%
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Dark energy pivot
The model w(a) = w0 + wa(1-a) has a reparametrization invariance, as 
we can use any scale ap to specify the amplitude wp ≝ w(ap). In 
particular we can choose ap to decorrelate the estimate of wp and wa. 
This is called the pivot scale, used extensively in the Dark Energy Task 
Force report (Albrecht et al. 2006) including in their Figure Of Merit.

The pivot scale indicates the scale factor at which the equation 
of state w is best constrained by the data. The pivot redshifts are 
ap = 0.79 for the PantheonPlus and DESY5 supernova choices, 
and ap = 0.75 for Union3.

The constraint on wp closely matches that of a model which 
assumes w is constant (due to the decorrelation property).
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Finally, the tightest constraints are obtained from the combination of these data with SN Ia.
For example for the PantheonPlus SN Ia dataset:

⌦m = 0.3095 ± 0.0069,

w = �0.997 ± 0.025,

)
DESI+CMB
+PantheonPlus.

(5.3)

Similar constraints are obtained when substituting PantheonPlus SN Ia for DESY5 or Union3
(though with slightly larger uncertainties in the latter case). These results are summarised
in Table 3. In summary, DESI data, both alone and in combination with other cosmological
probes, do not show any evidence for a constant equation of state parameter di↵erent from
�1 when a flat wCDM model is assumed.

5.2 Flat w0waCDM model

Taking into account the physical dynamics of dark energy, the parametrization w(a) = w0 +
wa (1 � a) was derived and has been demonstrated to match the background evolution of
distances arising from exact dark energy equations of motion to an accuracy of ⇠ 0.1%
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Figure 1. Observational constraints in the w0–wa plane from Ref. [3], combining DESI BAO
and CMB constraints with three different choices of supernova sample. The magenta and red lines
partition models into phantom and non-phantom behaviour at early times and today, respectively.
In combination they cut the plane into four zones. The blue and orange lines mark parameter values
where w crosses �1 at redshifts 0.26 and 0.33 respectively. These correspond to the pivot redshifts
for the PantheonPlus and DESY5 supernova samples (blue) and Union3 (orange). This shows that
all three choices have w close to �1 at the pivot scale. [Adapted from Figure 6 of Ref. [3], under
Creative Commons BY 4.0 License.]

which started non-phantom but transitioned to the phantom regime by the present. All the
observational contours lie in the fourth region (the largest region as shown in the figure,
though the plot shows only a small part of the entire prior domain); these models transition
from an early-time phantom regime to a present-day non-phantom regime.

The most striking feature of the constraints in Figure 1 is that the elongated ellipses
point closely in the direction of the ⇤CDM point. This orientation implies that the line
defining the pivot scale (the major axis of the ellipses) nearly coincides with the line defining
models which have wp = �1. That line is given by �1 � w0 = wa(1 � ap) for a chosen ap.
The pivot redshifts found in Ref. [3] of z = 0.26 (for PantheonPlus and DESY5) and z = 0.33
(for Union3) correspond to ap of 0.79 and 0.75 respectively, and the lines in model space
where wp = �1 at those redshifts are shown by the blue and orange lines. The observational
constraints indeed lie on top of those lines and are oriented along them.

In reality the observations are not probing the whole redshift range, but rather a window
centred on the pivot scale. That’s true even for the CMB probes, which are principally from
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Figure 2. The best-fit w(a) evolutions for the three choices of supernova dataset, colour coded as
in Figure 1. The pivot scale factors are ap = 0.79 for the green and blue lines and ap = 0.75 for the
orange, with the pivot values of w indicated by the blobs. The PhantomX Coincidence is that the
blobs are so close to w = �1 when most of the evolution is not.

the dark energy’s late-time effect on the angular-diameter distance to last-scattering. At high
redshift the dark energy density is too low to have any observable effect, while at low redshift
there is too little volume to take constraining data.

The best-fitting models all have the following characteristic. They start deep in the
phantom regime, with w increasing rapidly. Just as we reach the redshifts which are most
strongly constrained by the observations, w reaches the ⇤CDM value w = �1, to a precision
around ±0.02. At later redshifts, passing outside the observational window, w continues its
assumed linear ascent to a value significantly above �1. The best-fit w(a) models are shown
in Figure 2, with the pivot values indicated by blobs.

The outcome is that the preferred regions establish a new cosmic coincidence. Over
cosmic history the equation of state of the preferred models exhibits order one variation, but
at the epoch of observation it is within the special value of w = �1 by a few hundredths.
Within the actual range constrained by observations the likely variation is a few tenths in the
more extreme models, though there are currently no good estimates of the redshift range that
is well constrained by these observations. Gaussian process modelling of w(a) [24, 25] would
be one way to achieve this. Since the coincidence is that phantom crossing occurs at or near
the centre of the observational window, we call this the PhantomX Coincidence (X stands for
crossing). It is separate from the coincidence that dark energy domination (⌦de = 0.5) also
takes place during this epoch, the onset of acceleration being somewhat earlier.

Since the phantom transition marks the point at which the dark energy density ⇢de
stops increasing and starts to decrease, an equivalent statement of the coincidence is that the
maximum value that the dark energy density will ever reach happens to lie in the observed
window.

Shifting to the pivot scale corresponds to sliding (not rotating) the points on the blue
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Best-fit models, from Cortês—Liddle

The best-fit models have the feature that they cross from a phantom regime to 
a non-phantom regime within the observed window (dots indicate the pivot 
scale). We call this the PhantomX coincidence.  
 
Equivalently, the coincidence is that the dark energy attains is highest-ever 
value within the observed window.
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However Shlivko and Steinhardt, arXiv:2405.03933, make the 
interesting observation that quintessence models that are never 
phantom can nevertheless be well approximated by w0wa 
models that are in the observationally-preferred sector.



Conclusions: Interpreting DESI’s 
evidence for evolving dark energy
1. DESI’s is an exemplary dataset. The analysis in the DOE-led 

DESI survey, the first Stage IV, has been carried out by the best 
researchers whom we have come to know for their rigorous 
internal scrutiny for systematics and probe uncertainties.  

2. The DESI result is unexpected in two ways:  
a) The best-fit models are phantom for most of the evolution.  
b) The models cross from phantom to non-phantom within the 
narrow redshift window probed by observations. 

3. The DESI prior appears overly weighted towards phantom 
models. Altering this could mitigate the phantom crossing 
coincidence, but would lower the significance of the evolution 
detection.



Stop press: New DESI analysis paper, May 8th 2024

In this paper (Calderon et al., arXiv:2405.04216), they model w(a) 
using a four-term Chebyshev polynomial expansion. They say    
  `Our results hint towards an evolving and emergent dark energy  
   behaviour, with negligible presence of dark energy at z ≳ 1, at  
   varying significance depending on data sets combined.’
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Figure 1. Dark energy reconstructions using the Chebyshev expansion of w(z) up to four terms
with DESI BAO, DESI BAO+Union3, and DESI BAO+Union3+Planck datasets, respectively. The
colored lines correspond to the median of the posterior distributions and the shaded regions show
the 68% and 95% confidence intervals around it. The black-dashed lines depict the best-fit ⇤CDM
predictions for each data combination.

In all cases, the dashed black lines represent the ⇤CDM best-fit values for these quan-
tities, and for each data combination. The coloured lines correspond to the median of the
posterior distributions and the shaded regions show the 68% and 95% confidence intervals
around it, respectively.

When allowing for more freedom in the equation of state, DESI BAO data alone cannot
constrain the dark energy well, as there is an intrinsic degeneracy between the matter density,
the dark energy evolution [e.g. 34, 91–94], and the absolute scaling set by the combination
H0rd (shown in Fig. 2) [95, 96]. These degeneracies lead to very peculiar shapes of fDE(z)
that can be compensated by anomalously large matter densities. Such dark energy models
can fit the DESI data well, the best-fit having a ��2 ' �5.5 with respect to ⇤CDM, while
having 4 additional degrees of freedom.

However, when including distance measurements from SNe Ia these degeneracies are
broken by a more accurate determination of ⌦m,0 and H0rd, and the dark energy evolution is
much more tightly constrained, as shown in the middle column of Fig. 1. The best-fit model
from the DESI+Union3 combination leads to an improvement in the fit of ��2 ' �9.1 with
respect to ⇤CDM. It is interesting to note that for both DESI BAO and DESI BAO+Union3,
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Figure 1. Dark energy reconstructions using the Chebyshev expansion of w(z) up to four terms
with DESI BAO, DESI BAO+Union3, and DESI BAO+Union3+Planck datasets, respectively. The
colored lines correspond to the median of the posterior distributions and the shaded regions show
the 68% and 95% confidence intervals around it. The black-dashed lines depict the best-fit ⇤CDM
predictions for each data combination.

In all cases, the dashed black lines represent the ⇤CDM best-fit values for these quan-
tities, and for each data combination. The coloured lines correspond to the median of the
posterior distributions and the shaded regions show the 68% and 95% confidence intervals
around it, respectively.

When allowing for more freedom in the equation of state, DESI BAO data alone cannot
constrain the dark energy well, as there is an intrinsic degeneracy between the matter density,
the dark energy evolution [e.g. 34, 91–94], and the absolute scaling set by the combination
H0rd (shown in Fig. 2) [95, 96]. These degeneracies lead to very peculiar shapes of fDE(z)
that can be compensated by anomalously large matter densities. Such dark energy models
can fit the DESI data well, the best-fit having a ��2 ' �5.5 with respect to ⇤CDM, while
having 4 additional degrees of freedom.

However, when including distance measurements from SNe Ia these degeneracies are
broken by a more accurate determination of ⌦m,0 and H0rd, and the dark energy evolution is
much more tightly constrained, as shown in the middle column of Fig. 1. The best-fit model
from the DESI+Union3 combination leads to an improvement in the fit of ��2 ' �9.1 with
respect to ⇤CDM. It is interesting to note that for both DESI BAO and DESI BAO+Union3,
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Excerpt from Figure 1 of Calderon et al.




