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HST: A Fully Quantum Model of Cosmology

I Universe evolves from a maximal entropy p = ρ state, to one
in which different identical maximal entropy systems are
coupled together in an SO(1, 4) invariant way, giving localized
fluctuations.

I Jacobsonian THEFT of this model is FRW with H(t) plus
small fluctuations.

I Zero vorticity fluid so can be brought to co-moving gauge.
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General Properties of Slow Roll and HST
I In co-moving gauge, gauge invariant fluctuations around

approximately dS flat FRW are encoded in the metric.

hij = a2(t)[(1 + 2ζ)δij + γij ],

where γ is transverse and traceless.

I In this gauge, ζ = Hδτ = H
Ḣ
δH, where τ(x) is the proper time

separation between co-moving hypersurfaces. δH and γ are
both spatial fluctuations of curvature and we expect them to
be the same order of magnitude. Thus scalar fluctuations
larger than tensor by slow roll factor.

I Fluctuations of δH and γ, can be computed as expectation
values

〈ζ1 . . . ζnγ1 . . . γk〉 = Tr [ρS1 . . . SnT1 . . .Tk ].

S and T are commuting operator valued functions on the
3-sphere, transforming in representations of SO(1, 4). ρ is
approximately invariant density matrix.

I True in slow roll (Maldacena) as well as HST.
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General Properties

I Maldacena’s squeezed limit theorem says 3-point functions
involving zero momentum scalar are smaller by a slow roll
factor. SO(1, 4) invariance determines general form of all 3
point functions (Maldacena, Pimentel, McFadden, Skenderis,
Trivedi, Mata, Raju, Shiraishi,Nitta,Yokoyama, Garriga,
Vilenkin, Soda, Kodama, Nozawa, ) so any 3 pt function
involving scalars too small to be measured.



Contrasts Between Slow Roll and HST

I In slow roll, S and T are modeled as free fields in adiabatic
Bunch Davies vacuum of FRW space-time, H(t).

Normalization of two point functions fixed ∝ (H(t)
mP

)2.
SO(1, 4) reps. picked at extreme limits of rep. theory.

Normalization of k−point functions ∼ (H(t)
mP

)k , but
coefficients depend on terms in QUEFT. Choice of
Bunch-Davies is massive fine tuning of initial conditions.

I Representation theory of T the same in HST as slow roll, but
S can be anything in scalar complementary series of unitary
irreps, ∆S ∈ [0, 3/2]. Density matrix plausibly invariant for
generic initial conditions, but not Bunch Davies. Order of

magnitude normalizations ∼ ( H
mP

)k where π
M4

P
H2 is the entropy

of the individual microsystems that are combined to make the
SO(1, 4) invariant theories. Notice that, unlike the slow roll
case, this factor is time independent and won’t contribute to
the tilt. In particular, the tensor tilt is predicted to be zero in
HST models.
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Contrast Between Slow Roll and HST

I The scalar tilt gets contributions from the geometric
pre-factor H2

Ḣ
, as well as from ∆S if ∆S 6= 0.

I Unfortunately, we can choose different geometries Hslow roll(t),
HHST (t) which can partially mask these differences. Only the
absence of tensor tilt differentiates between the two models
decisively. But this is, as yet, unmeasured.
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The Tensor Three Point Function

I Three functional forms allowed by SO(1, 4), one violates
parity. Lowest order derivative expansion gives only one of
these. Nominally, the second should be down by (H/mP)
because it comes from higher order terms in the derivative
expansion of the bulk QUEFT.

I The parity violating term cannot appear in any order in the
derivative expansion. Odd powers of parity violating terms in
the effective action can only affect the phase of the
Wheeler-DeWitt wave function. The inflationary correlation
functions are averages with the absolute square of the wave
function.

I In HST, there is no such restriction, unless we impose parity as
a symmetry of the underlying model. There is no compelling
reason to do so, at least at our present level of understanding.

I Unfortunately, the prospect of measuring the tensor 3-point
function seems remote.
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Conclusions

I The existing data are compatible with a huge class of models,
obeying only a few symmetry postulates and general rules of
cosmological perturbation theory.

I Differences between Slow Roll and HST models, which are of
a deep conceptual nature, can be masked by the flexibility of
choosing the background FRW in both frameworks.

I Absence of tensor tilt, the only clear signal for HST in two
point functions. Tensor 3 pt. function has crucial information,
but good luck in measuring it this century :-).
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Dynamics of HST Cosmology
I An HST cosmology is an infinite collection of quantum

systems, labeled by a lattice on the initial value surface of a
Big Bang universe. Nearest neighbors represent time-like
trajectories, which maintain a space-like separation of one
Planck unit throughout history. The rest of the geometry is
determined by dynamical overlap conditions: at any time the
intersection of the causal diamonds on two trajectories, will
contain a maximal size causal diamond, corresponding to a

Hilbert space of dimension e
A

4L2
P . Dynamics in proper time of

each trajectory must give a compatible density matrix in the
overlap.

I There exists a complete model obeying these rules, which has
a coarse grained space-time interpretation as a flat FRW
model with an equation of state that is the sum of a p = ρ
component and a cosmological constant. At late times, the
local model has a time independent Hamiltonian, on a Hilbert

space of finite dimension, eπ(
MP
H

)2
.



Dynamics of HST Cosmology
I An HST cosmology is an infinite collection of quantum

systems, labeled by a lattice on the initial value surface of a
Big Bang universe. Nearest neighbors represent time-like
trajectories, which maintain a space-like separation of one
Planck unit throughout history. The rest of the geometry is
determined by dynamical overlap conditions: at any time the
intersection of the causal diamonds on two trajectories, will
contain a maximal size causal diamond, corresponding to a

Hilbert space of dimension e
A

4L2
P . Dynamics in proper time of

each trajectory must give a compatible density matrix in the
overlap.

I There exists a complete model obeying these rules, which has
a coarse grained space-time interpretation as a flat FRW
model with an equation of state that is the sum of a p = ρ
component and a cosmological constant. At late times, the
local model has a time independent Hamiltonian, on a Hilbert

space of finite dimension, eπ(
MP
H

)2
.



Dynamics of HST Cosmology

I The density matrix, averaged over a few Hubble times, is
maximally uncertain. Trajectories separated by more than MP

H
steps on the lattice, have no overlaps.

I Model of inflation takes e3Ne of these uncorrelated systems
and couples them together gradually, starting with a “central
observer” and moving out. The Hamiltonian is built to
become the generator of SO(1, 4) in the limit Ne goes to
infinity. Density matrix of the whole system plausibly becomes
invariant. Corrections e−Ne for correlation functions of a small
number of observables.

I Variables localized on a “fuzzy 3 sphere”. Fluctuations come
from local fluctuations of individual subsystems. For small k ,
k−point functions scale as (n)−k , (n = RILP) by the usual
rules of statistical mechanics.
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Dynamics of HST Cosmology

I By the rules of HST, horizon radius at the end of inflation is

e
3Ne

2 H−1. This must have enough entropy to account for
entropy in fluctuations of CMB ∼ δTT 2R3. This gives about
56 e-folds for unification scale inflation, which is what is
indicated by the size of fluctuations. On the other hand
Ne ≤ 2

3 ln (RH) where R is our cosmological horizon. So
56 ≤ Ne ≤ 88 in HST models. Probably on low end to
account for post-inflationary expansion of the horizon.

I We don’t understand particle physics in HST language well
enough to build an HST model of reheating, radiation and
matter dominated eras.
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Meta-Cosmological Problems

I HST inflation model has two parameters n,N: essentially the
inflationary and the final Hubble radii, in Planck units. We
chose them to fit data. How does nature choose them?

I There is a fully consistent HST model in which a ball of
radius R, evolves from p = ρ to dS with radius R = NLP ,
while the region outside it remains in the p = ρ model.
Jacobsonian geometry is black hole with dS interior embedded
in p = ρ FRW.

I Einstein’s equations (the hydrodynamics of space-time) have
solutions with many widely separated black holes, with various
radii, Ni , and relative initial velocities. Black holes may or
may not collide.

I IF our inflationary model exists, we can supply each of these
black holes with its own inflationary 1� ni � Ni . Thus, we
can have environmental selection of “good” values of (n,N)
for our universe.
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Meta Cosmological Problems
I In HST N is connected to SUSY breaking via

m3/2 ∼ 10N− 1
2MP . Changing c.c. drastically affects both

strong and weak interactions, and physics of nuclei, atoms,
stars. N plausibly determined by constraint that particle
physics more or less as it is.

I Given this, Weinberg’s bound becomes relatively strong
constraint on n: n < C (ρ0

Λ )1/3, where ρ0 is the dark matter
density at the beginning of matter domination, and is
plausibly fixed once N is fixed. Given the observed values, and
the a priori constraint n� 1, this is pretty close to the
observed value.

I By a not particularly tuned choice of initial distribution of
positions and velocities of black holes in the meta-model, we
can arrange that our own little universe lives as long as we
observe it to but a much shorter time than a Boltzmann brain
recurrence time, before colliding with another island universe.
The collision leads to drastic thermalization, followed by a
much lower value of the c.c., for which no brains can survive.
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