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Introduction

A goal of theoretical cosmology is to find a quantum state of the
universe that explains our observations.

A goal of black hole physics is to find a quantum description of the
evolution of black holes.

In both cases it may be useful to find a restriction that eliminates
unphysical states.

Extreme Cosmic Censorship (ECC):

The universe is entirely nonsingular (except for singularities inside
black holes which go away when the black holes evaporate).



Classical Models of the Universe

Expansion + gravity + energy conditions → big bang singularity

Homogeneity + isotropy → Friedmann-Lemâıtre-Robertson-Walker

Planck + WP + highL + BAO (+ Ali Narimani) →
Λ = (1.0028± 0.0375)× 10−35 s−2 = (10.0065 Gyr)−2

≈ ten square attohertz ≈ (10 Gyr)−2.

De Sitter entropy S = 3π/Λ ≈ 532400 ≈ 5t2
0 ≈ 3.23× 10122,

tΛ ≡
√

3/Λ = (17.341± 0.325) Gyr
= (1.015± 0.019)× 1061 ≈ 2608/3 = 1.020× 1061 ≈ 1061,

t0 = 13.798± 0.037 Gyr
= (8.0760± 0.0217)× 1060 = (0.796± 0.013)tΛ

≈ 5× 2200 mynucuma = 5× 2200(196/195) = 8.0759× 1060,

H0t0 = 0.9568± 0.0089 ∼ ns = 0.9608± 0.0054.

CMB energy density when Ht = 1 will be about 35/222 times the
dark energy density, this approximation giving T0 = 2.72607 K.



Quantum Models of the Universe

A. Vilenkin, “Creation of Universes from Nothing,” Phys. Lett. B
117, 25 (1982) (tunneling wave function)

J. B. Hartle and S. W. Hawking, “Wave Function of the Universe,”
Phys. Rev. D 28, 2960 (1983) (no-boundary wave function).

A. D. Linde, “Quantum Creation of the Inflationary Universe,”
Lett. Nuovo Cim. 39, 401 (1984) (Linde’s wave function)

D. N. Page, “Symmetric-Bounce Quantum State of the Universe,”
JCAP 0909, 026 (2009) (symmetric-bounce wave function)



Infinite or Finite Numbers of Quantum States?

An ultimate goal would be to find the actual quantum state of the
universe.

An intermediate goal might be to find a restriction to a finite
number of states.

String theory is supposed to give an infinite number of states.

It has been argued that Λ > 0 allows only a finite number of
states, such as exp (A/4) where A = 12π/Λ is the area of the
cosmological event horizon of pure de Sitter spacetime.

However, Λ > 0 by itself does not seem to be sufficient.



Infinitely Many Quantum States with Fixed Λ > 0

Λ > 0 de Sitter at very late times has an arbitrarily large volume,
and it would seem one could get arbitrarily many perturbed states.

If one evolves backward in time de Sitter with arbitrarily many
perturbations added at arbitrarily late times, it would probably lead
to a big-bang singularity.

One could alternatively add infinitely many perturbations to the
unwrapped Nariai metric (the covering space of S2 × dS2, which
has an infinitely long time-symmetric throat).

However, this would also probably evolve backward and forward to
big bang and big crunch singularities.

Nevertheless, there can be asymptotically locally de Sitter regions
to the past and future, so for a finite number of states it is not
sufficient to require that there exist one or more asymptotically de
Sitter regions in both the past and future.



No-Bang Quantum States

In “No-Bang Quantum State of the Cosmos,” Class. Quant. Grav.
25, 154011 (2008), for getting a finite number of states I proposed
excluding states that have a big bang or big crunch or which split
into multiple asymptotic de Sitter spacetimes as the Nariai metric
would with a large class of perturbations.

I conjecture that this single-nonsingular-de Sitter restriction would
lead to a finite number of quantum states.

In “Finite Canonical Measure for Nonsingular Cosmologies,” JCAP
1106, 038 (2011), I showed that the total canonical
(Liouville-Henneaux-Gibbons-Hawking-Stewart) measure is finite
for completely nonsingular Friedmann-Lemâıtre-Robertson-Walker
classical universes with a minimally coupled massive scalar field
and a positive cosmological constant. This suggests that the
number of nonsingular quantum states may also be finite.



The Equal-Mixture No-Bang Quantum State

I proposed a no-bang quantum state of the cosmos which is the
equal mixture of the Giddings-Marolf states that are asymptotically
single de Sitter spacetimes in both past and future and are regular
on the throat or neck of minimal 3-volume.

However, after my proposal of “Cosmological Measures without
Volume Weighting,” JCAP 0810, 025 (2008), partially solving the
Boltzmann-brain problem by weighting by the spatial density of
observations rather than by the total number on a hypersurface, I
found that the no-bang state then appears to suffer qualitatively
from the same problem as the no-boundary state of being
dominated by thermal perturbations of nearly empty de Sitter
spacetime, so that almost all observers would presumably be
Boltzmann brains.



Symmetric-Bounce Quantum State

Therefore, I went to “Symmetric-Bounce Quantum State of the
Universe,” JCAP 0909, 026 (2009), a quantum state of the
universe that has an initial state that is macroscopically time
symmetric about a homogeneous, isotropic bounce of extremal
volume and that at that bounce is microscopically in the ground
state for inhomogeneous and/or anisotropic perturbation modes.

When combined with volume averaging and “Agnesi Weighting for
the Measure Problem of Cosmology,” JCAP 1103, 031 (2011) for
damping the weighting of hypersurfaces at late times to avoid a
divergence from an infinite lifetime of the universe, the
symmetric-bounce state seems to be consistent with observations.

However, it is not so elegant as I would wish and also is not yet
unambiguously defined for nonlinear perturbations of the initial
bounce state.



Extreme Cosmic Censorship

Although I do not have the final answer as to what the quantum
state of the universe is, I suggest that a reasonable state might
obey

Extreme Cosmic Censorship (ECC):

The universe is entirely nonsingular (except for singularities inside
black holes which go away when the black holes evaporate).

Although I came to this idea independently, it is a strong extension
to the future as well as to the past of Anthony Aguirre’s proposal
in “Eternal Inflation, Past and Future,” arXiv:0712.0571:

Consistent Cosmic Censorship (CCC):

Without exception, no physical observer can physically observe a
past singularity.



Details of Extreme Cosmic Censorship

I want to exclude big-bang and big-crunch singularities but not
those inside black holes.

If one has a spacelike curve running through a black hole but
joining two timelike curves that stay outside, by distorting the
spacelike curve one can bring it outside the black hole and then
move it and its endpoints arbitrarily far forward in time, past the
evaporation of the hole.

However, if one has a perturbed Nariai metric that evolves to
multiple asymptotically de Sitter regions, a spacelike curve joining
one to another cannot be pushed arbitrarily far forward in time
without running into a big crunch separating the different
asymptotic de Sitter regions.

Thus I am proposing to exclude singularities that a sequence of
spacelike curves cannot go around.



Extreme Cosmic Censorship and Black Hole Firewalls

Although I have proposed Extreme Cosmic Censorship mainly for
cosmology, it seems to apply to the firewall problem for black holes.

A. Almheiri, D. Marolf, J. Polchinski and J. Sully, “Black Holes:
Complementarity or Firewalls?,” JHEP 1302, 062 (2013) (AMPS)
give a provocative argument that suggests that an “infalling
observer burns up at the horizon” of a sufficiently old black hole,
so that the horizon becomes what they called a “firewall.”

Unitary evolution suggests that at late times the Hawking radiation
is maximally entangled with the inside of the remaining black hole.
This further suggests that what is just inside cannot be
significantly entangled with what is just outside.
But without this latter entanglement, an observer falling into the
black hole should be burned up by high-energy radiation.



Excluding Firewalls with Extreme Cosmic Censorship

Allowing quantum states without the entanglement across a black
hole horizon is allowing states that are singular just inside the black
hole or would rapidly become singular when evolved back in time.

Such quantum states would be excluded by Extreme Cosmic
Censorship.

Without such an exclusion, the number of quantum states for a
black hole could be unbounded, greatly exceeding the
Bekenstein-Hawking exp (A/4).

I suggest that it is impossible to form firewall states from
nonsingular initial conditions (or from sending in regular data from
a boundary of AdS in AdS/CFT).

When firewall states are excluded, the early Hawking radiation can
be maximally entangled with the physically allowed black hole
states without violating quantum monogamy.



When Is Nonlocality Important

The solution to the firewall problem probably also involves
nonlocality, the fact that one does not have localized operators
that commute in quantum gravity. For example, generically
changing the quantum state in the bulk changes the mass and
angular momentum recorded in the gravitational field at infinity.

Y. Kiem, H. L. Verlinde, and E. P. Verlinde, “Black-Hole Horizons
and Complementarity,” Phys. Rev. D52, 7053-7065 (1995):

“Space-time complementarity (kinematical).

Different microscopic observables that are spacelike separated on a
Cauchy surface Σ, but have support on matter field configurations
that, when propagated back in time, have collided with
macroscopically large center of mass energies, are not
simultaneously contained as commuting operators in the physical
Hilbert space. Instead such operators are complementary.”



Possible Criterion for When Nonlocality Is Important

Double Stress-Tensor Criterion:

Relevant operators at two events X and Y do not commute if there
is no third event Z in the spacetime connected by causal geodesics
to both X and Y such that when the stress-energy tensor at X is
parallel propagated along the XZ geodesic to give Tµν(X ,Z ) at Z
and the the stress-energy tensor at Y is parallel propagated along
the YZ geodesic to give Tµν(Y ,Z ) at Z , the trace of the
contraction, Tµν(X ,Z )Tµν(Y ,Z ), is less than one in Planck units.



Applying the Double Stress-Tensor Criterion

Consider a k = 0 FLRW universe with points X and Y at the
present time t0 and present Hubble constant H0.

In many cases the minimum for Tµν(X ,Z )Tµν(Y ,Z ) is for point
Z at a/a0 = 1/(1 + z) from which null geodesics sent in opposite
directions reach X and Y . Then the gamma-factor between the
comoving frames parallel-transported back from X and Y to Z is

γ = 1
2 [(1 + z)2 + (1 + z)−2].

Tµν(X ,Z )Tµν(Y ,Z )=(ρ+P)2γ2−2P(ρ−P)≈
[

3
16πH2

0 (1+z)2
]2

.

If our past has inflation with inflationary Hubble expansion rate H,
this reaches unity when X and Y are separated by a distance

D ≈ 8
H0H

√
π

3Ωm
∼ 15t0

H ,

which is a few times the present horizon scale multiplied by the
ratio of the inflationary horizon scale to the Planck scale.



Boost Measure Weighting

Choose a fiducial point X in the spacetime, and count only
observations at points Y such that there exists a point Z in the
spacetime causally related to both X and Y and for which
Tµν(X ,Z )Tµν(Y ,Z ) < 1.

This Boost Measure is somewhat similar to the causal patch
measure, but it is not quite so restrictive.

In typical nonvacuum cosmologies with comoving matter, this
boost measure criterion will keep the spatial region of the
observations finite, though it will not restrict the temporal
separation along the matter worldlines.

One would still need something, such as Agnesi weighting, to
regulate the time, or else assume that any vacuum in the
landscape will decay faster than the formation of Boltzmann
brains, as is typically done in certain other measures such as the
causal patch measure.



Summary

Extreme Cosmic Censorship (ECC) (The universe is entirely
nonsingular, except for transient black holes.) may be useful for
restricting quantum states in cosmology and in black holes and in
solving the firewall problem.

The Double Stress-Tensor Criterion (Operators at X and Y
may not commute unless there is a causally related Z such that
Tµν(X ,Z )Tµν(Y ,Z ) < 1.) may be useful for suggesting when
nonlocality is important in quantum gravity.

The related Boost Measure (Only include observations at points
Y such that there exists a point Z causally related to both Y and
a fiducial point X for which Tµν(X ,Z )Tµν(Y ,Z ) < 1.) might be
useful as another alternative for the measure problem of cosmology.

There are certainly many deep open problems in cosmology,



Précis

Assumptions:

I Initial pure state of large Schwarzschild black hole

I Unitary evolution (no loss of information)

I Complete evaporation into photons and gravitons

I Rapid scrambling, so von Neumann entropy near maximum

Results for von Neumann entropy of emitted Hawking radiation:

I Initially increases and then decreases

I Goes back to zero when black hole decays away at time
tdecay ≈ 8895 M3

0 ≈ 1.159× 1067(M0/M�)3yr

I Peaks at t∗ ≈ 0.5381 tdecay ≈ 4786 M3
0

I SvN(t∗) ≈ 0.5975 S̃BH(0) ≈ 6.268× 1076 (M0/M�)2

D. N. Page, “Time Dependence of Hawking Radiation Entropy,”
arXiv:1301.4995 [hep-th].



Introduction

Interest in black hole information has surged recently with
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, “Black Holes:
Complementarity or Firewalls?,” JHEP 1302 (2013) 062.
They give a provocative argument that suggests that an “infalling
observer burns up at the horizon” of a sufficiently old black hole,
so that the horizon becomes what they called a “firewall.”

Unitary evolution suggests that at late times the Hawking radiation
is maximally entangled with the inside of the remaining black hole.
This further suggests that what is just inside cannot be
significantly entangled with what is just outside.
But without this latter entanglement, an observer falling into the
black hole should be burned up by high-energy radiation.



Time Dependence of Hawking Radiation Entropy

One cannot externally observe entanglement across the horizon.
However, it should eventually be transferred to the radiation.
Therefore, we would like to know the retarded time dependence of
the von Neumann entropy of the Hawking radiation.

A. Strominger, “Five Problems in Quantum Gravity,” Nucl. Phys.
Proc. Suppl. 192-193, 119 (2009) [arXiv:0906.1313 [hep-th]], has
emphasized this question and outlined five candidate answers:

I bad question

I information destruction

I long-lived remnant

I non-local remnant

I maximal information return

I shall assume within proof maximal information return.



Assumptions

I Unitary evolution (no loss of information)

I Initial approximately pure state
(e.g., SvN(0) ∼ S(star) ∼ 1057 � S̃BH(0) ∼ 1077)

I Nearly maximal entanglement between hole and radiation

I Complete evaporation into just final Hawking radiation

I Nonrotating uncharged (Schwarzschild) black hole

I Initial black hole mass large, M0 > M�

I Massless photons and gravitons; other particles m > 10−10 eV

I Therefore, essentially just photons and gravitons emitted



Arguments for Nearly Maximal Entanglement
D. N. Page, “Average Entropy of a Subsystem,” Phys. Rev. Lett.
71, 1291 (1993) [gr-qc/9305007].
“There is less than one-half unit of information, on average, in the
smaller subsystem of a total system in a random pure state.”

D. N. Page, “Information in Black Hole Radiation,” Phys. Rev.
Lett. 71, 3743 (1993) [hep-th/9306083].
“If all the information going into gravitational collapse escapes
gradually from the apparent black hole, it would likely come at
initially such a slow rate or be so spread out . . . that it could never
be found or excluded by a perturbative analysis.”

Y. Sekino and L. Susskind, “Fast Scramblers,” JHEP 0810, 065
(2008) [arXiv:0808.2096 [hep-th]], conjecture:

I The most rapid scramblers take a time logarithmic in the
number of degrees of freedom.

I Black holes are the fastest scramblers in nature.

These conjectures support my results using an average over all
pure states of the total system of black hole plus radiation.



Numerical Calculations

D. N. Page, “Particle Emission Rates from a Black Hole: Massless
Particles from an Uncharged, Nonrotating Hole,” Phys. Rev. D 13,
198 (1976).
D. N. Page, “Particle Emission Rates from a Black Hole. 2.
Massless Particles from a Rotating Hole,” Phys. Rev. D 14, 3260
(1976).
D. N. Page, “Particle Emission Rates from a Black Hole. 3.
Charged Leptons from a Nonrotating Hole,” Phys. Rev. D 16,
2402 (1977).

Photon and graviton emission from a Schwarzschild black hole:

I dM/dt = −α/M2 ≈ −0.000 037 474/M2.

I dS̃BH/dt = −8πα/M ≈ −0.000 941 82/M.

I dS̃rad/dt ≈ 0.001 398 4/M = −βdS̃BH/dt.

I β ≡ (dS̃rad/dt)/(−dS̃BH/dt) ≈ 1.4847.



Semiclassical Evolution
Black hole mass time dependence:

M(t) = (M3
0 − 3αt)1/3 = M0(1− t/tdecay)1/3.

Decay time for a large Schwarzschild black hole:

tdecay = γM3
0 ≡

1

3α
M3

0 ≈ 8895M3
0 ≈ 1.159× 1067

(
M0

M�

)3

yr.

Semiclassical Bekenstein-Hawking black hole entropy:

S̃BH(t) = 4πM2
0

(
1− t

γM3
0

)2/3

≈ 4πM2
0

(
1− t

8895M3
0

)2/3

.

Semiclassical Hawking radiation entropy:

S̃rad(t) = 4πβM2
0

[
1−

(
1− t

γM3
0

)2/3
]

≈ 4π(1.4847)M2
0

[
1−

(
1− t

8895M3
0

)2/3
]
.



von Neumann Entropies of the Radiation and Black Hole

Take the semiclassical entropies S̃rad(t) and S̃BH(t) to be
approximate upper bounds on the von Neumann entropies of the
corresponding subsystems with the same macroscopic parameters.

Therefore, the von Neumann entropy of the Hawking radiation,
SvN(t), which assuming a pure initial state and unitarity is the
same as the von Neumann entropy of the black hole, should not be
greater than either S̃rad(t) or S̃BH(t).

Take my 1993 results as suggestions for the
Conjectured Anorexic Triangle Hypothesis (CATH):

Entropy triangular inequalities are usually nearly saturated.

This leads to the assumption of nearly maximal entanglement
between hole and radiation, so SvN(t) should be near the minimum
of S̃rad(t) and S̃BH(t).



Time of Maximum von Neumann Entropy

Since the semiclassical entropy S̃rad(t) is monotonically increasing
with time, and since the semiclassical entropy S̃BH(t) is
monotonically decreasing with time, the maximum von Neumann
entropy is at the crossover point, at time

t∗ =εtdecay≈0.5381 tdecay≈4786 M3
0 ≈6.236×1066(M0/M�)3yr,

with
ε ≡ 1− [β/(β + 1)]3/2 ≈ 0.5381,

at which time the mass of the black hole is

M∗ = [β/(β + 1)]1/2M0 ≈ 0.7730 M0,

and its semiclassical Bekenstein-Hawking entropy 4πM2 is

S̃BH∗ = [β/(β + 1)]S̃BH(0) ≈ 0.5975 S̃BH(0).



Maximum von Neumann Entropy of the Hawking Radiation

At the time t∗ when S̃rad(t) = S̃BH(t), the von Neumann entropy
of the radiation and of the black hole is maximized and has the
value

S∗≡SvN(t∗)= S̃rad(t∗)= S̃BH(t∗)=

(
β

β + 1

)
4πM2

0 ≈0.5975 S̃BH(0)

=0.5975(4πM2
0 )≈7.509M2

0 ≈6.268×1076(M0/M�)2.

Note that this maximum of the von Neumann entropy is about
19.5% greater than half the original semiclassical
Bekenstein-Hawking entropy of the black hole. The time t∗ for the
maximum von Neumann entropy is about 0.8324 times the time
t1/2 = (1− 2−3/2)tdecay ≈ 0.6464 tdecay ≈ 1.201 t∗ for the black
hole to lose half its area and semiclassical Bekenstein-Hawking
entropy.



Time Dependence of the Entropy of the Hawking Radiation

The von Neumann entropy of the Hawking radiation SvN(t) from a
large nonrotating uncharged black hole is very nearly the
semiclassical radiation entropy S̃rad(t) for t < t∗ and is very nearly
the Bekenstein-Hawking semiclassical black hole entropy S̃BH(t)
for t > t∗, or, using the Heaviside step function θ(x),

SvN(t) ≈ 4πβM2
0

[
1−

(
1− t

tdecay

)2/3
]
θ(t∗ − t)

+ 4πM2
0

(
1− t

tdecay

)2/3

θ(t − t∗)

≈ 4π(1.4847)M2
0

[
1−

(
1− t

8895M3
0

)2/3
]
θ(4786M3

0 − t)

+ 4πM2
0

(
1− t

8895M3
0

)2/3

θ(t − 4786M3
0 ).



Plot of Hawking Radiation Entropy vs. Time



Corrections to the Approximate Entropy Formula

I Fluctuations in M(t): ∆S = O(M0).

I Fluctuations in x(t): ∆S = O(M0).

I Entropy of black hole motion: ∆S = O(ln M0).

I Nonmaximal entanglement: ∆S = O(1).

I Entropy near black hole: ∆S = O(1).

I Fuzziness of t boundary: ∆S = O(1).



Impure Black Hole Initial States

Suppose the black hole forms in a mixed state of von Neumann
entropy S0, nearly maximally entangled with a reference system
(X ) with total state pure. Let the hole be (Y ) and the radiation
be (Z ), with effective Hilbert-space dimensions X , Y , and Z (last
two changing with time).

X < YZ → S(X ) = S(YZ ) ≈ ln X = S0 for all time.

(1) XZ < Y → Z < XY , S(XZ ) = S(Y ) ≈ S0 + ln Z = S0 + S̃rad,
S(Z ) = S(XY ) ≈ ln Z = S̃rad.

(2) Y < XZ < X 2Y → S(Y ) = S(XZ ) ≈ ln Y = S̃BH,
S(Z ) = S(XY ) ≈ ln Z = S̃rad.

(3) XY < Z → Y < XZ , S(XY ) = S(Z ) ≈ S0 + ln Y = S0 + S̃BH,
S(Y ) = S(XZ ) ≈ ln Y = S̃BH.



Entropy Time Dependence for Impure States

Let f = S0/S̃BH(0) = (ln X )/(4πM2
0 ).

τ = 1− S̃BH(t)/S̃BH(0) = 1− (1− t/tdecay)2/3.

τ12 = 1−f
1+β , τ23 = 1+f

1+β .

SBH = S(Y ) = S̃BH(0)[θ(τ12 − τ)(f + βτ) + θ(τ − τ12)(1− τ)].

At τ = τ12 or t12 = tdecay{1− [(β + f )/(1 + β)]3/2}, the von
Neumann entropy of the black hole reaches its peak of
SBH(t12) = [(f + β)/(1 + β)]S̃BH(0), which is less than the initial
Bekenstein-Hawking entropy S̃BH(0) = 4πM2

0 unless the black hole
starts maximally mixed, SBH(0) = S̃BH(0), or f = 1.

SvN = S(Z ) = S̃BH(0)[θ(τ23 − τ)(βτ) + θ(τ − τ23)(1 + f − τ)].

At τ = τ23 or t23 = tdecay{1− [(β − f )/(1 + β)]3/2}, the von
Neumann entropy of the Hawking radiation reaches its peak of
SBH(t23) = β[(1 + f )/(1 + β)]S̃BH(0), which for f = 1 is
[2β/(1 + β)]S̃BH(0) ≈ 1.1951 S̃BH(0) at t23 ≈ 0.9138 tdecay.



Plot of Hole and Radiation Entropy vs. Time for f = 0

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 0.1

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 0.2

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 0.3

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 0.4

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 0.5

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 0.6

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 0.7

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 0.8

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 0.9

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Plot of Hole and Radiation Entropy vs. Time for f = 1

Solid line is the von Neumann entropy of the Hawking radiation.
Dashed line is the von Neumann entropy of the black hole.

Dotted line is [S(X ) + S(Z )− S(XZ )]/[2S(X )].



Conclusions

Under the assumptions that a Schwarzschild black hole of initial
mass M0 > M� (too massive to emit anything but photons and
gravitons) starts in nearly a pure quantum state and decays away
completely by a unitary process while being nearly maximally
scrambled at all times, the von Neumann entropy of the Hawking
radiation increases up to a maximum of
S∗ ≈ 0.5975(4πM2

0 ) ≈ 7.509M2
0 ≈ 6.268× 1076(M0/M�)2 at time

t∗ ≈ 0.53810 tdecay ≈ 4786M3
0 ≈ 6.236× 1066(M0/M�)3yr and

then decreases back down to near zero.

If the black hole starts in a maximally mixed state (f = 1, so
S0 ≡ f S̃BH(0) = S̃BH(0) = 4πM2

0 ), the von Neumann entropy of
the Hawking radiation increases from zero up to a maximum of
S∗′ ≈ 1.1951(4πM2

0 ) ≈ 15.018M2
0 ≈ 1.254× 1077(M0/M�)2 at

t∗′ ≈ 0.91384 tdecay ≈ 8129M3
0 ≈ 1.059× 1067(M0/M�)3yr and

then decreases back down to S0 = 1.049× 1077(M0/M�)2.



Acknowledgments

I Leonard Susskind: invitation to firewall meeting 2012 Nov. 30

I Andrew Strominger: asking about entropy vs. time

I Other participants: questions and discussions

I Samuel Braunstein: suggestion for using reference system

I NSERC of Canada: financial support



Plot of Hole and Radiation Entropy vs. Time for f = 0



Plot of Hole and Radiation Entropy vs. Time for f = 0.1



Plot of Hole and Radiation Entropy vs. Time for f = 0.2



Plot of Hole and Radiation Entropy vs. Time for f = 0.3



Plot of Hole and Radiation Entropy vs. Time for f = 0.4



Plot of Hole and Radiation Entropy vs. Time for f = 0.5



Plot of Hole and Radiation Entropy vs. Time for f = 0.6



Plot of Hole and Radiation Entropy vs. Time for f = 0.7



Plot of Hole and Radiation Entropy vs. Time for f = 0.8



Plot of Hole and Radiation Entropy vs. Time for f = 0.9



Plot of Hole and Radiation Entropy vs. Time for f = 1


