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WMAP W-band, Template Cleaned

Cleaned with Planck 353 GHz dust map and low-frequency templates. 12" resolution.




Planck SMICA Map

Planck /SMICA map, 5" resolution.




WMAP

Established and tested the standard model of
@ cosmology: Flat, adiabatic & Gaussian ptb., 6
parameters.

All you need are:

Oph? Qch? Ho Os Tt ns
Amazingly this hold true for Planck data.

WMAP TT /: 33-1200, 2= 1200/1168 (PTE =0.251)
TE /: 24-800, x2=815/777 (PTE =0.165)

All 1: v*=3336/3115 (PTE =0.003)
Driven by low-| polarization.
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(2) WMAP

Demonstrated _ *®|
. v
superhorizon =~ =%
. Ql
fluctuations. G
E 2000
This TE ant.i- ; 1000
correlation 1s the
best evidence for X
the existence of 15
super horizon

fluctuations, a key
element of the
standard model.

Spergel & Zaldarriaga (1997)
Peiris et al. (2003)
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Consider a fluctuation in potential at
large angular scales.

<>
eH
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Photons climb out of well so
this appears as a cold splotch
on large angular scales.

The primordial plasma flows
into the well.

An electron sees a local
quadrupole and thus scatters
polarized light towards us.
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Consider a fluctuation in potential at
large angular scales.

<>
eH

Photons climb out of well so
\/— this appears as a cold splotch

on large angular scales.

The primordial plasma flows
into the well.

An electron sees a local
«7 quadrupole and thus scatters

Polarization nolarized light towards us.
direction



Consider a fluctuation in potential at
large angular scales.

At large angular scales we
expect the direction of the
correlated component of the
polarization to be radial
around cold spots (or potential
minima or over dense regions).

T here 1s negative, and the E
polarization “positive” and so
TE 1s negative.

If fluctuations are superhorizon there should be an anti-
correlation for 6>1.2°



3 WMAP

Got a good start on the early universe or
“Inflation parameters”: r, n, dn,/dk, f,

0.25

Planck+WP-+highL
Planck +WP-+BAQO
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Power law inflation
Low Scale SSB SUSY
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Current best B-mode limit, r<0.74 (BICEP/Chiang et al.)

More to r than inflation

0.00




WMAP Observations

30% of the sky in 1 hour. Heavy cross linking.
Just a few parameters for gain model for 9 years.

17 seasons of Nyquist-sampled Jupiter mapping
to determine beames.

Noise model independent of cosmology. Depends
onlyonN,,..

Unity transfer function & low 1/f.
Sidelobe mapping on the ground and in flight.
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New dipole and gain model. ** Small pointing error corrected.
Physical optics model the beams on A side. Use K and Ka bands for foreground cleaning.
Maximum likelihood for 1<30, pseudo C, for I>30
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Reassess gain model, 0.2% ** 10 seasons for beam. Measure at -44dB, 0.5% Omega
beyond that. ** Full physical optics model. ** Reassess far sidelobes, enlarge transition
radius, mode sidelobe accounting into time line. ** Improved likelihood at 1<32
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Continued improved improvement in beams. A and B separately
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Reassess ILC and move to optimal C_| estimator.
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Power
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From Mark Halpern



Power Ratiog [binning Al = 40, I =10 not included]
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Spectra and maps do not agree at 1.2% level in temperature

From Kris Gorski Difference does not depend on the masking or the foregrounds.



Some possible systematic
errors

Beams
Sidelobes

Calibration




Beam Mapping & Modeling

top - beam maps constructed from in-flight
observations of Jupiter.

Cosmology bands, V & W

middle - physical optics model; mirror figure
fit to in-flight beam maps.

y (deg)

bottom - residual: data — model.

Hill et al., Ap]S, 2009, 180, 246

Scan symmetrizes beam.




Mirror Distortion Fits

B-side

top - primary mirror
distortions inferred from fits
to in-flight observations of
Jupiter.

Grey curves indicate the
mean radius at which W

band illumination reaches
—15 dB.

cm -60 -40 -20 0 20 0 60 <cm-60 -40 -20 O 20 40 60

0.10 I mmm 0.23 0.27 I mmm 0.40 Note ~1.3 mm PP and 0.6
cm cm

mm over illuminated region.

bottom - same for secondary
mirror.
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Determination of Model Threshold
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V-band beam profiles for different maximum k values in the model of the primary reflectors.
In going from indigo to red is an increase of 0.1% in sold angle.

Hill et al., Ap]S, 2009, 180, 246
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Beam aside: ACT and SPT
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From Matthew Hasselfield
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WMAP Calibration

@ Calibration is done on the CMB dipole from the
annual modulation of WMAP’s L2 orbit around the
solar barycenter.

® A baseline and gain model are iteratively solved for
with 1 hr averages.

® Sidelobe contribution removed at this step.
0.2% calibration uncertainty from sims.

Cosmic dipole remains in timeline and is expressed
in the mapmaking.



Instrument Performance over the Years
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Raw gain factors (¢=dV/dT) change by ~2% over
9 years. Due to changes in spacecraft
temperature and amplifier properties.

Multiple years of data help to separate

these effects and improve uncertainty
in the gain model.

A few parameters per DA describe the
gain for entire mission.

Change in instrument offset, b, vs. time,
AV=¢gAT+b (AT)=0
Drifts < ~5 mK over 9 years.

< 1% of data flagged as unusable.



WMAP /ILC minus Planck/SMICA [smoothed to 1deg]| on KQ85

—69.2 e @000 o (7.8

From Eiichiro Komatsu. There is a 6.3 uK residual dipole in the ILC-SIMCA map that
points in the CMB dipole direction. Quadrupolar residual about 10x larger.

May account for 0.2% of the difference.



T=T.0,/C a possible inconsistency
J==)==B

Planck Collaboration: Planck 2013 results. V. LFI calibra
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Fig. 18. The Jupiter spectrum for LFI compared to the WMAP
spectrum (Weiland et al. 2011). In both cases, measurement er-
rors are smaller than the size of the symbols.

Table 12. Averaged brightness temperatures for planets®.

6. Conclusions
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