A Supersymmetric Higgs Triplet Model with Custodial Symmetry

Roberto Vega

Southern Methodist University Department of Physics Dallas, TX

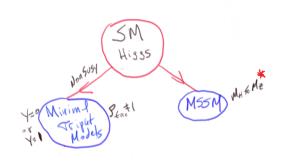
Gunionfest March 2014

Collaborators: Mateo Garcia (Barcelona), Stefania Gori (Perimeter), Mariano Quiros (Barcelona), Roberto Vega-Morales (Orsay), Chiu-Tien Yu (Stony Brook)

Overview

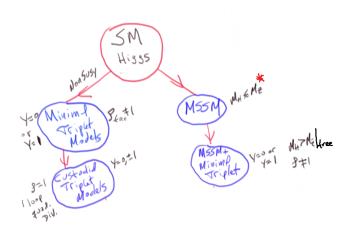
- Motivations
- Review the Georgi-Machacek (GM) Model
- Higgs Triplets in SUSY Models
- A Supersymmetric Model with Custodial Triplets

Two popular extension paths for the SM



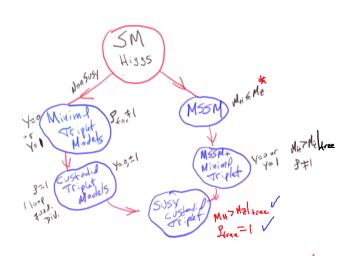
^{* (}e.g. Carena, Gori, Shah and Wagner: arXiv:1112.3336)

Two popular extension paths for the SM



^{* (}e.g. Carena, Gori, Shah and Wagner: arXiv:1112.3336)

Two popular extension paths for the SM



^{* (}e.g. Carena, Gori, Shah and Wagner: arXiv:1112.3336)

• Can we solve problems of GM model and MSSM simultaneously?

6 / 26

- Can we solve problems of GM model and MSSM simultaneously?
- It seems a SUSY version of the GM model would solve both problems
- What does this model look like?

- Can we solve problems of GM model and MSSM simultaneously?
- It seems a SUSY version of the GM model would solve both problems
- What does this model look like?
- Can the GM be recovered as some limit of this SUSY model?

- Can we solve problems of GM model and MSSM simultaneously?
- It seems a SUSY version of the GM model would solve both problems
- What does this model look like?
- Can the GM be recovered as some limit of this SUSY model?
- In other words, can the GM model be made natural?

Georgi-Machacek Model

• The field content:
$$\phi = \begin{pmatrix} h_1^+ \\ h_1^o \end{pmatrix}$$
 $\zeta = \begin{pmatrix} \phi_+ \\ \phi_o \\ \phi_- \end{pmatrix}$ $\chi = \begin{pmatrix} \psi_{++} \\ \psi_{+} \\ \psi_o \end{pmatrix}$

Georgi-Machacek Model

• The field content:
$$\phi = \begin{pmatrix} h_1^+ \\ h_1^o \end{pmatrix}$$
 $\zeta = \begin{pmatrix} \phi_+ \\ \phi_o \\ \phi_- \end{pmatrix}$ $\chi = \begin{pmatrix} \psi_{++} \\ \psi_+ \\ \psi_o \end{pmatrix}$

If
$$\phi^c = i\sigma_2\phi^*$$
 and $\chi^c = C\chi^*$, where, $c = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

Then, ϕ^c abd χ^c transform like ϕ and χ respectively, but have opposite hyper charges. This allows us to define 2×2 and 3×3 matrices: $\Phi=(\phi^c,\phi)$ and $\chi=(\chi^c,\zeta,\chi)$ that transform consistently under $SU(2)_L\times SU(2)_R$, i.e. $\Phi\to U_L\Phi U_R^\dagger$ and $\chi\to U_L\chi U_R^\dagger$.

GM Model: The $SU(2)_L \otimes SU(2)_R$ invariant potential

• Explicitly the matrices have the form:

$$\Phi = \begin{pmatrix} h_o^* & h_+ \\ h_- & h_o \end{pmatrix} \qquad \chi = \begin{pmatrix} \psi_o^* & \phi_+ & \psi_{++} \\ \psi_- & \phi_o & \psi_+ \\ \psi_{--} & \phi_- & \psi_o \end{pmatrix}$$

where phase convention is: $h_-^*=-h_+$, $\psi_-^*=-\psi_+$, $\phi_+^*=-\phi_-$, $\psi_{++}^*=\psi_{--}$, and $\phi_0^*=\phi_0$. In this form it is easy to build a potential which is invariant under $SU(2)_L\times SU(2)_R$.

GM Model: The $SU(2)_L \otimes SU(2)_R$ invariant potential

• Explicitly the matrices have the form:

$$\Phi = \begin{pmatrix} h_o^* & h_+ \\ h_- & h_o \end{pmatrix} \qquad \chi = \begin{pmatrix} \psi_o^* & \phi_+ & \psi_{++} \\ \psi_- & \phi_o & \psi_+ \\ \psi_{--} & \phi_- & \psi_o \end{pmatrix}$$

where phase convention is: $h_-^*=-h_+$, $\psi_-^*=-\psi_+$, $\phi_+^*=-\phi_-$, $\psi_{++}^*=\psi_{--}$, and $\phi_0^*=\phi_0$. In this form it is easy to build a potential which is invariant under $SU(2)_L\times SU(2)_R$.

$$\begin{split} V &= \lambda_{1} \, \left(\textit{Tr}(\Phi^{\dagger}\Phi) - \textit{v}_{H}^{2} \right)^{2} + \lambda_{3} \, \left(\textit{Tr}(\Phi^{\dagger}\Phi) - \textit{v}_{H}^{2} + \textit{Tr}(\chi^{\dagger}\chi) - 3\textit{v}_{\Delta}^{2} \right) \\ &+ \lambda_{4} \, \left(\textit{Tr}(\Phi^{\dagger}\Phi) \, \textit{Tr}(\chi^{\dagger}\chi) - 2 \, \textit{Tr}(\Phi^{\dagger}\sigma^{i}\Phi\sigma^{j}) \, \textit{Tr}(\chi^{\dagger}t^{i}\chi t^{j}) \right. \\ &+ \lambda_{2} \, \left(\textit{Tr}(\chi^{\dagger}\chi) - 3\textit{v}_{\Delta}^{2} \right)^{2} + \lambda_{5} \, \left(3 \, \textit{Tr}(\chi^{\dagger}\chi)^{2} - (\textit{Tr}(\chi^{\dagger}\chi))^{2} \right) \\ &+ \lambda_{6} \, \left(\textit{Tr}(\Phi^{\dagger}\sigma_{i}\Phi\sigma_{j}) \, (\textit{U}\chi \, \textit{U}^{\dagger})_{ij} - \textit{Tr}(\chi^{\dagger} \, \textit{T}_{i}\chi \, \textit{T}_{j}) \right) \, (\textit{U}\chi \, \textit{U}^{\dagger})_{ij} \end{split}$$

GM Model: Custodial Fields after SSB

The custodial symmetry preserves hermiticity and trace properties:

$$oldsymbol{\chi} = \left\lceil rac{1}{2} (oldsymbol{\chi} + oldsymbol{\chi}^\dagger) - rac{1}{3} \, ag{Tr} oldsymbol{\chi}
ight
ceil + rac{1}{2} (oldsymbol{\chi} - oldsymbol{\chi}^\dagger) + rac{1}{3} \, ag{Tr} oldsymbol{\chi}$$

The first term represents the fiveplet, the second the triplet, and the third the singlet.

$$H_5^{++} = \psi_{++} \qquad H_5^{+} \qquad = \frac{(\psi_{+} - \phi_{+})}{\sqrt{2}} \qquad H_5^{0} = \frac{(\sqrt{2}\psi_{or} - 2\phi_{o})}{\sqrt{6}}$$

$$\zeta_{+} = \frac{(\psi_{+} + \phi_{+})}{\sqrt{2}} \qquad \qquad \zeta_{o} = \psi_{oi} \qquad \qquad \zeta_{-} = \frac{(\psi_{-} + \phi_{-})}{\sqrt{2}}$$

$$H_1^{o'} = \frac{\sqrt{2}\psi_{or} + \phi_{o}}{\sqrt{2}}$$

Similarly for the doublet fields the custodial components: h^{\pm} and h_{oi} form a triplet, and $H_1^o = h_{or}$ the singlet.

GM Model: Custodial Fields

Some definitions,

$$\langle h_{or} \rangle = v_H$$
 $\langle \phi_o \rangle = v_\Delta$ $\langle \psi_o \rangle = v_\Delta$ $v^2 = 2v_H^2 + 8v_\Delta^2$ $c_H = \frac{v_H}{v}$ $s_H = \frac{2\sqrt{2}v_\Delta}{v}$

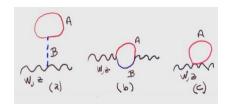
ullet The Goldstone Bosons and the Triplets. Note H_3^o is a pseudo-scalar.

$$G_3^{\pm} = c_H i h_{\pm} + s_H \zeta_{\pm}$$
 $G_3^o = i (-c_H h_{oi} + s_H \psi_{oi})$
 $H_3^{\pm} = s_H i h_{\pm} - c_H \zeta_{\pm}$ $H_3^o = i (s_H h_{oi} + c_H \psi_{oi})$

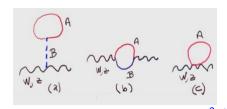
• The decoupling limit is obtained by taking $v_{\Delta} \to 0$ or $s_H \to 0$ in this limit the triplet field couplings to the gauge bosons drop out and m_{H_5} and m_{H_3} get very large. One scalar, the H_1^o remains and its mass is given by,

$$m_{H_1^o}^2 = 8\lambda_1 v_H^2$$

GM Model: The hypercharge terms spoil $SU(2)_c$ Symmetry

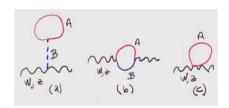


GM Model: The hypercharge terms spoil $SU(2)_c$ Symmetry



• The one loop correction: $\Delta \rho|_{loop} = \frac{g^{-2} s_H^2}{4\pi M_{Hr}^2} \Lambda^2$

GM Model: The hypercharge terms spoil $SU(2)_c$ Symmetry



- The one loop correction: $\Delta \rho|_{loop} = \frac{g'^2 s_H^2}{4\pi M_{H_*}^2} \Lambda^2$
- Allowing for small custodial violation terms in the scalar sector leads to a relative shifts in the *vev*'s of the triplet fields by parametrized δ ,

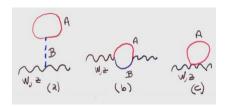
$$\langle \phi_o \rangle = \langle \psi_o \rangle (1 + \delta) = v_{\Delta} (1 + \delta)$$

• As a consequence the W-mass also shifts, but the Z-mass does not,

$$m_W^2 = \frac{1}{4}g^2v^2(1+s_H^2\delta) \Longrightarrow \boxed{\Delta\rho|_{\delta} = s_H^2\delta}$$

Roberto Vega (SMU)

GM Model: Fine Tuning for ρ



- The one loop correction: $\Delta \rho|_{loop} = \frac{g'^2 s_H^2}{4\pi M_{H_s}^2} \Lambda^2$
- Allowing for small custodial violation terms in the scalar sector leads to a relative shifts in the *vev*'s of the triplet fields by parametrized δ ,

$$\langle \phi_o \rangle = \langle \psi_o \rangle (1 + \delta) = v_{\Delta} (1 + \delta)$$

• As a consequence the W-mass also shifts, but the Z-mass does not,

$$m_W^2 = \frac{1}{4}g^2v^2(1+s_H^2\delta) \Longrightarrow \boxed{\Delta\rho|_{\delta} = s_H^2\delta}$$

MSSM with Minimal Triplets

Ref: Delgado, Nardini, and Quiros, Phys.Rev. D86 (2012) 115010

• In these minimal triplet models one adds a triplet of hypercharge 0 or ± 1 . For example,

$$\Sigma = \begin{pmatrix} \xi^0 / \sqrt{2} & -\xi_2^+ \\ \xi_1^- & -\xi^0 / \sqrt{2} \end{pmatrix}$$

MSSM with Minimal Triplets

Ref: Delgado, Nardini, and Quiros, Phys.Rev. D86 (2012) 115010

• In these minimal triplet models one adds a triplet of hypercharge 0 or ± 1 . For example,

$$\Sigma = \begin{pmatrix} \xi^0 / \sqrt{2} & -\xi_2^+ \\ \xi_1^- & -\xi^0 / \sqrt{2} \end{pmatrix}$$

 Delgado et.al. show the following for the tree level mass of the SM-like Higgs,

$$m_{h,\text{tree}}^2 = m_Z^2 \cos^2 2\beta + \frac{\lambda^2}{2} v^2 \sin^2 2\beta$$

- \bullet The additional charge scalars serve to modified the $h\to\gamma\gamma$ decay rate.
- Must fine tune $v_{\Delta} < 4 \, GeV$ to comply with $\rho = 1$ at tree level

REF: Cort, Garcia, and Quiros, Phys.Rev. D88 (2013) 075010

• This model is the Supersymmetric version of the GM Model, these are chiral super fields!

REF: Cort, Garcia, and Quiros, Phys.Rev. D88 (2013) 075010

 This model is the Supersymmetric version of the GM Model, these are chiral super fields!

$$\Phi = egin{pmatrix} h_1^o & h_2^+ \ h_1^- & h_2^o \end{pmatrix}$$

$$\Phi = \begin{pmatrix} h_1^{o*} & h_2^+ \\ h_1^- & h_2^o \end{pmatrix} \qquad \chi = \begin{pmatrix} \xi_o & \phi_+ & \psi_{++} \\ \xi_- & \phi_o & \psi_+ \\ \xi_{--} & \phi_- & \psi_o \end{pmatrix}$$

REF: Cort, Garcia, and Quiros, Phys.Rev. D88 (2013) 075010

 This model is the Supersymmetric version of the GM Model, these are chiral super fields!

$$oldsymbol{\Phi} = egin{pmatrix} h_1^o * & h_2^+ \ h_1^- & h_2^o \end{pmatrix} \qquad \qquad oldsymbol{\chi} = egin{pmatrix} \xi_o & \phi_+ & \psi_{++} \ \xi_- & \phi_o & \psi_+ \ \xi_{--} & \phi_- & \psi_o \end{pmatrix}$$

• The $SU(2)_L \otimes SU(2)_R$ invariant super potential takes the form:

REF: Cort, Garcia, and Quiros, Phys.Rev. D88 (2013) 075010

 This model is the Supersymmetric version of the GM Model, these are chiral super fields!

$$\Phi = \begin{pmatrix} h_1^{o*} & h_2^+ \\ h_1^- & h_2^o \end{pmatrix} \qquad \chi = \begin{pmatrix} \xi_o & \phi_+ & \psi_{++} \\ \xi_- & \phi_o & \psi_+ \\ \xi_{--} & \phi_- & \psi_o \end{pmatrix}$$

• The $SU(2)_L \otimes SU(2)_R$ invariant super potential takes the form:

$$W_{0} = \frac{\mu}{2} \operatorname{Tr} \left(\sigma_{2} \Phi^{T} \sigma_{2} \Phi \right) + 2 * \lambda \operatorname{Tr} \left(\sigma_{2} \Phi^{T} \sigma_{2} \sigma_{i} \Phi \sigma_{j} \right) \left(U \chi U^{\dagger} \right)_{ij}$$
$$+ \frac{\mu_{\Delta}}{2} \operatorname{Tr} \left(C \chi^{T} C \chi \right) + \frac{\lambda_{3}}{6} \operatorname{Tr} \left(C \chi^{T} C T_{i} \chi T_{j} \right) \left(U \chi U^{\dagger} \right)_{ij}$$

REF: Cort, Garcia, and Quiros, Phys.Rev. D88 (2013) 075010

 This model is the Supersymmetric version of the GM Model, these are chiral super fields!

$$\Phi = \begin{pmatrix} h_1^{o*} & h_2^+ \\ h_1^- & h_2^o \end{pmatrix} \qquad \chi = \begin{pmatrix} \xi_o & \phi_+ & \psi_{++} \\ \xi_- & \phi_o & \psi_+ \\ \xi_{--} & \phi_- & \psi_o \end{pmatrix}$$

• The $SU(2)_L \otimes SU(2)_R$ invariant super potential takes the form:

$$W_{0} = \frac{\mu}{2} \operatorname{Tr} \left(\sigma_{2} \Phi^{T} \sigma_{2} \Phi \right) + 2 * \lambda \operatorname{Tr} \left(\sigma_{2} \Phi^{T} \sigma_{2} \sigma_{i} \Phi \sigma_{j} \right) \left(U \chi U^{\dagger} \right)_{ij}$$

$$+ \frac{\mu_{\Delta}}{2} \operatorname{Tr} \left(C \chi^{T} C \chi \right) + \frac{\lambda_{3}}{6} \operatorname{Tr} \left(C \chi^{T} C T_{i} \chi T_{j} \right) \left(U \chi U^{\dagger} \right)_{ij}$$

• After EWSB there remains a custodial SU(2) symmetry in scalar potential and states can be classified into custodial multiplets

REF: Cort, Garcia, and Quiros, Phys.Rev. D88 (2013) 075010

 This model is the Supersymmetric version of the GM Model, these are chiral super fields!

$$\Phi = \begin{pmatrix} h_1^{o*} & h_2^+ \\ h_1^- & h_2^o \end{pmatrix} \qquad \chi = \begin{pmatrix} \xi_o & \phi_+ & \psi_{++} \\ \xi_- & \phi_o & \psi_+ \\ \xi_{--} & \phi_- & \psi_o \end{pmatrix}$$

• The $SU(2)_L \otimes SU(2)_R$ invariant super potential takes the form:

$$W_{0} = \frac{\mu}{2} \operatorname{Tr} \left(\sigma_{2} \Phi^{T} \sigma_{2} \Phi \right) + 2 * \lambda \operatorname{Tr} \left(\sigma_{2} \Phi^{T} \sigma_{2} \sigma_{i} \Phi \sigma_{j} \right) \left(U \chi U^{\dagger} \right)_{ij}$$
$$+ \frac{\mu_{\Delta}}{2} \operatorname{Tr} \left(C \chi^{T} C \chi \right) + \frac{\lambda_{3}}{6} \operatorname{Tr} \left(C \chi^{T} C T_{i} \chi T_{j} \right) \left(U \chi U^{\dagger} \right)_{ij}$$

- After EWSB there remains a custodial SU(2) symmetry in scalar potential and states can be classified into custodial multiplets
- Note that now we have two complex doublets, two complex $Y=\pm 1$ triplets, and one complex Y=0 triplet, double the scalar spectrum

The Custodial SUSY Triplet Model after SSB

• The custodial fields are now,

15 / 26

The Custodial SUSY Triplet Model after SSB

The custodial fields are now,

$$\begin{split} h_1^0 &= \frac{1}{\sqrt{2}} (H_1^0 + H_2^0) \\ h_3^+ &= H_2^+, \quad h_3^0 = \frac{1}{\sqrt{2}} (H_1^0 - H_2^0), \quad h_3^- = H_1^- \\ \delta_1^0 &= \frac{\phi^0 + \chi^0 + \psi^0}{\sqrt{3}} \\ \delta_3^+ &= \frac{\psi^+ - \phi^+}{\sqrt{2}}, \; \delta_3^0 = \frac{\chi^0 - \psi^0}{\sqrt{2}}, \; \delta_3^- = \frac{\phi^- - \chi^-}{\sqrt{2}} \\ \delta_5^{++} &= \psi^{++}, \; \delta_5^+ = \frac{\phi^+ + \psi^+}{\sqrt{2}}, \; \delta_5^0 = \frac{-2\phi^0 + \psi^0 + \chi^0}{\sqrt{6}}, \; \delta_5^- = \frac{\phi^- + \chi^-}{\sqrt{2}}, \; \delta_5^{--} = \chi^{--} \end{split}$$

• Again these are chiral super fields (complex scalars + fermions)

The Custodial SUSY Triplet Model after SSB

The custodial fields are now,

$$h_1^0 = \frac{1}{\sqrt{2}} (H_1^0 + H_2^0)$$

$$h_3^+ = H_2^+, \quad h_3^0 = \frac{1}{\sqrt{2}} (H_1^0 - H_2^0), \quad h_3^- = H_1^-$$

$$\delta_1^0 = \frac{\phi^0 + \chi^0 + \psi^0}{\sqrt{3}}$$

$$\delta_3^+ = \frac{\psi^+ - \phi^+}{\sqrt{2}}, \ \delta_3^0 = \frac{\chi^0 - \psi^0}{\sqrt{2}}, \ \delta_3^- = \frac{\phi^- - \chi^-}{\sqrt{2}}$$

$$\delta_5^{++} = \psi^{++}, \, \delta_5^{+} = \frac{\phi^{+} + \psi^{+}}{\sqrt{2}}, \, \delta_5^{0} = \frac{-2\phi^{0} + \psi^{0} + \chi^{0}}{\sqrt{6}}, \, \delta_5^{-} = \frac{\phi^{-} + \chi^{-}}{\sqrt{2}}, \, \delta_5^{--} = \chi^{--}$$

- Again these are chiral super fields (complex scalars + fermions)
- The physical scalar mass eigenstates will consist of a pseudo scalar triplet, two scalar triplets, a scalar fiveplet, a pseudo scalar fiveplet, two scalar singlets, and two pseudo scalar singlets
- Note this is double the scalar spectrum of the GM model!

• One of the scalar singlets corresponds to the SM-like scalar and in the limit of small v_{Δ} has a mass given by,

• One of the scalar singlets corresponds to the SM-like scalar and in the limit of small v_{Δ} has a mass given by,

$$m_{S_1}^2 = 6\lambda^2 v_H^2 + \mathcal{O}(v_\Delta)$$

- ullet Note aneta=1 at tree level in this model so no MSSM-type contribution
- ullet λ is the parameter for the term in the super-potential quadratic in doublet and linear triplet fields:

$$\lambda \ Tr \left(\sigma_2 \Phi^T \sigma_2 \sigma_i \Phi \sigma_j\right) \left(U \chi U^{\dagger}\right)_{ij}$$

• One of the scalar singlets corresponds to the SM-like scalar and in the limit of small v_{Δ} has a mass given by,

$$m_{S_1}^2 = 6\lambda^2 v_H^2 + \mathcal{O}(v_\Delta)$$

- ullet Note aneta=1 at tree level in this model so no MSSM-type contribution
- ullet λ is the parameter for the term in the super-potential quadratic in doublet and linear triplet fields:

$$\lambda \ Tr \left(\sigma_2 \Phi^T \sigma_2 \sigma_i \Phi \sigma_j\right) \left(U \chi U^{\dagger}\right)_{ij}$$

• Since we start with a $SU(2)_L \otimes SU(2)_R$ invariant W_o and soft breaking sector, $\rho = 1$ at tree level

• One of the scalar singlets corresponds to the SM-like scalar and in the limit of small v_{Δ} has a mass given by,

$$m_{S_1}^2 = 6\lambda^2 v_H^2 + \mathcal{O}(v_\Delta)$$

- ullet Note aneta=1 at tree level in this model so no MSSM-type contribution
- ullet λ is the parameter for the term in the super-potential quadratic in doublet and linear triplet fields:

$$\lambda \ Tr \left(\sigma_2 \Phi^T \sigma_2 \sigma_i \Phi \sigma_j\right) \left(U \chi U^{\dagger}\right)_{ij}$$

- Since we start with a $SU(2)_L \otimes SU(2)_R$ invariant W_o and soft breaking sector, $\rho = 1$ at tree level
- ullet We expect this model is free of the quadratic divergences in the ho parameter present in GM model (In the process of explicitly verifying this)

Breaking Custodial Symmetry at Loop Level

ullet However, $SU(2)_L \times SU(2)_R$ broken by hyper-charge (and Yukawas)

Roberto Vega (SMU) Custodial Triplets March 2014 17 / 26

Breaking Custodial Symmetry at Loop Level

- However, $SU(2)_L \times SU(2)_R$ broken by hyper-charge (and Yukawas)
- Leads to breaking of custodial symmetry and $\rho \neq 1$ at loop level!

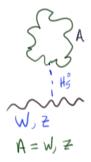
The Neutral Fermion Mass Matrix

• We have an enlarged neutral-ino sector in $(\tilde{\gamma}, \tilde{h_1^0}, \tilde{\delta_1^0}, \tilde{Z}, \tilde{h_3^0}, \tilde{\delta_3^0}, \tilde{\delta_5^0})$ basis

- Note custodial symmetry recovered in limit $g_Y \to 0$
- These give the cancellation of Λ^2 divergence in ρ in GM model
- Will contribute to RG running and (may) possess a DM candidate
- Currently studying the LHC pheno of these (and charged) fermions

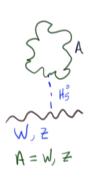
Canceling Quadratic Divergence in ρ in GM Model

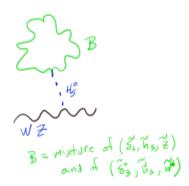
 \bullet The cancellation of quadratic divergences in ρ in GM model involve only two sets of diagrams



Canceling Quadratic Divergence in ρ in GM Model

ullet The cancellation of quadratic divergences in ho in GM model involve only two sets of diagrams





• As mentioned, $SU(2)_L \times SU(2)_R$ explicitly broken by hyper-charge (and Yukawas) \Rightarrow custodial symmetry broken and $\rho \neq 1$ at loop level

21 / 26

- As mentioned, $SU(2)_L \times SU(2)_R$ explicitly broken by hyper-charge (and Yukawas) \Rightarrow custodial symmetry broken and $\rho \neq 1$ at loop level
- This implies RG running will in general break custodial symmetry

- As mentioned, $SU(2)_L \times SU(2)_R$ explicitly broken by hyper-charge (and Yukawas) \Rightarrow custodial symmetry broken and $\rho \neq 1$ at loop level
- This implies RG running will in general break custodial symmetry
- The question then becomes: at what scale do we impose the $SU(2)_L \times SU(2)_R$ global symmetry?

- As mentioned, $SU(2)_L \times SU(2)_R$ explicitly broken by hyper-charge (and Yukawas) \Rightarrow custodial symmetry broken and $\rho \neq 1$ at loop level
- This implies RG running will in general break custodial symmetry
- The question then becomes: at what scale do we impose the $SU(2)_L \times SU(2)_R$ global symmetry?
- In original GM model there was no natural choice for this scale

- As mentioned, $SU(2)_L \times SU(2)_R$ explicitly broken by hyper-charge (and Yukawas) \Rightarrow custodial symmetry broken and $\rho \neq 1$ at loop level
- This implies RG running will in general break custodial symmetry
- The question then becomes: at what scale do we impose the $SU(2)_L \times SU(2)_R$ global symmetry?
- In original GM model there was no natural choice for this scale
- In CSHTM we have a natural choice: SUSY breaking scale $(M_{SUSY})!$

- As mentioned, $SU(2)_L \times SU(2)_R$ explicitly broken by hyper-charge (and Yukawas) \Rightarrow custodial symmetry broken and $\rho \neq 1$ at loop level
- This implies RG running will in general break custodial symmetry
- The question then becomes: at what scale do we impose the $SU(2)_L \times SU(2)_R$ global symmetry?
- In original GM model there was no natural choice for this scale
- In CSHTM we have a natural choice: SUSY breaking scale $(M_{SUSY})!$
- At the SUSY breaking scale the super potential and soft breaking sectors are $SU(2)_L \times SU(2)_R$ invariant

• The hyper-charge (and Yukawa) interactions break this symmetry explicitly leading to RG breaking of custodial symmetry

- The hyper-charge (and Yukawa) interactions break this symmetry explicitly leading to RG breaking of custodial symmetry
- Thus as we 'run down' from SUSY breaking scale, custodial symmetry becomes more and more broken
- ullet But we know that experimentally $ho \sim 1$ at weak scale

- The hyper-charge (and Yukawa) interactions break this symmetry explicitly leading to RG breaking of custodial symmetry
- Thus as we 'run down' from SUSY breaking scale, custodial symmetry becomes more and more broken
- ullet But we know that experimentally $ho\sim 1$ at weak scale
- How high can SUSY breaking scale M_{SUSY} be and still be able to obtain $\rho \sim 1$ at weak scale?

- The hyper-charge (and Yukawa) interactions break this symmetry explicitly leading to RG breaking of custodial symmetry
- Thus as we 'run down' from SUSY breaking scale, custodial symmetry becomes more and more broken
- ullet But we know that experimentally $ho \sim 1$ at weak scale
- How high can SUSY breaking scale M_{SUSY} be and still be able to obtain $\rho \sim 1$ at weak scale?
- ullet Implies a connection between M_{SUSY} and deviation from ho=1

- The hyper-charge (and Yukawa) interactions break this symmetry explicitly leading to RG breaking of custodial symmetry
- Thus as we 'run down' from SUSY breaking scale, custodial symmetry becomes more and more broken
- ullet But we know that experimentally $ho \sim 1$ at weak scale
- How high can SUSY breaking scale M_{SUSY} be and still be able to obtain $\rho \sim 1$ at weak scale?
- ullet Implies a connection between M_{SUSY} and deviation from ho=1
- Of course M_{SUSY} must be high enough to evade LHC constraints

The VEVs and Corrections to ρ

• Since custodial symmetry is broken at loop level, it is convenient to parametrize VEVs with non-custodial parametrization

The VEVs and Corrections to ρ

- Since custodial symmetry is broken at loop level, it is convenient to parametrize VEVs with non-custodial parametrization
- We now have three 'tan β s' parametrizing ratios of VEVs

$$\begin{split} \tan\beta &= \frac{v_2}{v_1}, \quad v_1(\beta) = \sqrt{2}\cos\beta v_H, \quad v_2(\beta) = \sqrt{2}\sin\beta v_H \\ \tan\theta_1 &= \frac{v_\chi}{v_\psi}, \quad \tan\theta_0 = \frac{\sqrt{2}v_\phi}{\sqrt{v_\psi^2 + v_\chi^2}} \\ v_\psi &= 2\cos\theta_1\cos\theta_0 v_\Delta, \quad v_\chi = 2\sin\theta_1\cos\theta_0 v_\Delta, \quad v_\phi = \sqrt{2}\sin\theta_0 v_\Delta \end{split}$$

The VEVs and Corrections to ρ

- Since custodial symmetry is broken at loop level, it is convenient to parametrize VEVs with non-custodial parametrization
- We now have three 'tan β s' parametrizing ratios of VEVs

$$\tan \beta = \frac{v_2}{v_1}, \quad v_1(\beta) = \sqrt{2} \cos \beta v_H, \quad v_2(\beta) = \sqrt{2} \sin \beta v_H$$

$$\tan \theta_1 = \frac{v_\chi}{v_\psi}, \quad \tan \theta_0 = \frac{\sqrt{2} v_\phi}{\sqrt{v_\psi^2 + v_\chi^2}}$$

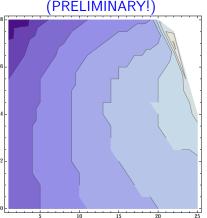
$$v_\psi = 2 \cos \theta_1 \cos \theta_0 v_\Delta, \quad v_\chi = 2 \sin \theta_1 \cos \theta_0 v_\Delta, \quad v_\phi = \sqrt{2} \sin \theta_0 v_\Delta$$

ullet This leads to a correction to ho-1 or lpha T given by

$$\alpha T = \frac{2v_{\phi}^2 - (v_{\psi}^2 + v_{\chi}^2)}{\frac{1}{2}(v_1^2 + v_2^2) + 2(v_{\psi}^2 + v_{\chi}^2)} = -4\frac{\cos 2\theta_0 v_{\Delta}^2}{v_H^2 + 8\cos^2\theta_0 v_{\Delta}^2}$$

ullet We see corrections to ho only will depend on parameter $heta_0$

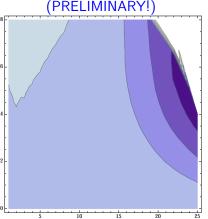
• We show contours of λ for $Log(M_{SUSY}/v_{EW})$ vs v_{Δ}



- We show 0.3 $\lesssim \lambda \lesssim$ 0.6 for $M_{SUSY} \lesssim$ 500 TeV and $v_{\Delta} \lesssim$ 25 GeV
- These points satisfy $\rho \sim$ 1, $m_H \sim$ 125 GeV and $m_t \sim$ 174 GeV at weak scale as well as condition of EWSB at weak scale!

Roberto Vega (SMU)

• We show contours of δT for $Log(M_{SUSY}/v_{EW})$ vs v_{Δ}



- We show $-0.06 \lesssim \delta T \lesssim 0$ for $M_{SUSY} \lesssim 500$ TeV and $v_{\Delta} \lesssim 25$ GeV
- These points satisfy $\rho \sim 1$, $m_H \sim 125$ GeV and $m_t \sim 174$ GeV at weak scale as well as condition of EWSB at weak scale!

Roberto Vega (SMU)

Ongoing Work/Conclusions

- So far we are finding that triplet VEV of \sim 25 GeV and $M_{SUSY}\sim$ 500 TeV satisfy m_h,ρ,m_t and EWSB constraints
- We have found the limit in which the GM model is recovered when $m_3^2, B_\Delta \to \infty$
- ullet Soft breaking masses are taken to be \sim TeV at SUSY breaking scale
- We are in the process of performing a more general parameter scan
- Note that scalar and fermion spectrum is in general not exactly custodial at weak scale
- Will lead to different phenomenology than studies assuming exact custodial multiplets at weak scale ⇒ different constraints
- We are currently exploring all of this

Ongoing Work/Conclusions

- So far we are finding that triplet VEV of \sim 25 GeV and $M_{SUSY}\sim$ 500 TeV satisfy m_h, ρ, m_t and EWSB constraints
- We have found the limit in which the GM model is recovered when $m_3^2, B_\Delta \to \infty$
- ullet Soft breaking masses are taken to be \sim TeV at SUSY breaking scale
- We are in the process of performing a more general parameter scan
- Note that scalar and fermion spectrum is in general not exactly custodial at weak scale
- Will lead to different phenomenology than studies assuming exact custodial multiplets at weak scale ⇒ different constraints
- We are currently exploring all of this
- Thank you!