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  ATLAS + CMS Higgs Results 
-

๏ SM-like Higgs excluded @ 95% CL in mH: 110.0 - 122.5,  128 - 700 GeV        
   surviving mass window:  122.5 - 128 GeV

๏ Excess of events above SM bg in γγ and ZZ final states
   ~ 126 GeV with ~ 7 σ @ ATLAS and CMS 

๏ excess in WW, ττ, bb 
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  ATLAS + CMS Higgs Results 
-

๏ SM-like Higgs excluded @ 95% CL in mH: 110.0 - 122.5,  128 - 700 GeV        
   surviving mass window:  122.5 - 128 GeV

Study consequence of the above finding on the Higgs sector of NMSSM
(low mA region)

๏ Excess of events above SM bg in γγ and ZZ final states
   ~ 126 GeV with ~ 7 σ @ ATLAS and CMS 

๏ excess in WW, ττ, bb 
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Strategy
-

๏ Focus on the Higgs sector (and stop sector)
๏ Only consider Higgs search results
    flavor? g-2? DM? ...

Study the consequence of 
(I) current Higgs search limit of 95% CL limit on σXBr
(II) Hi in the mass range of 124 - 128 GeV
(III) σXBr (gg→ Hi →γγ)NMSSM > 80% (σXBr)SM

         σXBr (gg→ Hi →WW/ZZ)NMSSM > 40% (σXBr)SM
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  MSSM Higgs Sector 
-

๏ Type II Two Higgs Doublet Model

after EWSB
5 physical Higgses
CP-even Higgses: h0, H0

CP-odd Higgs: A0

Charged Higgses: H±

๏ tree level masses determined by mA, tanβ

the mixing angle of the CP-even Higgs bosons α, can be expressed in terms of two parameters

[6, 7], conventionally chosen as the mass of A0 (mA) and the ratio of the two vacuum expectation

values (tan β = vu/vd):

m2
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1
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W
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. (7)

We will call the CP-even Higgs boson that couples to W+W−/ZZ more strongly the “Standard

Model-like” Higgs as we discuss it’s properties further in the next section. For a low-mass mA �
mZ/2, or a high mass mA � 2mZ , the Higgs boson masses can be approximated by

mh0 ≈ min {mA,mZ}| cos 2β|, mH0 ≈ max {mA,mZ}, mH± ≈ max {mA,mW}. (8)

Because of the large Yukawa coupling of the top quark and the possible large mixing of the

left-right top squark, the CP-even Higgs boson masses receive significant radiative corrections.

For nearly degenerate soft SUSY breaking parameters in the stop sector: M2
3SQ ∼ M2

3SU ∼ M2
S

,

the correction to the mass of the SM-like Higgs can be approximately expressed as
2

[18, 19]
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Ã2
t

M2
S

�
1− Ã2
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+ . . . , (9)

where the mixing in the stop sector is given by

Ãt = At − µ cot β. (10)

For Ãt = 0, the corrections to the Higgs mass from the stop sector is minimized, this is the so-

called “mmin
h

” scenario [20], where the radiative contributions could give rise to a Higgs mass as

high as 117 GeV including a dominant two-loop corrections for a stop mass up to about 2 TeV. For

Ãt =
√
6MS , the second term in Eq. (9) is maximized, leading to the so-called “mmax

h
” scenario

[20], where a maximum Higgs mass of about 127 GeV can be reached in such a scenario. To

obtain a relatively large correction to the light CP-even Higgs mass, relatively heavy stop masses

(at least for one of the stops) as well as large LR mixing in the stop sector is needed. When two-

loop corrections of the oder of O(ααs) are included, there is an asymmetric contribution to the

Higgs mass from the At term, where postitive At gives a few GeV larger correction compared to

2
For the non-decoupling case when H

0
is SM-like, this expression also applies to the correction of mH0 .
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  Higgs Masses 
-

๏ large radiative corrections from stop sector: large Yukawa coupling

๏ To obtain relative large correction to mh0

- relatively large stop masses (at least one)
- large stop LR mixing

the mixing angle of the CP-even Higgs bosons α, can be expressed in terms of two parameters

[6, 7], conventionally chosen as the mass of A0 (mA) and the ratio of the two vacuum expectation

values (tan β = vu/vd):

m2
h0,H0 =

1

2

�
(m2

A
+m2

Z
)∓

�
(m2

A
−m2

Z
)2 + 4m2

A
m2

Z
sin2 2β

�
, (6)

m2
H± = m2

A
+m2

W
, cos2(β − α) =

m2
h0(m2

Z
−m2

h0)

m2
A
(m2

H0 −m2
h0)

. (7)

We will call the CP-even Higgs boson that couples to W+W−/ZZ more strongly the “Standard

Model-like” Higgs as we discuss it’s properties further in the next section. For a low-mass mA �
mZ/2, or a high mass mA � 2mZ , the Higgs boson masses can be approximated by

mh0 ≈ min {mA,mZ}| cos 2β|, mH0 ≈ max {mA,mZ}, mH± ≈ max {mA,mW}. (8)

Because of the large Yukawa coupling of the top quark and the possible large mixing of the

left-right top squark, the CP-even Higgs boson masses receive significant radiative corrections.

For nearly degenerate soft SUSY breaking parameters in the stop sector: M2
3SQ ∼ M2

3SU ∼ M2
S

,

the correction to the mass of the SM-like Higgs can be approximately expressed as
2

[18, 19]

∆m2
h0 ≈

3

4π2

m4
t

v2

�
ln

�
M2

S

m2
t

�
+

Ã2
t

M2
S

�
1− Ã2

t

12M2
S

��
+ . . . , (9)

where the mixing in the stop sector is given by

Ãt = At − µ cot β. (10)

For Ãt = 0, the corrections to the Higgs mass from the stop sector is minimized, this is the so-

called “mmin
h

” scenario [20], where the radiative contributions could give rise to a Higgs mass as

high as 117 GeV including a dominant two-loop corrections for a stop mass up to about 2 TeV. For

Ãt =
√
6MS , the second term in Eq. (9) is maximized, leading to the so-called “mmax

h
” scenario

[20], where a maximum Higgs mass of about 127 GeV can be reached in such a scenario. To

obtain a relatively large correction to the light CP-even Higgs mass, relatively heavy stop masses

(at least for one of the stops) as well as large LR mixing in the stop sector is needed. When two-

loop corrections of the oder of O(ααs) are included, there is an asymmetric contribution to the

Higgs mass from the At term, where postitive At gives a few GeV larger correction compared to

2
For the non-decoupling case when H

0
is SM-like, this expression also applies to the correction of mH0 .

5
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where the mixing in the stop sector is given by

Ãt = At − µ cot β. (10)

For Ãt = 0, the corrections to the Higgs mass from the stop sector is minimized, this is the so-

called “mmin
h

” scenario [20], where the radiative contributions could give rise to a Higgs mass as

high as 117 GeV including a dominant two-loop corrections for a stop mass up to about 2 TeV. For

Ãt =
√
6MS , the second term in Eq. (9) is maximized, leading to the so-called “mmax

h
” scenario

[20], where a maximum Higgs mass of about 127 GeV can be reached in such a scenario. To

obtain a relatively large correction to the light CP-even Higgs mass, relatively heavy stop masses

(at least for one of the stops) as well as large LR mixing in the stop sector is needed. When two-

loop corrections of the oder of O(ααs) are included, there is an asymmetric contribution to the

Higgs mass from the At term, where postitive At gives a few GeV larger correction compared to

2
For the non-decoupling case when H

0
is SM-like, this expression also applies to the correction of mH0 .

5

๏ (mhmin) scenario:  At =0
   mh0 < 117 GeV for Ms < 2 TeV

~ ๏ (mhmax) scenario:   At =√6 Ms

   mh0 < 127 GeV for Ms < 2 TeV

~
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  Stop Masses

๏ mst1 vs mst2-mst1๏ M3SQ vs At
Heavy stops and/or large LR mixing.
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blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM
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non-decoupling vs. decoupling region
-

black dots: 123 < mh0 or mH0 < 127 GeV
blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM
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non-decoupling vs. decoupling region
-

black dots: 123 < mh0 or mH0 < 127 GeV
blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM

decoupling region๏ decoupling limit 

- h0 light, SM like, 
- H0, A0, H± heavy, nearly degenerate 
- H0WW, H0ZZ coupling suppressed

       ~  cos(β-α) 

the negative At case. Note that there are uncertainties of a few GeV coming from higher loop

orders, as well as from the uncertainties in mt, αs, etc.. For detailed calculations and results on

the Higgs mass corrections in the MSSM, see Refs. [19, 21, 22].

B. Couplings to SM particles

Another important aspect is the couplings of the Higgs bosons to the SM particles [6, 7]. The

couplings to gauge bosons behave like

W
+
W

−
h
0
, ZZh

0
, ZH

0
A

0
, WH

±
H

0 ∝ g sin(β − α),

W
+
W

−
H

0
, ZZH

0
, Zh

0
A

0
, WH

±
h
0 ∝ g cos(β − α),

γH+
H

−
, ZH

+
H

−
, WH

±
A

0 ∝ g. (11)

where g is the weak coupling. Either h
0

or H
0

can be SM-like when it has a stronger coupling

to W
+
W

−
and ZZ. In the “decoupling limit” mA � mZ , sin(β − α) ∼ 1, cos(β − α) ∼ 0.

Then h
0

is light and SM-like, while all the other Higgs bosons are heavy, nearly degenerate, and

the H
0

coupling to W
+
W

−
, ZZ is highly suppressed. In the non-decoupling region mA ∼ mZ ,

sin(β − α) ∼ 0, cos(β − α) ∼ 1. Then H
0

is SM-like, while all the other neutral Higgs bosons

are lighter, nearly degenerate, and the h
0

coupling to W
+
W

−
and ZZ are highly suppressed. Note

that the couplings of the pair of Higgs bosons H
+
H

−
, H

±
A

0
to a gauge boson are of pure gauge

coupling strength and are independent of the model parameters.

The tree-level couplings of the Higgs bosons to the SM fermions scale as

h
0
dd̄ : md[sin(β − α)− tan β cos(β − α)], h

0
uū : mu[sin(β − α) + cot β cos(β − α)],

H
0
dd̄ : md[cos(β − α) + tan β sin(β − α)], H

0
uū : mu[cos(β − α)− cot β sin(β − α)],

A
0
dd̄ : md tan β γ5, A

0
uū : mu cot β γ5, H

±
dū : md tan β PR + mu cot β PL, (12)

where PL,R are the left- and right-projection operators. In the decoupling limit, these result in the

branching fractions for the leading channels,

Br(bb̄) : Br(τ τ̄) : Br(tt̄) ≈ 3m2
b tan

2 β : m2
τ tan

2 β : 3m2
t/ tan

2 β for H0
, A

0
,

Br(tb̄) : Br(τ ν̄) ≈ 3(m2
b tan

2 β +m
2
t/ tan

2 β) : m2
τ tan

2 β for H±
. (13)

In the non-decoupling limit, the couplings of H
0

to the SM fermions become SM-like, while the

above branching fraction relations still approximately hold for h
0
, A

0
and H

±
, except that the top

quark channel would not be kinematically open.

6

the negative At case. Note that there are uncertainties of a few GeV coming from higher loop

orders, as well as from the uncertainties in mt, αs, etc.. For detailed calculations and results on

the Higgs mass corrections in the MSSM, see Refs. [19, 21, 22].

B. Couplings to SM particles

Another important aspect is the couplings of the Higgs bosons to the SM particles [6, 7]. The

couplings to gauge bosons behave like

W
+
W

−
h
0
, ZZh

0
, ZH

0
A

0
, WH

±
H

0 ∝ g sin(β − α),

W
+
W

−
H

0
, ZZH

0
, Zh

0
A

0
, WH

±
h
0 ∝ g cos(β − α),

γH+
H

−
, ZH

+
H

−
, WH

±
A

0 ∝ g. (11)

where g is the weak coupling. Either h
0

or H
0

can be SM-like when it has a stronger coupling
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+
W

−
and ZZ. In the “decoupling limit” mA � mZ , sin(β − α) ∼ 1, cos(β − α) ∼ 0.

Then h
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is light and SM-like, while all the other Higgs bosons are heavy, nearly degenerate, and

the H
0

coupling to W
+
W

−
, ZZ is highly suppressed. In the non-decoupling region mA ∼ mZ ,

sin(β − α) ∼ 0, cos(β − α) ∼ 1. Then H
0

is SM-like, while all the other neutral Higgs bosons

are lighter, nearly degenerate, and the h
0

coupling to W
+
W
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and ZZ are highly suppressed. Note

that the couplings of the pair of Higgs bosons H
+
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−
, H
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A

0
to a gauge boson are of pure gauge

coupling strength and are independent of the model parameters.

The tree-level couplings of the Higgs bosons to the SM fermions scale as
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where PL,R are the left- and right-projection operators. In the decoupling limit, these result in the

branching fractions for the leading channels,

Br(bb̄) : Br(τ τ̄) : Br(tt̄) ≈ 3m2
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2 β : m2
τ tan

2 β : 3m2
t/ tan

2 β for H0
, A

0
,

Br(tb̄) : Br(τ ν̄) ≈ 3(m2
b tan

2 β +m
2
t/ tan

2 β) : m2
τ tan

2 β for H±
. (13)

In the non-decoupling limit, the couplings of H
0

to the SM fermions become SM-like, while the

above branching fraction relations still approximately hold for h
0
, A

0
and H

±
, except that the top

quark channel would not be kinematically open.

6
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non-decoupling vs. decoupling region
-

black dots: 123 < mh0 or mH0 < 127 GeV
blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM

๏ non-decoupling limit

- all Higgses light
- H0 SM like
- h0WW, h0ZZ coupling suppressed

the negative At case. Note that there are uncertainties of a few GeV coming from higher loop

orders, as well as from the uncertainties in mt, αs, etc.. For detailed calculations and results on

the Higgs mass corrections in the MSSM, see Refs. [19, 21, 22].

B. Couplings to SM particles
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dū : md tan β PR + mu cot β PL, (12)

where PL,R are the left- and right-projection operators. In the decoupling limit, these result in the

branching fractions for the leading channels,

Br(bb̄) : Br(τ τ̄) : Br(tt̄) ≈ 3m2
b tan

2 β : m2
τ tan

2 β : 3m2
t/ tan

2 β for H0
, A

0
,

Br(tb̄) : Br(τ ν̄) ≈ 3(m2
b tan

2 β +m
2
t/ tan

2 β) : m2
τ tan

2 β for H±
. (13)

In the non-decoupling limit, the couplings of H
0

to the SM fermions become SM-like, while the

above branching fraction relations still approximately hold for h
0
, A

0
and H

±
, except that the top
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the Higgs mass corrections in the MSSM, see Refs. [19, 21, 22].
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the negative At case. Note that there are uncertainties of a few GeV coming from higher loop

orders, as well as from the uncertainties in mt, αs, etc.. For detailed calculations and results on

the Higgs mass corrections in the MSSM, see Refs. [19, 21, 22].
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uū : mu cot β γ5, H

±
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0
, A

0
and H

±
, except that the top

quark channel would not be kinematically open.

6

the negative At case. Note that there are uncertainties of a few GeV coming from higher loop
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B. Couplings to SM particles

Another important aspect is the couplings of the Higgs bosons to the SM particles [6, 7]. The

couplings to gauge bosons behave like

W
+
W

−
h
0
, ZZh

0
, ZH

0
A

0
, WH

±
H

0 ∝ g sin(β − α),

W
+
W

−
H

0
, ZZH

0
, Zh

0
A

0
, WH

±
h
0 ∝ g cos(β − α),

γH+
H

−
, ZH

+
H

−
, WH

±
A

0 ∝ g. (11)
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0
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W
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is SM-like, while all the other neutral Higgs bosons

are lighter, nearly degenerate, and the h
0

coupling to W
+
W

−
and ZZ are highly suppressed. Note

that the couplings of the pair of Higgs bosons H
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2
t/ tan

2 β) : m2
τ tan

2 β for H±
. (13)

In the non-decoupling limit, the couplings of H
0

to the SM fermions become SM-like, while the

above branching fraction relations still approximately hold for h
0
, A

0
and H

±
, except that the top

quark channel would not be kinematically open.
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non-decoupling region



S. Su 8

non-decoupling vs. decoupling region
-

black dots: 123 < mh0 or mH0 < 127 GeV
blue dots:  σXBr (gg→ h0, H0 →γγ)MSSM > 80% (σXBr)SM

decoupling region

๏ h0 SM-like: large mA ≥ 300 GeV
๏ small mA ~ mZ: H0 SM-like 

Not always true in NMSSM!

non-decoupling region
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  NMSSM Higgs Sector 
-

๏ Type II Two Higgs Doublet Model plus singlet S

after EWSB, 7 physical Higgses
CP-even Higgses: H1, H2, H3  

CP-odd Higgs: A1, A2

Charged Higgses: H±

๏ SSB
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of which is the non-decoupling scenario of the MSSM. We perform a broad scan over the

NMSSM parameter space and identify the low-mA regions that are consistent with current

Higgs search results at the colliders, including the discovery of a SM-like Higgs boson. We

find that the Higgs bosons of the NMSSM, three CP-even states, two CP-odd states, and

two charged Higgs states, could all be rather light near or below the electroweak scale in

our low-mA scenario, although the singlet-like states can also be heavier. The SM-like

Higgs boson could be either the lightest scalar or the second lightest scalar, as illustrated in

panels 1− 4 of the bottom row of Fig. 1. However, it is extremely difficult to uncover any

regions corresponding with the scenarios of the last two panels of Fig. 1 where the SM-like

Higgs boson is the heaviest CP-even state after imposing all the existing collider search

constraints.

These low-mA parameter regions of the NMSSM have unique properties and offer rich

phenomenology, providing complementary scenarios to the existing literature for the decou-

pling case as mentioned above. The production cross section and decay branching fractions

for the SM-like Higgs boson may be modified appreciably and new Higgs bosons may be

readily produced at the LHC. We evaluate the production and decay of the Higgs bosons

in this model and propose further searches at the LHC to probe the Higgs sector of the

NMSSM.

The rest of this paper is organized as follows. In Sec. 2, we present a short, self-

contained introduction to the Higgs sector of the NMSSM. In Sec. 3, we discuss our param-

eter scanning scheme and the current constraints applied. We then discuss the resulting

constraints and correlations for the NMSSM parameter space in Sec. 4 for the case that the

SM-like Higgs is the lightest CP-even scalar (panels 1-2, bottom row of Fig. 1) and in Sec. 5

when the SM-like Higgs is the second lightest CP-even scalar (panels 3-4, bottom row of

Fig. 1). In Sec. 6, we consider the basic LHC phenomenology for our results. Finally, we

summarize and conclude in Sec. 7.

2 NMSSM Higgs Sector and the Low-mA Region

In the NMSSM [26, 27], a new gauge singlet chiral super field Ŝ is added to the MSSM

Higgs sector resulting in a superpotential of the form

WNMSSM = Yuû
c
ĤuQ̂+ Ydd̂

c
ĤdQ̂+ Yeê

c
ĤdL̂+ λŜĤuĤd +

1

3
κŜ3

(2.1)

with an explicit Z3 symmetry. Additionally, the soft-SUSY breaking Higgs sector of the

NMSSM is:

VH,Soft = m
2
Hu

H
†
uHu +m

2
Hd

H
†
d
Hd +M

2
S |S|2 +

�
λAλ(H

T

t �Hd)S +
1

3
κAκS3 + c.c.

�
. (2.2)

After the singlet obtains a vacuum expectation value (VEV) �S� = vs/
√
2, an effective µ

term is generated: µ = λvs/
√
2, which solves the so-called µ-problem of the MSSM. An

effective b-term beff = µ(Aλ + κ
λµ) is also generated at tree level.

In this work, we assume a CP-conserving Higgs potential with all the coefficients being

real. We further take λ and κ to be positive, unless otherwise stated. For the VEV’s, we
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  NMSSM: Masses for Higgses 
-

๏ Charged Higgs

energy 〈V 〉 is greater for these points than for the physical vacuum can be fulfilled in the major

part of the appropriate parameter space. Vacua where only one of 〈H0
d 〉, 〈H

0
u〉, 〈S〉 is zero lead

to an over-constrained system, so that these vacua can only be realized for very specific choices

of the parameters, and may be safely ignored.

The NMSSM Higgs potential is automatically bounded from below for non-zero κ. The two

terms in VF contain contributions which are quartic in the usual neutral Higgs fields, Hu, Hd,

and in the new scalar, S, and will ensure that the potential is bounded from below.

2.2 The Mass Matrices

From the potential, the Higgs mass matrices and subsequently the mass eigenstates can be

derived. After shifting the Higgs fields to the minimum of the potential (given by Eqn.(10)),

they are rotated by an angle β in order to isolate the zero mass Goldstone states, G, which are

absorbed by the W and Z bosons to provide their masses.

For the charged fields these redefinitions can be written:

H−
d = H− sin β − G− cos β,

H+
u = H+ cos β + G+ sin β,

(14)

where G− = G+ ∗ and H− = H+ ∗. For the imaginary and real field components we have

$m H0
d = (P1 sin β − G0 cos β)/

√
2,

$m H0
u = (P1 cos β + G0 sin β)/

√
2,

$m S = P2/
√

2,

(15)

and
&eH0

d = (−S1 sin β + S2 cos β + vd)/
√

2,

&eH0
u = ( S1 cos β + S2 sin β + vu)/

√
2,

&eS = (S3 + vs)/
√

2,

(16)

respectively. Choosing tan β = vu/vd the zero-mass Goldstone modes decouple, and the resulting

potential has terms for the non-zero mass modes given by

Vmass = M2
H±H+H− +

1

2
(P1 P2)M2

−

(

P1

P2

)

+
1

2
(S1 S2 S3)M2

+









S1

S2

S3









. (17)

The charged fields H± are already physical mass eigenstates with tree-level masses given by

(I) : M2
H± = M2

A + M2
W −

1

2
(λv)2, (18)
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� = vd/

√
2, with v
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u + v
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d
= v

2 = (246 GeV)2 and

tanβ = vu/vd. After electroweak symmetry breaking, we are then left with three CP-even

Higgs states H1, H2, H3, two CP-odd Higgs states A1, A2, and a pair of charged Higgs

states H
±
.

2.1 Masses

2.1.1 CP-odd Higgs bosons

For the CP-odd Higgs bosons, we define the mixing states
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d
) sinβ + Im(H0

u) cosβ
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2 Im(S). (2.3)

The relevant parameters of our interest are the diagonal elements of the mass matrix in the
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=
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The full mass matrix expression can be found in Ref.[28]. In the limit of zero mixing between

Av and As, mA is the mass of the CP-odd Higgs Av as in the case of the MSSM. However,

in the NMSSM, the mass eigenstates are typically a mixture of Av and As, resulting in a

more complicated mass spectrum and parameter dependence. Although mA is not a mass

eigenvalue in the NMSSM, it takes the same form in terms of beff as in the MSSM (see

Eq. (2.4)). We also note that m
2
As

has the contribution −3κ
λµAκ. As a result, to obtain

positive mass squared eigenvalues, the combination µAκ can not be too large and positive,

in particular, for the small mA region that we consider in this paper. We denote the mass

eigenstates as A1 and A2, where mA1 ≤ mA2 .

2.1.2 Charged Higgs bosons

The charged Higgs bosons H
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in the NMSSM have the same definition as in the MSSM,

but a new contribution to their mass
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The extra λ-dependent term leads to a reduction of the charged Higgs mass compared to

its MSSM value. Requiring m
2
H± ≥ 0 gives an upper bound for λ as a function of mA
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. (2.7)

The LEP search limit mH± � 80 GeV [29, 30], as well as the bounds from the Tevatron and

LHC charged Higgs boson searches strengthen this upper limit even further, depending on

the value of tanβ.
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  NMSSM: Masses for Higgses 
-

๏ Effects of singlet
- lift (mhv)tree, small tanβ, large λ

- mixing with singlet: change HiWW/ZZ, Hibb, Higg, Hiγγ

๏ Lots of work on (125 GeV) Higgs in NMSSM framework ...

Gunion et. al, 1201.0982
Ellwanger 1112.3548
King et. al., 1201.2671
Cao et. al., 1202.5821
EllWanger et. al., 1203.5048
Benbrik et. al., 1207.1096
Gunion et. al., 1207.1545
Gunion et. al., 1208.1817
Cheng et. al., 1207.6392
Belanger et. al., 1208.4952
Agashe et. al., 1209.2115
Belanger et. al., 1210.1976

๏ H3 heavy, mA large
๏ H1 126 or H2 126
๏ hv/S mixing

Heng, 1210.3751
Choi et. al., 1211.0875
King et. al., 1211.5074
Dreiner et. al., 1211.6987
Das  et. al., 1301.7548
... many other Jack’s, Ellwanger’s paper ...
(incomplete list)
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  NMSSM: Masses for Higgses 
-

๏ CP-even Higgses

๏ mass splitting: off-diag 
comparing to average of diag
๏ state mixing: off-diag 
comparing to difference of diag
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  NMSSM: mA decouple case 
-

๏ push down: mhv < mS

hv
hv

S

S

๏ H1 (SM-like) still heavy enough 
≥ 124 GeV
⇒ not too large mass mixing 

(to push down mH1 too low)

hv

hv

S
S

๏ H1 (singlet-like) not ruled out 
by LEP
⇒ not too large state mixing 

(to have too much H1ZZ coupling)

๏ push up: mhv > mS

Agashe et. al., 1209.2115
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Agashe et. al., 1209.2115Need some tuning to make it work 
(without too much help from stops)



S. Su 

Our work: Focus on the NMSSM low mA region:  mA ≤ 2 mZ

  NMSSM: Masses for Higgses 

NMSSM (small mA)
- H1 or H2 SM-like, 
depending on mA, λ, tanβ
- small mA, large λ, small 
tan β, H2 SM-like

MSSM 
- mA2 ≥ mZ2 (cos 4 β): H1 SM-like 
- mA2 ≤ mZ2 (cos 4 β): H2 SM-like

๏ ignore singlet for now...

All Higgses light 
- could have large mixing effects 
- can be probed experimentally
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  NMSSM: Masses for Higgses 
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Figure 2. Lines for m2
hv

= m
2
Hv

for different values of tanβ in the λ versus mA plane. m
2
hv

> m
2
Hv

above the lines and m
2
hv

< m
2
Hv

below the lines. Also shown by the dashed lines are the mass
contours for the tree-level value of mH± . The shaded region corresponds to the excluded region
with m

2
H± < 0.

indicating the region ruled out by m
2
H± < 0. Taking into account the LEP bound of

mH± � 80 GeV [29, 30] limits us to the right of the mH± = 80 GeV contour. Therefore,
requiring mhv > mHv while satisfying the experimental charged Higgs bounds restricts us
to two regions: large λ � 0.5, mA � mZ for small tanβ ∼ 1−2, or small λ � 0.5, mA � mZ

for tanβ � 2. Imposing a stronger bound on mH± from t → bH
± searches at the Tevatron

and the LHC [37–39] further narrows down the mhv > mHv region, resulting in a fine-tuned
region to realize.

On the other hand, mhv < mHv is much easier to realize in the NMSSM. In contrast
to the MSSM, where being deep into the decoupling region mA � 300 GeV is typically
required to satisfy both the mass window and the cross section requirement (i.e. for h

0 to
obtain SM-like couplings to the gauge bosons), in the NMSSM, with the mixture of the
singlet and the possible suppressed couplings to bb̄, even a suppressed coupling to the gauge
sector could be accommodated to satisfy the experimentally observed cross section range.
Note that our discussions are based on tree level expression for the Higgs masses. While
including loop corrections shifts all the masses, our statement is still qualitatively valid.

Including the extra singlet in the spectrum gives three distinct cases as sketched in
Fig. 1, corresponding to either H1, H2, or H3 being SM-like:

• H1 SM-like: mhv � mHv ,mS ,

• H2 SM-like: mS � mhv � mHv or mHv � mhv � mS ,

• H3 SM-like: mHv ,mS � mhv .

– 8 –
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Figure 2. Lines for m2
hv

= m
2
Hv

for different values of tanβ in the λ versus mA plane. m
2
hv

> m
2
Hv

above the lines and m
2
hv

< m
2
Hv

below the lines. Also shown by the dashed lines are the mass
contours for the tree-level value of mH± . The shaded region corresponds to the excluded region
with m

2
H± < 0.

indicating the region ruled out by m
2
H± < 0. Taking into account the LEP bound of

mH± � 80 GeV [29, 30] limits us to the right of the mH± = 80 GeV contour. Therefore,
requiring mhv > mHv while satisfying the experimental charged Higgs bounds restricts us
to two regions: large λ � 0.5, mA � mZ for small tanβ ∼ 1−2, or small λ � 0.5, mA � mZ

for tanβ � 2. Imposing a stronger bound on mH± from t → bH
± searches at the Tevatron

and the LHC [37–39] further narrows down the mhv > mHv region, resulting in a fine-tuned
region to realize.

On the other hand, mhv < mHv is much easier to realize in the NMSSM. In contrast
to the MSSM, where being deep into the decoupling region mA � 300 GeV is typically
required to satisfy both the mass window and the cross section requirement (i.e. for h

0 to
obtain SM-like couplings to the gauge bosons), in the NMSSM, with the mixture of the
singlet and the possible suppressed couplings to bb̄, even a suppressed coupling to the gauge
sector could be accommodated to satisfy the experimentally observed cross section range.
Note that our discussions are based on tree level expression for the Higgs masses. While
including loop corrections shifts all the masses, our statement is still qualitatively valid.

Including the extra singlet in the spectrum gives three distinct cases as sketched in
Fig. 1, corresponding to either H1, H2, or H3 being SM-like:

• H1 SM-like: mhv � mHv ,mS ,

• H2 SM-like: mS � mhv � mHv or mHv � mhv � mS ,

• H3 SM-like: mHv ,mS � mhv .
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Figure 2. Lines for m2
hv

= m
2
Hv

for different values of tanβ in the λ versus mA plane. m
2
hv

> m
2
Hv

above the lines and m
2
hv

< m
2
Hv

below the lines. Also shown by the dashed lines are the mass
contours for the tree-level value of mH± . The shaded region corresponds to the excluded region
with m

2
H± < 0.

indicating the region ruled out by m
2
H± < 0. Taking into account the LEP bound of

mH± � 80 GeV [29, 30] limits us to the right of the mH± = 80 GeV contour. Therefore,
requiring mhv > mHv while satisfying the experimental charged Higgs bounds restricts us
to two regions: large λ � 0.5, mA � mZ for small tanβ ∼ 1−2, or small λ � 0.5, mA � mZ

for tanβ � 2. Imposing a stronger bound on mH± from t → bH
± searches at the Tevatron

and the LHC [37–39] further narrows down the mhv > mHv region, resulting in a fine-tuned
region to realize.

On the other hand, mhv < mHv is much easier to realize in the NMSSM. In contrast
to the MSSM, where being deep into the decoupling region mA � 300 GeV is typically
required to satisfy both the mass window and the cross section requirement (i.e. for h

0 to
obtain SM-like couplings to the gauge bosons), in the NMSSM, with the mixture of the
singlet and the possible suppressed couplings to bb̄, even a suppressed coupling to the gauge
sector could be accommodated to satisfy the experimentally observed cross section range.
Note that our discussions are based on tree level expression for the Higgs masses. While
including loop corrections shifts all the masses, our statement is still qualitatively valid.

Including the extra singlet in the spectrum gives three distinct cases as sketched in
Fig. 1, corresponding to either H1, H2, or H3 being SM-like:

• H1 SM-like: mhv � mHv ,mS ,

• H2 SM-like: mS � mhv � mHv or mHv � mhv � mS ,

• H3 SM-like: mHv ,mS � mhv .
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Figure 2. Lines for m2
hv

= m
2
Hv

for different values of tanβ in the λ versus mA plane. m
2
hv

> m
2
Hv

above the lines and m
2
hv

< m
2
Hv

below the lines. Also shown by the dashed lines are the mass
contours for the tree-level value of mH± . The shaded region corresponds to the excluded region
with m

2
H± < 0.

indicating the region ruled out by m
2
H± < 0. Taking into account the LEP bound of

mH± � 80 GeV [29, 30] limits us to the right of the mH± = 80 GeV contour. Therefore,
requiring mhv > mHv while satisfying the experimental charged Higgs bounds restricts us
to two regions: large λ � 0.5, mA � mZ for small tanβ ∼ 1−2, or small λ � 0.5, mA � mZ

for tanβ � 2. Imposing a stronger bound on mH± from t → bH
± searches at the Tevatron

and the LHC [37–39] further narrows down the mhv > mHv region, resulting in a fine-tuned
region to realize.

On the other hand, mhv < mHv is much easier to realize in the NMSSM. In contrast
to the MSSM, where being deep into the decoupling region mA � 300 GeV is typically
required to satisfy both the mass window and the cross section requirement (i.e. for h

0 to
obtain SM-like couplings to the gauge bosons), in the NMSSM, with the mixture of the
singlet and the possible suppressed couplings to bb̄, even a suppressed coupling to the gauge
sector could be accommodated to satisfy the experimentally observed cross section range.
Note that our discussions are based on tree level expression for the Higgs masses. While
including loop corrections shifts all the masses, our statement is still qualitatively valid.

Including the extra singlet in the spectrum gives three distinct cases as sketched in
Fig. 1, corresponding to either H1, H2, or H3 being SM-like:

• H1 SM-like: mhv � mHv ,mS ,

• H2 SM-like: mS � mhv � mHv or mHv � mhv � mS ,

• H3 SM-like: mHv ,mS � mhv .
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Figure 2. Lines for m2
hv

= m
2
Hv

for different values of tanβ in the λ versus mA plane. m
2
hv

> m
2
Hv

above the lines and m
2
hv

< m
2
Hv

below the lines. Also shown by the dashed lines are the mass
contours for the tree-level value of mH± . The shaded region corresponds to the excluded region
with m

2
H± < 0.

indicating the region ruled out by m
2
H± < 0. Taking into account the LEP bound of

mH± � 80 GeV [29, 30] limits us to the right of the mH± = 80 GeV contour. Therefore,
requiring mhv > mHv while satisfying the experimental charged Higgs bounds restricts us
to two regions: large λ � 0.5, mA � mZ for small tanβ ∼ 1−2, or small λ � 0.5, mA � mZ

for tanβ � 2. Imposing a stronger bound on mH± from t → bH
± searches at the Tevatron

and the LHC [37–39] further narrows down the mhv > mHv region, resulting in a fine-tuned
region to realize.

On the other hand, mhv < mHv is much easier to realize in the NMSSM. In contrast
to the MSSM, where being deep into the decoupling region mA � 300 GeV is typically
required to satisfy both the mass window and the cross section requirement (i.e. for h

0 to
obtain SM-like couplings to the gauge bosons), in the NMSSM, with the mixture of the
singlet and the possible suppressed couplings to bb̄, even a suppressed coupling to the gauge
sector could be accommodated to satisfy the experimentally observed cross section range.
Note that our discussions are based on tree level expression for the Higgs masses. While
including loop corrections shifts all the masses, our statement is still qualitatively valid.

Including the extra singlet in the spectrum gives three distinct cases as sketched in
Fig. 1, corresponding to either H1, H2, or H3 being SM-like:

• H1 SM-like: mhv � mHv ,mS ,

• H2 SM-like: mS � mhv � mHv or mHv � mhv � mS ,

• H3 SM-like: mHv ,mS � mhv .
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Figure 1. Illustration of the effect of adding the singlet to the CP-even Higgs boson spectrum

before mixing.

the lighter eigenstate or the heavier eigenstate, as illustrated in the top row of Fig. 1. After

adding the singlet scalar, the two panels of the MSSM give rise to six possible scenarios in

the NMSSM, as illustrated in the lower row of Fig. 1. In reality, the mass eigenstates are

admixtures of the gauge interaction eigenstates, and thus cannot be labelled as simply as

in Fig. 1. Nevertheless, these graphs give us an intuitive picture of the result of adding the

singlet field of the NMSSM.

Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [10–12] showed

the compatibility of the NMSSM with the enhanced γγ rate, while Reference [13] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM

may include many interesting features, that include grand unification of gauge couplings

[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype

– 3 –
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Hi Ai H
±

Ruu ξhv
Hi

+ ξHv
Hi

/ tanβ ξAv
Ai

/ tanβ RdLu
c
R

−
√
2/ tanβ

Rdd ξhv
Hi

− ξHv
Hi

tanβ ξAv
Ai

tanβ RuLd
c
R

−
√
2 tanβ

RV V ξhv
Hi

Table 1. Reduced Higgs couplings at tree level. The charged Higgs couplings of H
+
dLu

c
R and

H
−
uLd

c
R are normalized to the SM top and bottom Yukawa couplings mt/v and mb/v, respectively.

With the off-diagonal mixing in the mass matrix, the separation of these regions becomes

less distinct while the above relations still approximately hold.

2.3 Couplings

The mass eigenstates H1,2,3 are, in general, a mixture of hv, Hv, and S:

Hi =
�

α

ξHα
Hi

Hα, for i = 1, 2, 3, Hα = (hv, Hv, S), (2.13)

with ξHα
Hi

being the 3 × 3 unitary matrix that rotates the Higgs bosons into the mass

eigenstates. In particular, |ξHα
Hi

|2 defines the fraction of hv, Hv, and S in Hi with the

unitarity relations:

|ξHα
H1

|2 + |ξHα
H2

|2 + |ξHα
H3

|2 = 1, |ξhv
Hi
|2 + |ξHv

Hi
|2 + |ξSHi

|2 = 1. (2.14)

Similarly, for the CP-odd Higgs bosons, the unitary rotation is Ai =
�

α ξ
Aα
Ai

Aα where

i = 1, 2, and Aα = (Av, As). The fraction of Av, As in the CP-odd mass eigenstates A1,2

are given by |ξAα
Ai

|2, i = 1, 2, with |ξAv
A1

|2 = |ξAs
A2

|2 = 1− |ξAs
A1

|2 = 1− |ξAv
A2

|2.
In Table 1, we express the tree-level reduced couplings of the NMSSM Higgs mass

eigenstates to various pairs of SM particles, which is the ratio of the NMSSM Higgs couplings

to the corresponding SM value. The charged Higgs couplings of H
+
dLu

c

R
and H

−
uLd

c

R
are

normalized to the SM top and bottom Yukawa couplings mt/v and mb/v, respectively. In

the NMSSM, the HiZZ and HiWW couplings are always modified in the same way at

leading order. Therefore, we use V V to represent both WW and ZZ. The coupling of

the CP-even Higgs bosons to the gauge boson sector V V is completely determined by the

hv-fraction of Hi: |ξhv
Hi
|2, which plays an important role in understanding the coupling and

branching fraction behavior of the SM-like Higgs boson. Note that |ξhv
Hi
|2 ≤ 1, therefore,

the HiV V couplings, as well as the Hi → V V partial decay width, are always suppressed

compared to their SM values. However, the branching fractions of Hi → V V could still be

similar or even enhanced compared to their SM values, since Hi → bb could be suppressed

as well.

The Higgs to γγ and Higgs to gg couplings are loop induced in the SM. The dominant

contribution to the hvγγ coupling comes from the WW loop, with a sub-leading destructive

contribution from the top loop. The hvgg coupling, on the other hand, is dominated by the

top loop contribution. The Hiγγ and Higg couplings are modified similarly in the NMSSM,

based on the reduced couplings as listed in Table 1.
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based on the reduced couplings as listed in Table 1.
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Table 1. Reduced Higgs couplings at tree level. The charged Higgs couplings of H
+
dLu

c
R and

H
−
uLd

c
R are normalized to the SM top and bottom Yukawa couplings mt/v and mb/v, respectively.

With the off-diagonal mixing in the mass matrix, the separation of these regions becomes

less distinct while the above relations still approximately hold.

2.3 Couplings

The mass eigenstates H1,2,3 are, in general, a mixture of hv, Hv, and S:

Hi =
�

α

ξHα
Hi

Hα, for i = 1, 2, 3, Hα = (hv, Hv, S), (2.13)

with ξHα
Hi

being the 3 × 3 unitary matrix that rotates the Higgs bosons into the mass

eigenstates. In particular, |ξHα
Hi

|2 defines the fraction of hv, Hv, and S in Hi with the

unitarity relations:
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|2 + |ξHα
H2

|2 + |ξHα
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In Table 1, we express the tree-level reduced couplings of the NMSSM Higgs mass

eigenstates to various pairs of SM particles, which is the ratio of the NMSSM Higgs couplings

to the corresponding SM value. The charged Higgs couplings of H
+
dLu

c
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and H

−
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are

normalized to the SM top and bottom Yukawa couplings mt/v and mb/v, respectively. In

the NMSSM, the HiZZ and HiWW couplings are always modified in the same way at

leading order. Therefore, we use V V to represent both WW and ZZ. The coupling of

the CP-even Higgs bosons to the gauge boson sector V V is completely determined by the

hv-fraction of Hi: |ξhv
Hi
|2, which plays an important role in understanding the coupling and

branching fraction behavior of the SM-like Higgs boson. Note that |ξhv
Hi
|2 ≤ 1, therefore,

the HiV V couplings, as well as the Hi → V V partial decay width, are always suppressed

compared to their SM values. However, the branching fractions of Hi → V V could still be

similar or even enhanced compared to their SM values, since Hi → bb could be suppressed

as well.

The Higgs to γγ and Higgs to gg couplings are loop induced in the SM. The dominant

contribution to the hvγγ coupling comes from the WW loop, with a sub-leading destructive

contribution from the top loop. The hvgg coupling, on the other hand, is dominated by the

top loop contribution. The Hiγγ and Higg couplings are modified similarly in the NMSSM,

based on the reduced couplings as listed in Table 1.
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NMSSM parameters
-

parameters

๏ NMSSM

λ, κ, Aλ, Aκ, tan β, vs, (v)

M3SQ, M3SU, At

๏ MSSM 

mA,  tan β, µ, (v)

M3SQ, M3SU, At

๏ NMSSM

λ, κ, mA, Aκ, tan β, µ, (v)

M3SQ, M3SU, At
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  Parameter Scan 
-

1< tanβ < 10

0 GeV < mA < 200 GeV

100 GeV < µ < 1000 GeV

0.01<λ<1

0.01<κ<1

-1200 GeV <Aκ<200 GeV

100 GeV < M3SU, M3SQ < 3000 GeV

-4000 GeV < At < 4000 GeV

decoupling other parameters (3 TeV) NMSSMTools
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  Signal Regions 
-

Study the consequence of 
(I) current Higgs search limit of 95% CL limit on σXBr
(II) Hi in the mass range of 124 - 128 GeV
(III) σXBr (gg→ Hi →γγ)NMSSM > 80% (σXBr)SM

         σXBr (gg→ Hi →WW/ZZ)NMSSM  > 40% (σXBr)SM

๏ H1 126 GeV
๏ H2 126 GeV
๏ H3 126 GeV
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H1 126 GeV: mass region

๏ MHi vs mHpm
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Figure 1. Illustration of the effect of adding the singlet to the CP-even Higgs boson spectrum

before mixing.

the lighter eigenstate or the heavier eigenstate, as illustrated in the top row of Fig. 1. After

adding the singlet scalar, the two panels of the MSSM give rise to six possible scenarios in

the NMSSM, as illustrated in the lower row of Fig. 1. In reality, the mass eigenstates are

admixtures of the gauge interaction eigenstates, and thus cannot be labelled as simply as

in Fig. 1. Nevertheless, these graphs give us an intuitive picture of the result of adding the

singlet field of the NMSSM.

Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [10–12] showed

the compatibility of the NMSSM with the enhanced γγ rate, while Reference [13] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM

may include many interesting features, that include grand unification of gauge couplings

[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype

– 3 –
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Figure 1. Illustration of the effect of adding the singlet to the CP-even Higgs boson spectrum

before mixing.

the lighter eigenstate or the heavier eigenstate, as illustrated in the top row of Fig. 1. After

adding the singlet scalar, the two panels of the MSSM give rise to six possible scenarios in

the NMSSM, as illustrated in the lower row of Fig. 1. In reality, the mass eigenstates are

admixtures of the gauge interaction eigenstates, and thus cannot be labelled as simply as

in Fig. 1. Nevertheless, these graphs give us an intuitive picture of the result of adding the

singlet field of the NMSSM.

Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [10–12] showed

the compatibility of the NMSSM with the enhanced γγ rate, while Reference [13] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM

may include many interesting features, that include grand unification of gauge couplings

[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype
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Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [10–12] showed

the compatibility of the NMSSM with the enhanced γγ rate, while Reference [13] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM

may include many interesting features, that include grand unification of gauge couplings

[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype

– 3 –

H1

H2

H3

A1

Hpm

A2

H1 → A1 A1



S. Su 24

H2 126 GeV: mass region
-

๏ MHi vs mHpm

H1-126 H1-126 H2-126 H2-126 H3-126 H3-126

S

hv hv hv

Hv Hv Hv

Hv

Hv

hv hv

MSSM MSSM

S

S

S
S

S

hv

Hv Hv

hv

Hv

hv

Figure 1. Illustration of the effect of adding the singlet to the CP-even Higgs boson spectrum

before mixing.

the lighter eigenstate or the heavier eigenstate, as illustrated in the top row of Fig. 1. After

adding the singlet scalar, the two panels of the MSSM give rise to six possible scenarios in

the NMSSM, as illustrated in the lower row of Fig. 1. In reality, the mass eigenstates are

admixtures of the gauge interaction eigenstates, and thus cannot be labelled as simply as

in Fig. 1. Nevertheless, these graphs give us an intuitive picture of the result of adding the

singlet field of the NMSSM.

Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [10–12] showed

the compatibility of the NMSSM with the enhanced γγ rate, while Reference [13] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM

may include many interesting features, that include grand unification of gauge couplings

[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype
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the lighter eigenstate or the heavier eigenstate, as illustrated in the top row of Fig. 1. After

adding the singlet scalar, the two panels of the MSSM give rise to six possible scenarios in

the NMSSM, as illustrated in the lower row of Fig. 1. In reality, the mass eigenstates are

admixtures of the gauge interaction eigenstates, and thus cannot be labelled as simply as

in Fig. 1. Nevertheless, these graphs give us an intuitive picture of the result of adding the

singlet field of the NMSSM.

Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [10–12] showed

the compatibility of the NMSSM with the enhanced γγ rate, while Reference [13] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM

may include many interesting features, that include grand unification of gauge couplings

[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype
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Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [10–12] showed

the compatibility of the NMSSM with the enhanced γγ rate, while Reference [13] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM

may include many interesting features, that include grand unification of gauge couplings

[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype
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[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype

– 3 –H1

H2

H3

A1

A2

Hpm



S. Su 25

H3 126 GeV: mass region
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Figure 1. Illustration of the effect of adding the singlet to the CP-even Higgs boson spectrum

before mixing.

the lighter eigenstate or the heavier eigenstate, as illustrated in the top row of Fig. 1. After

adding the singlet scalar, the two panels of the MSSM give rise to six possible scenarios in

the NMSSM, as illustrated in the lower row of Fig. 1. In reality, the mass eigenstates are

admixtures of the gauge interaction eigenstates, and thus cannot be labelled as simply as

in Fig. 1. Nevertheless, these graphs give us an intuitive picture of the result of adding the

singlet field of the NMSSM.

Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [10–12] showed

the compatibility of the NMSSM with the enhanced γγ rate, while Reference [13] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM

may include many interesting features, that include grand unification of gauge couplings

[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype

– 3 –H1

H2

H3

A1

A2

Hpm

No points pass CS(γγ)>0.4 can be find.
Very fine tuned region, hard to accomodate a SM-like Higgs as H3. 
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H1 126 GeV, SM-like
-

• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H1 region IA, mA1>mH1/2, |ξH1hv|2>0.7 

- H1 region IB, mA1>mH1/2, |ξH1hv|2<0.7 

- H1 region II, mA1<mH1/2, H1 →A1A1

• black: perturbativity till mGUT

H1 as 126 GeV SM-like Higgs
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H1 126 GeV: mH1 vs. para.
-

(a) (b)

(c) (d)

Figure 4. The dependence of mH1 on the following NMSSM parameters in the H1-126 case: λ,
κ, tanβ, and µ. Grey points are those that pass the experimental constraints, pale-pink points are
those with H1 in the mass window 124 GeV < mH1 < 128 GeV and green points are those with the
cross section requirements further imposed. Black points are those that remain perturbative up to
the Planck scale.

4 H1 as the SM-like Higgs Boson

4.1 Parameter regions

For H1 to have a SM-like σ × Br cross sections for gg → H1 → γγ,WW/ZZ within the

experimentally observed ranges, H1 needs to be either dominantly hv or have a considerable

singlet fraction to suppress the dominant decay channel H1 → bb with a suppressed

H1 → bb̄ partial width. Hv and S dominant states are typically heavier such that

the lightest CP-even Higgs state is mostly SM-like hv. This case is seldom real-

ized in the MSSM non-decoupling region (mA ∼ mZ), since the light CP-even

Higgs boson typically has suppressed couplings to WW and ZZ in the non-

decoupling region. In the NMSSM, the tree-level diagonal mass term for hv is m
2
hv

=

m
2
Z
cos2 2β + 1

2(λv)
2 sin2 2β. Large λ and small tanβ are preferred to push up the mass

of hv into the desired mass window. For small tanβ, even for small mA the smallest

region of mAloop we find satisfying all the requirements, typically m
2
hv

< m
2
Hv

,

resulting in the light MSSM-like non-Singlet-like CP-even Higgs being SM-like in the

– 14 –

• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, black: satisfy σXBr(γγ, WW)

• black: perturbativity till mGUT
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Figure 4. The dependence of mH1 on the following NMSSM parameters in the H1-126 case: λ,
κ, tanβ, and µ. Grey points are those that pass the experimental constraints, pale-pink points are
those with H1 in the mass window 124 GeV < mH1 < 128 GeV and green points are those with the
cross section requirements further imposed. Black points are those that remain perturbative up to
the Planck scale.
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4.1 Parameter regions

For H1 to have a SM-like σ × Br cross sections for gg → H1 → γγ,WW/ZZ within the

experimentally observed ranges, H1 needs to be either dominantly hv or have a considerable

singlet fraction to suppress the dominant decay channel H1 → bb with a suppressed

H1 → bb̄ partial width. Hv and S dominant states are typically heavier such that

the lightest CP-even Higgs state is mostly SM-like hv. This case is seldom real-

ized in the MSSM non-decoupling region (mA ∼ mZ), since the light CP-even

Higgs boson typically has suppressed couplings to WW and ZZ in the non-

decoupling region. In the NMSSM, the tree-level diagonal mass term for hv is m
2
hv

=

m
2
Z
cos2 2β + 1

2(λv)
2 sin2 2β. Large λ and small tanβ are preferred to push up the mass

of hv into the desired mass window. For small tanβ, even for small mA the smallest

region of mAloop we find satisfying all the requirements, typically m
2
hv

< m
2
Hv

,

resulting in the light MSSM-like non-Singlet-like CP-even Higgs being SM-like in the
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• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, black: satisfy σXBr(γγ, WW)

• black: perturbativity till mGUT

Impose CS requirement does NOT shrink the parameter regions.
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H1 126 GeV: para regions
-

tanβ 1 to 3.5 1.5 to 2.5 1 to 3.5
mA 0 to 200 GeV 150 to 200 GeV 100 to 200 GeV
λ ≥ 0.55 0.55 to 0.65 ≥ 0.55
κ ≥ 0.3 0.3 to 0.5 ≥ 0.5

• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H1 region IA, mA1>mH1/2, |ξH1hv|2>0.7 
- H1 region IB, mA1>mH1/2, |ξH1hv|2<0.7 
- H1 region II, mA1<mH1/2, H1 →A1A1

• black: perturbativity till mGUT(a) (b)

(c) (d)

(e) (f)

Figure 5. Viable NMSSM parameter regions in the H1-126 case: (a) λ versus mA, (b) κ versus mA,
(c) λ versus κ, (d) mAloop versus tanβ, (e) µ versus Aλ, and (f)µ versus Aκ. Grey points are those
that pass the experimental constraints, pale-pink points are those with H1 in the mass window 124
GeV < mH1 < 128 GeV. Green points are for H1 Region IA: mA1 > mH1/2 and |ξhv

H1
|2 > 0.7. Red

points are for H1 Region IA: mA1 > mH1/2 and |ξhv
H1

|2 < 0.7. Magenta points are for H1 Region
II: mA1 < mH1/2. ZL: (f) doesn’t line up while Fig.11(f) lines up with others well.NC:
I fixed it with a brute force method.

parameters. Grey points are those that pass the experimental constraints, pale-pink points
are those with H1 in the mass window 124 GeV < mH1 < 128 GeV, green and red points
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Figure 5. Viable NMSSM parameter regions in the H1-126 case: (a) λ versus mA, (b) κ versus mA,
(c) λ versus κ, (d) mAloop versus tanβ, (e) µ versus Aλ, and (f)µ versus Aκ. Grey points are those
that pass the experimental constraints, pale-pink points are those with H1 in the mass window 124
GeV < mH1 < 128 GeV. Green points are for H1 Region IA: mA1 > mH1/2 and |ξhv

H1
|2 > 0.7. Red

points are for H1 Region IA: mA1 > mH1/2 and |ξhv
H1

|2 < 0.7. Magenta points are for H1 Region
II: mA1 < mH1/2. ZL: (f) doesn’t line up while Fig.11(f) lines up with others well.NC:
I fixed it with a brute force method.

parameters. Grey points are those that pass the experimental constraints, pale-pink points
are those with H1 in the mass window 124 GeV < mH1 < 128 GeV, green and red points

– 16 –

๏ λ vs κ ๏ tan β vs mAloop
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parameters. Grey points are those that pass the experimental constraints, pale-pink points
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๏ λ vs κ ๏ tan β vs mAloop
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H1 126 GeV: stops
-

• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H1 region IA, mA1>mH1/2, |ξH1hv|2>0.7 
- H1 region IB, mA1>mH1/2, |ξH1hv|2<0.7 
- H1 region II, mA1<mH1/2, H1 →A1A1

• black: perturbativity till mGUT

๏ M3SQ vs At

๏ mst1 vs mst2-mst1
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• pink: 124 < mH1  < 128 GeV
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H1 126 GeV: stops
-

• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H1 region IA, mA1>mH1/2, |ξH1hv|2>0.7 
- H1 region IB, mA1>mH1/2, |ξH1hv|2<0.7 
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• black: perturbativity till mGUT
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  Parameter regions 
-

H1 126 perturbativity mA1<mH1/2

tanβ 1 to 3.5 1.5 to 2.5 1 to 3.5

mA 0 to 200 GeV 150 to 200 GeV 100 to 200 GeV

µ µ ≤ 500 GeV 100 to 150 GeV 100 to 200 GeV

λ ≥ 0.55 0.55 to 0.6.5 ≥ 0.55

κ ≥ 0.3 0.3 to 0.5 ≥ 0.5

Aκ -1200  to 200 GeV -150 to 100 GeV -50 to 30 GeV

Aλ -650  to 300 GeV -30 to 230 GeV -150 to 150 GeV

|At| ≥ 1200 GeV
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-

H1 126 GeV: cross sections
๏ σγγ vs σWW ๏ BrWW vs Brbb

(a) (b)

Figure 7. (a) γγ versus WW/ZZ channel. (b) bb versus WW/ZZ in the H1-126 case. Color
coding is the same as for Fig. 5.

(a) (b)

Figure 8. σ×Br
SM (gg → H1 → γγ) with (a) mA dependence; (b) µ dependence in the H1-126 case.

Color coding is the same as for Fig. 5.

Br(H1 → bb)/BrSM ≈ Br(H1 → ττ)/BrSM. For VBF/VH → H1 → ττ/bb, σ × Br/SM is
� 1.1. While for gg → H1 → τ+τ−, an enhancement as large as 1.5 of the SM value is
possible , which is again from stop loop corrections to H1gg. ttH1 → bb receives
little enhancement, σ × Br/SM � 1.05.

Fig. 8 shows the parameter dependence of σ×Br/SM for gg → H1 → γγ for mA [panel
(a)] and µ [panel (b)]. Larger values for σ×Br/SM is achieved for larger values of mA and
smaller values of µ. If a significant enhancement of gg → H1 → γγ is observed in future
experiments, mA and µ (as well as Aλ) would be restricted to a narrower region.

4.3 Wave function overlap

The deviation of the production and decay of H1 can be traced back to the hv, Hv and S

fractions in H1, which is given by the wave function overlap |ξhv
H1

|2, |ξHv
H1

|2 and |ξS
H1

|2, as
defined in Eq. (2.13). Fig. 9 shows |ξS

Hi
|2 versus |ξhv

Hi
|2 for H1 [panel (a)], H2 [panel (b)] and
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� 1.1. While for gg → H1 → τ+τ−, an enhancement as large as 1.5 of the SM value is
possible , which is again from stop loop corrections to H1gg. ttH1 → bb receives
little enhancement, σ × Br/SM � 1.05.

Fig. 8 shows the parameter dependence of σ×Br/SM for gg → H1 → γγ for mA [panel
(a)] and µ [panel (b)]. Larger values for σ×Br/SM is achieved for larger values of mA and
smaller values of µ. If a significant enhancement of gg → H1 → γγ is observed in future
experiments, mA and µ (as well as Aλ) would be restricted to a narrower region.

4.3 Wave function overlap

The deviation of the production and decay of H1 can be traced back to the hv, Hv and S

fractions in H1, which is given by the wave function overlap |ξhv
H1

|2, |ξHv
H1

|2 and |ξS
H1

|2, as
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H1 → A1 A1

• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H1 region IA, mA1>mH1/2, |ξH1hv|2>0.7 
- H1 region IB, mA1>mH1/2, |ξH1hv|2<0.7 
- H1 region II, mA1<mH1/2, H1 →A1A1

• black: perturbativity till mGUT
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H1 126 GeV: hv-, Hv-, S- fraction
-

(a) (b) (c)

Figure 9. |ξS
Hi

|2 versus |ξhv
Hi

|2 for H1 (a), H2 (b) and H3 (c) in the H1-126 case. Color coding is

the same as for Fig. 5.

(a) (b)

Figure 10. Av-fraction in the light CP-odd Higgs A1: |ξAv
A1

|2 = 1 − |ξAv
A2

|2 = 1 − |ξAs
A1

|2 in the

H1-126 case. Color coding is the same as for Fig. 5.

H3 [panel (c)]. Since |ξhv
Hi
|2+|ξHv

Hi
|2+|ξS

Hi
|2 = 1, the distance between the cross diagonal line

and the points indicates the value of |ξHv
Hi

|2. For the generic H1 Region IA (green points),

|ξhv
H1

|2 + |ξS
H1

|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv

Hi
− ξHv

Hi
tanβ. S fractions vary between 0 to 25% for both H1 and H2,

while it is the dominant component in H3.
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H1

• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H1 region IA, mA1>mH1/2, |ξH1hv|2>0.7 
- H1 region IB, mA1>mH1/2, |ξH1hv|2<0.7 
- H1 region II, mA1<mH1/2, H1 →A1A1

• black: perturbativity till mGUT
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-
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|2 versus |ξhv
Hi
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|2 = 1 − |ξAv
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|2 in the

H1-126 case. Color coding is the same as for Fig. 5.

H3 [panel (c)]. Since |ξhv
Hi
|2+|ξHv
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|2+|ξS

Hi
|2 = 1, the distance between the cross diagonal line

and the points indicates the value of |ξHv
Hi

|2. For the generic H1 Region IA (green points),

|ξhv
H1

|2 + |ξS
H1

|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv

Hi
− ξHv

Hi
tanβ. S fractions vary between 0 to 25% for both H1 and H2,

while it is the dominant component in H3.

– 21 –

H1

hv-like

• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H1 region IA, mA1>mH1/2, |ξH1hv|2>0.7 
- H1 region IB, mA1>mH1/2, |ξH1hv|2<0.7 
- H1 region II, mA1<mH1/2, H1 →A1A1

• black: perturbativity till mGUT
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the same as for Fig. 5.
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Figure 10. Av-fraction in the light CP-odd Higgs A1: |ξAv
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|2 = 1 − |ξAv
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|2 in the

H1-126 case. Color coding is the same as for Fig. 5.

H3 [panel (c)]. Since |ξhv
Hi
|2+|ξHv

Hi
|2+|ξS

Hi
|2 = 1, the distance between the cross diagonal line

and the points indicates the value of |ξHv
Hi

|2. For the generic H1 Region IA (green points),

|ξhv
H1

|2 + |ξS
H1

|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv
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− ξHv
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tanβ. S fractions vary between 0 to 25% for both H1 and H2,

while it is the dominant component in H3.
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hv-like

hv-like (Hv-mixture)

• grey: pass exp
• pink: 124 < mH1  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H1 region IA, mA1>mH1/2, |ξH1hv|2>0.7 
- H1 region IB, mA1>mH1/2, |ξH1hv|2<0.7 
- H1 region II, mA1<mH1/2, H1 →A1A1

• black: perturbativity till mGUT
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|2. For the generic H1 Region IA (green points),
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|2 + |ξS
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|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv

Hi
− ξHv
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tanβ. S fractions vary between 0 to 25% for both H1 and H2,

while it is the dominant component in H3.

– 21 –

H1

(a) (b) (c)

Figure 9. |ξS
Hi

|2 versus |ξhv
Hi

|2 for H1 (a), H2 (b) and H3 (c) in the H1-126 case. Color coding is

the same as for Fig. 5.

(a) (b)

Figure 10. Av-fraction in the light CP-odd Higgs A1: |ξAv
A1

|2 = 1 − |ξAv
A2

|2 = 1 − |ξAs
A1

|2 in the

H1-126 case. Color coding is the same as for Fig. 5.

H3 [panel (c)]. Since |ξhv
Hi
|2+|ξHv

Hi
|2+|ξS

Hi
|2 = 1, the distance between the cross diagonal line
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|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly
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For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv
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|ξhv
H1

|2 + |ξS
H1

|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
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|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly
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For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv
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tanβ. S fractions vary between 0 to 25% for both H1 and H2,
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|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
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|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv
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|2. For the generic H1 Region IA (green points),
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|2 + |ξS
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|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv

Hi
− ξHv
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tanβ. S fractions vary between 0 to 25% for both H1 and H2,

while it is the dominant component in H3.
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|ξhv
H1

|2 + |ξS
H1

|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly
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For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv
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tanβ. S fractions vary between 0 to 25% for both H1 and H2,
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|2 + |ξS
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|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv
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tanβ. S fractions vary between 0 to 25% for both H1 and H2,
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is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv

Hi
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tanβ. S fractions vary between 0 to 25% for both H1 and H2,
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Figure 10. Av-fraction in the light CP-odd Higgs A1: |ξAv
A1

|2 = 1 − |ξAv
A2

|2 = 1 − |ξAs
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|2 in the

H1-126 case. Color coding is the same as for Fig. 5.

H3 [panel (c)]. Since |ξhv
Hi
|2+|ξHv

Hi
|2+|ξS

Hi
|2 = 1, the distance between the cross diagonal line

and the points indicates the value of |ξHv
Hi

|2. For the generic H1 Region IA (green points),

|ξhv
H1

|2 + |ξS
H1

|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv
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tanβ. S fractions vary between 0 to 25% for both H1 and H2,

while it is the dominant component in H3.
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Figure 10. Av-fraction in the light CP-odd Higgs A1: |ξAv
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|2 = 1 − |ξAv
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|2 in the

H1-126 case. Color coding is the same as for Fig. 5.
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|2+|ξHv
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|2 = 1, the distance between the cross diagonal line

and the points indicates the value of |ξHv
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|2. For the generic H1 Region IA (green points),

|ξhv
H1

|2 + |ξS
H1

|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv

Hi
− ξHv
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tanβ. S fractions vary between 0 to 25% for both H1 and H2,

while it is the dominant component in H3.

– 21 –

H1

(a) (b) (c)

Figure 9. |ξS
Hi

|2 versus |ξhv
Hi

|2 for H1 (a), H2 (b) and H3 (c) in the H1-126 case. Color coding is

the same as for Fig. 5.

(a) (b)

Figure 10. Av-fraction in the light CP-odd Higgs A1: |ξAv
A1

|2 = 1 − |ξAv
A2

|2 = 1 − |ξAs
A1

|2 in the

H1-126 case. Color coding is the same as for Fig. 5.

H3 [panel (c)]. Since |ξhv
Hi
|2+|ξHv

Hi
|2+|ξS

Hi
|2 = 1, the distance between the cross diagonal line
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0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or
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H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly
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For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly
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Hi
|2+|ξHv

Hi
|2+|ξS

Hi
|2 = 1, the distance between the cross diagonal line

and the points indicates the value of |ξHv
Hi

|2. For the generic H1 Region IA (green points),

|ξhv
H1

|2 + |ξS
H1

|2 ∼ 1; the Hv-fraction in H1 is almost 0. Typically, about 70% or more of H1

is hv, which couples exactly like the SM Higgs, while the singlet component varies between

0 to about 30%. For H2, it could be either Hv-dominant for those points with |ξS
H2

|2 ∼ 0,

or a mixture of Hv and S for points with larger |ξS
H2

|2. H3 is mostly singlet-dominant, or

with a small mixture of hv for points close to the cross-diagonal line. It could also have a

significant Hv − S mixture for points with smaller |ξS
H3

|2.
For the H1 Region IB (red points), |ξhv

H1
|2 < 0.7. Those points typically have a sizable

amount of H1 being Hv and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly

Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

hv−Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This is similar
to H1 Region IB, both are more demanding on a suppressed H1bb̄ coupling
proportional to ξhv

Hi
− ξHv

Hi
tanβ. S fractions vary between 0 to 25% for both H1 and H2,

while it is the dominant component in H3.

– 21 –

H3

H-like



S. Su 32

H1 126 GeV: hv-, Hv-, S- fraction
-
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H2 126 GeV, SM-like
-

H2 as 126 GeV SM-like Higgs

• grey: pass exp
• pink: 124 < mH2  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H2 region IA, mH1>mH2/2, |ξH2hv|2>0.5 

- H2 region IB, mH1>mH2/2, |ξH2hv|2<0.5 

- H2 region II, mH1<mH2/2, H2 →H1H1

• black: perturbativity till mGUT
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  Parameter regions 
-

mH2 ~ 126 H2 126 perturbativity mH1<mH2/2

tanβ >1 1 to 3.25 1.5 to 2.5 1.25 to 2.5

mA 0 to 200 100 to 200 GeV 170 to 200 GeV 125 to 200 GeV

µ 100 to 300 100 to 200 GeV 100 to 130 GeV 100 to 150 GeV

λ 0 to 0.75 0.4 to 0.75 0.5 to 0.7 0.5 to 0.75

κ 0 to 1 ≥ 0.05 0.05 to 0.6 ≥ 0.3

Aκ -1200 to 50 -1200  to 50 GeV -300 to 50 GeV -500 to -250 GeV

Aλ -600 to 300 -300  to 300 GeV 0 to 300 GeV 0 to 200 GeV
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H2 126 GeV: cross sections
-

๏ σγγ vs σWW ๏ BrWW vs Brbb

(a) (b)

Figure 12. The normalized σ × Br/SM for (a) gg → H2 → γγ. (b) gg → H2 → WW/ZZ as

a function of mH2 in the H2-126 case. The current experimental constraints from the SM Higgs

searches of the γγ, WW and ZZ channels are also imposed. Color coding is the same as for Fig. 11.

(a) (b)

Figure 13. Correlations for (a) γγ versus WW/ZZ channel, and (b) bb versus WW/ZZ in the

H2-126 case. Color coding is the same as for Fig. 11.

5.2 Production cross sections and decay branching fractions for the SM-like
H2

The ranges of σ ×Br/SM for gg → H2 → γγ is slightly large than that of the H1-126 GeV
case. An enhancement as large as a factor of 2 can be achieved in the present case. For gg →
H2 → WW/ZZ, the σ×Br/SM is typically in the range of 0.4 − 1.6, and bounded above by
the current experimental searches in the WW/ZZ channels. Note that a relatively strong
suppression of about 0.4 could be accommodated more comfortably (ZL: comfortably?
so non-scientific. Maybe say easily, more points survive/populate?) than in the
H1-126 GeV case.

H2 → γγ and H2 → WW/ZZ are also highly correlated, as shown in Fig. 13, panel (a)
for γγ versus WW . There are several branches, corresponding to H2 Region IA and IB as
categorized in Sec. 5.1. For Region IA (green points) with H2 being mostly hv-dominant,
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H2 → γγ and H2 → WW/ZZ are also highly correlated, as shown in Fig. 13, panel (a)
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H2 → H1 H1

• grey: pass exp
• pink: 124 < mH2  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H2 region IA, mH1>mH2/2, |ξH2hv|2>0.5 
- H2 region IB, mH1>mH2/2, |ξH2hv|2<0.5 
- H2 region II, mH1<mH2/2, H2 →H1H1

• black: perturbativity till mGUT
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H2 126 GeV: hv-, Hv-, S- fraction
-

(a) (b) (c)

Figure 14. |ξS
Hi

|2 versus |ξhv
Hi

|2 for H1 (a), H2 (b) and H3 (c) in the H2-126 case. Color coding
is the same as for Fig. 11.

Br(H1→γγ)/(Br)SM
Br(H1→WW )/(Br)SM

≈ 1.1 for the lower branch of green points. However, there is another

branch with the higher value of
Br(H1→γγ)/(Br)SM

Br(H1→WW )/(Br)SM
≈ 2. Those points typically have an

enhanced H2 → γγ compared to the SM value due to the light stop contributions. For

Region IB (red points) with H2 being a mixture of hv, Hv and S,
Br(H1→γγ)/(Br)SM

Br(H1→WW )/(Br)SM
≈

1.4. This result comes from a mixture of the slightly suppressed light stop
contributions and a suppressed W

±-loop contribution.
In Fig. 13, panel (b), we show the correlation between the bb and V V channel: Br(H2 →

bb)/BrSM versus Br(H2 → V V )/BrSM. While most regions exhibit an anti-correlation as

expected, in H2 Region II (purple points) with mH1 < mH2/2, the branching fraction for

the V V channel is almost independent of the bb channel. This is , similar to the magenta
region in H1-126 case, due to an opening up of the decay channel H2 → H1H1, which

compensates for the suppression of the bb channel while keeping the total decay width of

H2 close to the SM value.

The bb and ττ channels also exhibit a similar correlation behavior as in the H1-126

case: Br(H2 → bb)/BrSM ≈ Br(H2 → ττ)/BrSM. For VBF,VH → H2 → ττ, bb, σ×Br/SM

is in the range of 0.4− 1.1 for the H2 Region IA and is much suppressed in Region IB and

is � 0.4. For gg → H2 → τ+τ−, most of the H2 Region IA falls into the range of 0.4 − 1.4,

although an enhancement as large as 2 is possible. For Region IB, this channel is almost

always suppressed with σ × Br � 0.8(σ × Br)SM. The process ttH2 → bb receives little

enhancement, with σ × Br/SM � 1.06 for Region IA and σ × Br/SM � 0.7 for Region IB.

5.3 Wave function overlap

Fig. 14 shows |ξS
Hi
|2 versus |ξhv

Hi
|2 for (a) H1, (b) H2 and (c) H3. For H2 Region II (magenta

points), H1 is mostly singlet, H2 is mostly hv and H3 is mostly Hv.

For H2 region IA (green points) with |ξhv
H2

|2 > 0.5, while H2 is mostly hv-like by

definition, its Hv-fraction is almost always small. In contrast, while H1 is dominated by S,

it could have a relatively large Hv-fraction. H3 is typically a mixture of S and Hv, with the

Hv-fraction always being sizable: |ξHv
H3

|2 � 0.4. The hv-fraction in H3 is almost negligible.

For H2 region IB (red points) with |ξhv
H2

|2 < 0.5, the singlet fraction in H2 could be

significant, sometime even as large as 0.8. While the hv-fraction in H2 decreases, it increases

accordingly in H1: |ξhv
H1

|2 > 0.5. This opens up the possibility of H1 with sizable
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is the same as for Fig. 11.
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Br(H1→γγ)/(Br)SM
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≈

1.4. This result comes from a mixture of the slightly suppressed light stop
contributions and a suppressed W

±-loop contribution.
In Fig. 13, panel (b), we show the correlation between the bb and V V channel: Br(H2 →

bb)/BrSM versus Br(H2 → V V )/BrSM. While most regions exhibit an anti-correlation as

expected, in H2 Region II (purple points) with mH1 < mH2/2, the branching fraction for

the V V channel is almost independent of the bb channel. This is , similar to the magenta
region in H1-126 case, due to an opening up of the decay channel H2 → H1H1, which

compensates for the suppression of the bb channel while keeping the total decay width of

H2 close to the SM value.

The bb and ττ channels also exhibit a similar correlation behavior as in the H1-126

case: Br(H2 → bb)/BrSM ≈ Br(H2 → ττ)/BrSM. For VBF,VH → H2 → ττ, bb, σ×Br/SM

is in the range of 0.4− 1.1 for the H2 Region IA and is much suppressed in Region IB and

is � 0.4. For gg → H2 → τ+τ−, most of the H2 Region IA falls into the range of 0.4 − 1.4,

although an enhancement as large as 2 is possible. For Region IB, this channel is almost

always suppressed with σ × Br � 0.8(σ × Br)SM. The process ttH2 → bb receives little

enhancement, with σ × Br/SM � 1.06 for Region IA and σ × Br/SM � 0.7 for Region IB.

5.3 Wave function overlap

Fig. 14 shows |ξS
Hi
|2 versus |ξhv

Hi
|2 for (a) H1, (b) H2 and (c) H3. For H2 Region II (magenta

points), H1 is mostly singlet, H2 is mostly hv and H3 is mostly Hv.

For H2 region IA (green points) with |ξhv
H2

|2 > 0.5, while H2 is mostly hv-like by

definition, its Hv-fraction is almost always small. In contrast, while H1 is dominated by S,

it could have a relatively large Hv-fraction. H3 is typically a mixture of S and Hv, with the

Hv-fraction always being sizable: |ξHv
H3

|2 � 0.4. The hv-fraction in H3 is almost negligible.

For H2 region IB (red points) with |ξhv
H2

|2 < 0.5, the singlet fraction in H2 could be

significant, sometime even as large as 0.8. While the hv-fraction in H2 decreases, it increases

accordingly in H1: |ξhv
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|2 > 0.5. This opens up the possibility of H1 with sizable
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H2

• grey: pass exp
• pink: 124 < mH2  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H2 region IA, mH1>mH2/2, |ξH2hv|2>0.5 
- H2 region IB, mH1>mH2/2, |ξH2hv|2<0.5 
- H2 region II, mH1<mH2/2, H2 →H1H1

• black: perturbativity till mGUT
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H2 126 GeV: hv-, Hv-, S- fraction
-

(a) (b) (c)

Figure 14. |ξS
Hi

|2 versus |ξhv
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|2 for H1 (a), H2 (b) and H3 (c) in the H2-126 case. Color coding
is the same as for Fig. 11.
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the V V channel is almost independent of the bb channel. This is , similar to the magenta
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points), H1 is mostly singlet, H2 is mostly hv and H3 is mostly Hv.

For H2 region IA (green points) with |ξhv
H2

|2 > 0.5, while H2 is mostly hv-like by

definition, its Hv-fraction is almost always small. In contrast, while H1 is dominated by S,

it could have a relatively large Hv-fraction. H3 is typically a mixture of S and Hv, with the

Hv-fraction always being sizable: |ξHv
H3

|2 � 0.4. The hv-fraction in H3 is almost negligible.

For H2 region IB (red points) with |ξhv
H2

|2 < 0.5, the singlet fraction in H2 could be

significant, sometime even as large as 0.8. While the hv-fraction in H2 decreases, it increases

accordingly in H1: |ξhv
H1

|2 > 0.5. This opens up the possibility of H1 with sizable
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Figure 14. |ξS
Hi

|2 versus |ξhv
Hi

|2 for H1 (a), H2 (b) and H3 (c) in the H2-126 case. Color coding
is the same as for Fig. 11.
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• grey: pass exp
• pink: 124 < mH2  < 128 GeV

• green, red, purple, black: satisfy σXBr(γγ, WW)

- H2 region IA, mH1>mH2/2, |ξH2hv|2>0.5 
- H2 region IB, mH1>mH2/2, |ξH2hv|2<0.5 
- H2 region II, mH1<mH2/2, H2 →H1H1

• black: perturbativity till mGUT
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LHC phenomenology
-

๏ H1-126
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LHC phenomenology
-

(a) (b)

Figure 15. Cross sections at 14 TeV in the H1-126 case for (a) H1,2,3 production via gg fusion
(VBF) denoted by red (pink), green (light green), blue (light blue) points, respectively, and for
(b) A1,2 production via gg fusion (bb̄ fusion) denoted by purple (light purple), brown (light brown)
points, respectively. The yellow lines indicate the cross sections with SM couplings. ZL: σ here
looks strange.

H1WW/H1ZZ couplings that we will discuss in the next section. Both H1 and H2

could have a fraction of Hv as large as 0.3−0.4. H3, on the other hand, is mostly a mixture

of Hv and S, with the hv-fraction being negligible.

The compositions of A1 and A2 are similar to that of the H1-126 case. Larger negative

values of Aκ lead to a large fraction of A1 being Av. However, for Aκ ∼ 0, A1 could be

mostly singlet-like.

6 LHC Phenomenology for the non-SM-like Higgs bosons

In the previous sections, we have presented two very interesting scenarios in the low-mA

region. The SM-like Higgs boson can be the lightest scalar particle (H1-126) while the next

lightest one is an admixture of its MSSM partner and a singlet state. The alternative is

that the SM-like Higgs boson is the second lightest (H2-126) while the lightest scalar is a

Hv-S-hv mixture. While the collider phenomenology of the SM-like Higgs boson has been

shown earlier, it would be interesting to identify the signal features of the other low-mass

Higgs bosons.

6.1 H1 as the SM-like Higgs Boson

In Fig. 15(a), we show the dominant production cross sections of gg fusion and VBF for

H1 (red and pink points), H2 (green and light green points) and H3 (blue and light blue

points), respectively, satisfying all the constraints for the H1-126 case at the 14 TeV LHC.

The yellow lines indicate the corresponding cross sections with SM couplings. When the

hv-fraction is sizable, the production cross sections for H2 could be similar to the SM-like

rate. The cross sections could also be suppressed by two orders of magnitudes if the hv-

fraction is small S-fraction is large, as for the H3 case. The VBF process can be more

significantly suppressed than that of the gg fusion. The production cross section for the
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LHC phenomenology
-

๏ H1-126, A1 decay

(a) (b)

(c) (d)

(e) (f)

Figure 16. Decay branching fractions for H1,2,3, A1,2 and H
± to the SM particles in the case of

H1-126. The yellow lines indicate the corresponding BR values with the SM couplings.

CP-odd states A1,2 from gg fusion via triangle loop diagrams is shown in Fig. 15(b). The

rate can be similar to that of the SM-like Higgs boson and the spread of the cross section

over the parameter scan is roughly about an order of magnitude, less pronounced than

those for the CP-even cases. Although about an order magnitude lower, the production

cross section from bb̄ annihilation can be significantly larger than that of the SM value, due

to the large tanβ enhancement.
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LHC phenomenology
-

๏ H1-126, decay to Higgs boson

(a) (b)

(c) (d)

(e) (f)

Figure 17. Decay branching fractions for H1,2,3, A1,2 and H
±

to Higgs bosons in the case of

H1-126.

we see that

H1 → A1A1, ZA1, (6.1)
H2 → A1A1, ZA1, H1H1, (6.2)
H3 → A1A1, H1H1, ZA1, W

±
H
∓
, A1A2, H1H2, H2H2, H

+
H
−
, (6.3)

H
± →W

±
A1, W

±
H2, W

±
H1, (6.4)

A1 → ZH1, (6.5)
A2 → A1H1, A1H2, W

±
H
∓
, ZH1, ZH2, ZH3, A1H3, (6.6)

– 29 –
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LHC phenomenology
-

๏ H1-126, H1 , H2 decay

(a) (b)

(c) (d)

(e) (f)

Figure 17. Decay branching fractions for H1,2,3, A1,2 and H
±

to Higgs bosons in the case of

H1-126.

In Fig. 16, we further show the relevant branching fractions for H1,2,3, A1,2 and H
±

to

the SM particles for the case of H1-126. The yellow lines indicate the corresponding BR

values with SM couplings. The non SM-like Higgs bosons typically have suppressed decay

branching fractions to the regular SM channels, in particular for H3, due to the opening

up of new decay channels to lighter Higgs bosons pairs. The experimental searches

for those new Higgs bosons at the LHC will continue to cover a broader parameter region.
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Figure 17. Decay branching fractions for H1,2,3, A1,2 and H
±

to Higgs bosons in the case of

H1-126.

In Fig. 16, we further show the relevant branching fractions for H1,2,3, A1,2 and H
±

to

the SM particles for the case of H1-126. The yellow lines indicate the corresponding BR

values with SM couplings. The non SM-like Higgs bosons typically have suppressed decay

branching fractions to the regular SM channels, in particular for H3, due to the opening

up of new decay channels to lighter Higgs bosons pairs. The experimental searches

for those new Higgs bosons at the LHC will continue to cover a broader parameter region.
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LHC phenomenology
-

๏ H1-126, H3 , H± decay

(a) (b)

(c) (d)

(e) (f)

Figure 17. Decay branching fractions for H1,2,3, A1,2 and H
±

to Higgs bosons in the case of

H1-126.

In Fig. 16, we further show the relevant branching fractions for H1,2,3, A1,2 and H
±

to

the SM particles for the case of H1-126. The yellow lines indicate the corresponding BR

values with SM couplings. The non SM-like Higgs bosons typically have suppressed decay

branching fractions to the regular SM channels, in particular for H3, due to the opening

up of new decay channels to lighter Higgs bosons pairs. The experimental searches

for those new Higgs bosons at the LHC will continue to cover a broader parameter region.
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LHC phenomenology
-

๏ H1-126, A1 , A2 decay

(a) (b)

(c) (d)

(e) (f)

Figure 17. Decay branching fractions for H1,2,3, A1,2 and H
±

to Higgs bosons in the case of

H1-126.

In Fig. 16, we further show the relevant branching fractions for H1,2,3, A1,2 and H
±

to

the SM particles for the case of H1-126. The yellow lines indicate the corresponding BR

values with SM couplings. The non SM-like Higgs bosons typically have suppressed decay

branching fractions to the regular SM channels, in particular for H3, due to the opening

up of new decay channels to lighter Higgs bosons pairs. The experimental searches

for those new Higgs bosons at the LHC will continue to cover a broader parameter region.
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LHC phenomenology
-

๏ H2-126, decay to Higgs bosons

(a) (b)

Figure 18. Cross sections at 14 TeV in the case of H2-126. The color codes and the legends are
the same as in Fig. 15.

roughly according to the sizes of the branching fractions at the low values of the mass.

The relative BRs depend on phase space factors and the couplings dictated by the MSSM

and singlet components. Consequently, the striking signals will be multiple heavy quarks,

such as 4b, 4t and 2b2t, and will likely include τ+τ− as well. While the final state with a

W or Z may be a good channel from the event identification view point, the final states

with multiple heavy quarks may be rather challenging to separate out from the large SM

backgrounds.

6.2 H2 as the SM-like Higgs Boson

Similar results for the Higgs production and decay channels are shown in Figs. 18−19,

respectively, at the 14 TeV LHC for the H2-126 case. It is interesting to note that H1 is

non-SM-like, and lighter than H2, yet it could have as large a production cross section as

H1. Although the branching fractions to WW, ZZ, and γγ are somewhat smaller than

those for the SM, these clean signals can be searched for in the near future. For example,

the H1 could have a sufficient coupling with vector boson pairs to be responsible for the

about 98 GeV excess at LEP [27, 66, 67].

Again, we find it very interesting that a heavier Higgs state could dominantly decay to

a pair of lighter Higgs bosons. Note that H1 is non-SM-like and light, so that there are no

Higgs pair channels for it to decay to. We see, from Fig. 20,

H2 → H1H1, (6.7)

H3 → H1H1, H1H2, ZA1, A1A1, H2H2, (6.8)

H
± →W

±
H1, W

±
A1, W

±
H2, (6.9)

A1 → ZH1, ZH2, (6.10)

A2 → ZH1, A1H1, A1H2, ZH2, W
±
H
∓
, ZH3, A1H3, (6.11)

again roughly according to the sizes of the branching fractions at the low values of the mass.

The collider signatures would be multiple heavy quarks, τ �s, and multiple gauge bosons as
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  Conclusion (part I) 
-

๏ 126 ± 2 GeV (~SM strength) in NMSSM: low mA region  
- small mA (≤ 200 GeV), all Higgses light, possible large mixing effects
- singlet helps to lift mass: large λ, small tan β
- mixing with singlet, change Γbb, ΓWW/ZZ, ... 

๏ MSSM
- mA ~mZ, non-decoupling, H0 SM-like
- mA ≥ 300 GeV, decoupling, h0 SM-like
- stops either heavy or large LR-mixing

๏ NMSSM
- mA : 0 - 200 GeV
- either H1 or H2 SM-like  (hard to realize H3 SM-like)
- interesting features in each region
- stop sector less constrained
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  Conclusion (part I) 
-

๏ H1 126 GeV- λ≥ 0.55, κ ≥ 0.3, 1≤ tan β ≤ 3.5
- H1 SM h-like, H2, H3 S-H mixture
- H1 → A1 A1: H1, H2 h-H mixture, H3 S-like

๏ H2 126 GeV  
- 0.4 ≤ λ ≤ 0.75,   κ ≥ 0.05, 1≤ tan β ≤ 3.25
- 100 ≤ mA ≤ 200 GeV, small µ
- case with H2 → H1 H1

- H2 h-S mixture, H3 S-H mixture
- H1, H2,  h-H-S mixture; H3: S-H mixture

๏ H3 126 GeV: fine tuned region, hard to realize
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hv hv hv

Hv Hv Hv
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hv hv

MSSM MSSM
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Figure 1. Illustration of the effect of adding the singlet to the CP-even Higgs boson spectrum

before mixing.

the lighter eigenstate or the heavier eigenstate, as illustrated in the top row of Fig. 1. After

adding the singlet scalar, the two panels of the MSSM give rise to six possible scenarios in

the NMSSM, as illustrated in the lower row of Fig. 1. In reality, the mass eigenstates are

admixtures of the gauge interaction eigenstates, and thus cannot be labelled as simply as

in Fig. 1. Nevertheless, these graphs give us an intuitive picture of the result of adding the

singlet field of the NMSSM.

Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [10–12] showed

the compatibility of the NMSSM with the enhanced γγ rate, while Reference [13] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM

may include many interesting features, that include grand unification of gauge couplings

[14], naturalness for the Higgs mass [15–19], neutralino Dark Matter [20–22], and possible

accommodation of multiple nearly degenerate Higgs bosons [23–25].

In this paper, by contrast, we consider the NMSSM in the low-mA region, the prototype
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Conclusion (part I) 
-

๏ relax perturbativity requirement, allowed region enlarge significantly

๏ SM-like Higgs signal might be modified: prod and decay

๏ γγ rate can be enhanced, γγ/WW, WW/bb ratios can be violated.

๏ New Higgs bosons may be readily produced

- production could be similar to that of the SM production

- decay could be larger than that of the SM.

๏ Heavy Higgs → light Higgs bosons or light Higgs+W/Z, multiple t,b,tau
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  2HDM Higgs Sector 
-

๏ Type II Two Higgs Doublet Model

after EWSB, 5 physical Higgses
CP-even Higgses: h0, H0  

CP-odd Higgs: A0

Charged Higgses: H±

๏ EWSB
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I. INTRODUCTION

The discovery of a resonance at 125 GeV with properties consistent with the Standared Model (SM) Higgs boson in
both the ATLAS [1] and CMS experiments [2] is undoubtedly the most significant experimental triumph of the LHC
to date. The nature of this particle, as regards its CP properties and couplings, are still to be established. Though
further data would undoubtedly point us in the right direction, at this point it is useful to ask what this result means
for models that go beyond the SM. The reason for this is two-fold. There are quite a few models that admit a scalar
particle in their spectrum and many of them can have couplings and decays consistent with the SM Higgs boson.
Thus it behooves us to constrain these models as much as possible with the information at hand. Secondly, both
experiments have reported a slight excess in the γγ channel [3, 4] compared to the SM Higgs. Though it remains to
be seen if this excess stays as more data is accrued, it is still interesting to investigate if this departure from the SM
can be captured in other models that go beyond it.

One of the simplest extensions of the SM model involves enlarging the scalar sector. The Two Higgs-Doublet Models
(2HDM), as the name implies, involve two scalar doublets both charged under the SM SU(2)×U(1) gauge symmetries
[5–8]. The scalar spectrum is enlarged relative to the SM and includes a light and a heavy neutral CP-even Higgses
(h0 and H

0), charged Higgses (H±), and a pseudoscalar A0. The neutral component of both the Higgs fields develop
vacuum expectation values (vev), breaking SU(2)×U(1) down to U(1)em. Thus, in addition to the Yukawas and the
masses, there are two additional parameters in the theory: the ratio of the vevs of the two Higgs fields (tanβ), and
the mixing of the two neutral Higgses (sinα).

There are many types of 2HDMs, each differing in the way the light and heavy neutral Higgses couple to the fermions
and gauge bosons (Type I, Type II, Lepton-specific, Flipped). In this work, we will be concentrating on the Type II
case. There is no deep reason for the choice, other than the fact that this case shares many of the features of MSSM,

and so enables us to translate existing LHC SUSY results to this case. Before proceeding, we point out that over the
last few months, there have been various studies on 2HDM concentrating on the regions of parameter space (usually
in the tanβ − sinα plane) that admit the values of σ× BR values reported by the LHC experiments in the various
channels [2, 9–11] (while also looking at correlations between the various decay channels), assuming the resonance
discovered corresponds to the heavy or light scalar in 2HDM. In addition, Ref. [12] investigated the possibility that this
could correspond to the pseudoscalar A0 - in this context, it is worth remarking that [13] considered the pseudoscalar
implication in general and found that while it is strongly disfavored, this possibility is not yet completely ruled out. 1

In the present paper, we extend the above analyses by combining all known experimental constraints (LEP, LHC,
and Tevatron bounds) with the theoretical ones (from perturbativity, unitarity, and vacuum stability) and present
regions of parameter space in various combinations of the parameters of the model instead of just concentrating on
two parameters. This enables us to draw conclusions about correlations between the different masses and the mixing
angles. We start by briefly laying out the essential details of the model and the set-up of our analysis in Section II.
We then give an overview of the various bounds and present our results in Section III. We conclude in Section IV.

II. TYPE II 2HDM

In this section, we will briefly describe the model we consider, list the relevant couplings and explain the constraints
imposed. For more details about the model, the reader is invited to consult Ref. [5].

A. Potential, Masses and Mixing Angles

Labelling the two scalar fields Φ1 and Φ2, the most general potential can be written down in the following form:

V (Φ1,Φ2) =m
2
11Φ

†
1Φ1 +m

2
22Φ

†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.)

+
1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2)

+λ4(Φ
†
1Φ2)(Φ

†
2Φ1) +

�1

2
λ5(Φ

†
1Φ2)

2 + h.c.
�

+
�
λ6

�
(Φ†

1Φ1) + λ7(Φ
†
2Φ2)

�
(Φ†

1Φ2) + h.c.
�
. (1)

1 The latest results indicate that the pseudoscalar interpretation of the 125 GeV excess is ruled out at 2.5 σ.
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I. INTRODUCTION

The discovery of a resonance at 125 GeV with properties consistent with the Standared Model (SM) Higgs boson in
both the ATLAS [1] and CMS experiments [2] is undoubtedly the most significant experimental triumph of the LHC
to date. The nature of this particle, as regards its CP properties and couplings, are still to be established. Though
further data would undoubtedly point us in the right direction, at this point it is useful to ask what this result means
for models that go beyond the SM. The reason for this is two-fold. There are quite a few models that admit a scalar
particle in their spectrum and many of them can have couplings and decays consistent with the SM Higgs boson.
Thus it behooves us to constrain these models as much as possible with the information at hand. Secondly, both
experiments have reported a slight excess in the γγ channel [3, 4] compared to the SM Higgs. Though it remains to
be seen if this excess stays as more data is accrued, it is still interesting to investigate if this departure from the SM
can be captured in other models that go beyond it.

One of the simplest extensions of the SM model involves enlarging the scalar sector. The Two Higgs-Doublet Models
(2HDM), as the name implies, involve two scalar doublets both charged under the SM SU(2)×U(1) gauge symmetries
[5–8]. The scalar spectrum is enlarged relative to the SM and includes a light and a heavy neutral CP-even Higgses
(h0 and H

0), charged Higgses (H±), and a pseudoscalar A0. The neutral component of both the Higgs fields develop
vacuum expectation values (vev), breaking SU(2)×U(1) down to U(1)em. Thus, in addition to the Yukawas and the
masses, there are two additional parameters in the theory: the ratio of the vevs of the two Higgs fields (tanβ), and
the mixing of the two neutral Higgses (sinα).

There are many types of 2HDMs, each differing in the way the light and heavy neutral Higgses couple to the fermions
and gauge bosons (Type I, Type II, Lepton-specific, Flipped). In this work, we will be concentrating on the Type II
case. There is no deep reason for the choice, other than the fact that this case shares many of the features of MSSM,

and so enables us to translate existing LHC SUSY results to this case. Before proceeding, we point out that over the
last few months, there have been various studies on 2HDM concentrating on the regions of parameter space (usually
in the tanβ − sinα plane) that admit the values of σ× BR values reported by the LHC experiments in the various
channels [2, 9–11] (while also looking at correlations between the various decay channels), assuming the resonance
discovered corresponds to the heavy or light scalar in 2HDM. In addition, Ref. [12] investigated the possibility that this
could correspond to the pseudoscalar A0 - in this context, it is worth remarking that [13] considered the pseudoscalar
implication in general and found that while it is strongly disfavored, this possibility is not yet completely ruled out. 1

In the present paper, we extend the above analyses by combining all known experimental constraints (LEP, LHC,
and Tevatron bounds) with the theoretical ones (from perturbativity, unitarity, and vacuum stability) and present
regions of parameter space in various combinations of the parameters of the model instead of just concentrating on
two parameters. This enables us to draw conclusions about correlations between the different masses and the mixing
angles. We start by briefly laying out the essential details of the model and the set-up of our analysis in Section II.
We then give an overview of the various bounds and present our results in Section III. We conclude in Section IV.

II. TYPE II 2HDM

In this section, we will briefly describe the model we consider, list the relevant couplings and explain the constraints
imposed. For more details about the model, the reader is invited to consult Ref. [5].

A. Potential, Masses and Mixing Angles

Labelling the two scalar fields Φ1 and Φ2, the most general potential can be written down in the following form:
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1 The latest results indicate that the pseudoscalar interpretation of the 125 GeV excess is ruled out at 2.5 σ.
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I. INTRODUCTION

The discovery of a resonance at 125 GeV with properties consistent with the Standared Model (SM) Higgs boson in
both the ATLAS [1] and CMS experiments [2] is undoubtedly the most significant experimental triumph of the LHC
to date. The nature of this particle, as regards its CP properties and couplings, are still to be established. Though
further data would undoubtedly point us in the right direction, at this point it is useful to ask what this result means
for models that go beyond the SM. The reason for this is two-fold. There are quite a few models that admit a scalar
particle in their spectrum and many of them can have couplings and decays consistent with the SM Higgs boson.
Thus it behooves us to constrain these models as much as possible with the information at hand. Secondly, both
experiments have reported a slight excess in the γγ channel [3, 4] compared to the SM Higgs. Though it remains to
be seen if this excess stays as more data is accrued, it is still interesting to investigate if this departure from the SM
can be captured in other models that go beyond it.

One of the simplest extensions of the SM model involves enlarging the scalar sector. The Two Higgs-Doublet Models
(2HDM), as the name implies, involve two scalar doublets both charged under the SM SU(2)×U(1) gauge symmetries
[5–8]. The scalar spectrum is enlarged relative to the SM and includes a light and a heavy neutral CP-even Higgses
(h0 and H

0), charged Higgses (H±), and a pseudoscalar A0. The neutral component of both the Higgs fields develop
vacuum expectation values (vev), breaking SU(2)×U(1) down to U(1)em. Thus, in addition to the Yukawas and the
masses, there are two additional parameters in the theory: the ratio of the vevs of the two Higgs fields (tanβ), and
the mixing of the two neutral Higgses (sinα).

There are many types of 2HDMs, each differing in the way the light and heavy neutral Higgses couple to the fermions
and gauge bosons (Type I, Type II, Lepton-specific, Flipped). In this work, we will be concentrating on the Type II
case. There is no deep reason for the choice, other than the fact that this case shares many of the features of MSSM,

and so enables us to translate existing LHC SUSY results to this case. Before proceeding, we point out that over the
last few months, there have been various studies on 2HDM concentrating on the regions of parameter space (usually
in the tanβ − sinα plane) that admit the values of σ× BR values reported by the LHC experiments in the various
channels [2, 9–11] (while also looking at correlations between the various decay channels), assuming the resonance
discovered corresponds to the heavy or light scalar in 2HDM. In addition, Ref. [12] investigated the possibility that this
could correspond to the pseudoscalar A0 - in this context, it is worth remarking that [13] considered the pseudoscalar
implication in general and found that while it is strongly disfavored, this possibility is not yet completely ruled out. 1

In the present paper, we extend the above analyses by combining all known experimental constraints (LEP, LHC,
and Tevatron bounds) with the theoretical ones (from perturbativity, unitarity, and vacuum stability) and present
regions of parameter space in various combinations of the parameters of the model instead of just concentrating on
two parameters. This enables us to draw conclusions about correlations between the different masses and the mixing
angles. We start by briefly laying out the essential details of the model and the set-up of our analysis in Section II.
We then give an overview of the various bounds and present our results in Section III. We conclude in Section IV.
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๏ couplings
3

ξV V

h sin(β − α) ξV V

H cos(β − α) ξV V

A 0

ξuh cosα/ sinβ ξuH sinα/ sinβ ξuA cotβ

ξdh − sinα/ cosβ ξdH cosα/ cosβ ξdA tanβ

ξlh − sinα/ cosβ ξlH cosα/ cosβ ξlA tanβ

TABLE I. The couplings of the light and the heavy Higgses to the gauge bosons and fermions are modified from that of the

SM Higgs by a factor ξ. The superscripts u, d, l and V V refer to the up-type quarks, down-type quarks, leptons, and WW/ZZ
respectively.

We will impose a discrete Z2 symmetry on the Lagrangian, the effect of which is to render m12,λ6,λ7 = 0 2. Thus,
after electroweak symmetry breaking (EWSB), we are left with six free parameters: the four Higgs masses (mh, mH ,
mA, mH±), a mixing angle sinα, and the ratio of the two vacuum expectation values (vev), tanβ. Our results will
be displayed for various choices of these free parameters in 2D plots. The diagonaliazation of the scalar mass matrix
derived from Eq. 1 is a standard calculation, and we refer the reader to Ref. [14]. Here, we just quote the result for
the mass eigenstates of the scalars:

H =
√
2
�
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1 − v1) cosα+ (ReΦ0
2 − v2) sinα

�

h =
√
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�
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�

A =
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�
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1 sinβ + ImΦ0
2 cosβ

�

H
± = −Φ±

1 sinβ + Φ±
2 cosβ. (2)

We will display our results for sinα (or more precisely, sin(β − α)) ranging from -1 to 1, and for all values of tanβ.
But it turns out that the model is disallowed for large values of tanβ as we will demonstrate in Section III.

For our purposes, it is useful to invert the equations for the masses in terms of the couplings for reasons that we
will explain shortly. These are given by:

λ1 =
m

2
H
cos2 α+m

2
h
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. (3)

The couplings of the light and heavy neutral CP-even Higgses to the SM gauge bosons and fermions are scaled by
a factor ξ relative to the SM Higgs value. ξ for the two cases for all three neutral scalars is presented in Table I.

B. Theoretical and Experimental Constraints

To implement the various experimental and theoretical constraints, we have employed two different programs - i)
the 2HDM Calculator(2HDMC) [15] to enable us to compute all the decay branching fractions of the Higgs imposing
the Z2 symmetry and implementing all the theoretical constraints and ii) HIGGSBOUNDS 2.0 [16] to consistently
put in all the experimental constraints on the model.

Experimental Constraints: Let us start with the LHC constraints. The first step in determining the experimental
bounds is to understand the production and decay of the two CP-even neutral Higgses. The parton-level production

2 Ref. [11], which also addresses similar issues as in this paper, allowed for a soft breaking of the Z2 symmetry with m2
12 �= 0. In this

paper, we don’t consider such soft-breaking terms.
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๏ Theoretical constrains
- vacuum stability
- perturbativity
- unitarity
- Δρ

๏ Experimental constraints
- LEP Higgs searches (neutral Higgs, 
charged Higgs)
- Tevatron Higgs searches
- LHC Higgs searches (SM-like Higgs 
searches, MSSM Higgs searches)
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๏ previous work in 2HDM ...

Ferreira et. al., 1112.3772, 2HDM, H1 125, tan β vs. sin α
Basso et. al., 1205.6569, CP violating 2HDM, H1 125,
Cheon et. al., 1207.1083, Type II 2HDM, H1 or H2 125
Chang et. al., 1210.3439, 2HDM, H1 or H2 or degenerate H1/A, χ2 fit
Drozd et. al., 1211.3580, Type I and II 2HDM, H1 or H2 125 or degenerate, m122 ≠ 0, 
Craig and Thomas, 1207.4835, 2HDM, H1 125, various search channels
Ferreira et. al., 1211.3131, degenerate Higgses
...  

Our work: 
๏ Type II 2HDM with m122=0, 5 parameter scan
๏ impose theoretical and experimental constraints
๏ h0 or H0 126 GeV
๏ study parameter space and correlations

  2HDM Higgs Sector 
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-

2HDM Calculator (2HDMC) + HIGGSBOUNDS (+ latest LHC bounds)
+ SUPERISO for flavor constraints

our effort on the implication of the Higgs search results on the Type II 2HDM, and only

impose the flavor bounds at the last step to indicate further shrink of the parameter regions

if flavor constraints were taken seriously.

B. Analyses Method

In our analyses, we consider two scenarios:

• h
0-126 case with mh = 126 GeV,

• H
0-126 case with mH = 126 GeV.

we scan over the entire parameter space varying the mH (or mh), mA,mH+ , tan β and

sin(β − α):

20 GeV < mA,mH± < 900 GeV in steps of 20 GeV, (12)

−1 < sin(β − α) < 1 in steps of 0.05, (13)

h
0 − 126 case : 0.25 < tan β < 5 in steps of 0.25, (14)

126 GeV < mH < 900 GeV in steps of 20 GeV, (15)

H
0 − 126 case : 1 < tan β < 30 in steps of 1, (16)

6 GeV < mh < 121 GeV in steps of 5 GeV. (17)

We used the 2HDMC 1.2beta [18] which successively tested if each parameter point fulfills

the theoretical and experimental constraints implemented in HIGGSBOUNDS 3.8 [19–21].

New LHC results that are not included in HIGGSBOUNDS 3.8 were implemented by hand.

We further required either h0 or H0 to satisfy the cross section requirement for γγ and V V

channels to accommodate the observed Higgs signal:

0.9 <
σ(gg → h/H → γγ)

σSM
< 2.2, 0.2 <

σ(gg → h/H → V V )

σSM
< 1.4. (18)

The lower end of the range comes from the lower limit of 95% C.L. range for the observed

Higgs signal strength [? ], while the upper end of the range comes from the 95% C.L.

exclusion bounds from Higgs searches, which is stronger than the 95% C.L. signal range [?

]. In the last step we impose the flavor bouns on all surviving points that satisfy Eq. (18)

using the SUPERISO 3.3 [25] program to study the consequence of the flavor constraints.

8

0.25 ≤ tanβ ≤ 5

-1 ≤ sin(β-α) ≤ 1

126 GeV < mH  ≤ 1000 GeV

20 GeV ≤ mA , mHpm ≤ 1000 GeV

1 ≤ tanβ ≤ 30

-1 ≤ sin(β-α) ≤ 1

6 GeV < mH  < 121 GeV

20 GeV ≤ mA , mHpm ≤ 1000 GeV

๏ h0-126 ๏ H0-126
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FIG. 1. The normalized gg → h0 production cross-section contours (left panel) and h0 → V V

(solid lines of the right panel) and h0 → γγ (dashed lines of the right panel) branching fractions

in h0-126 case. The contour lines are σ/σSM , Br/BrSM = 0.5 (green), 1 (red), and 2 (blue). for

the Br plot, use V V, γγ. In plot, use Br instead of BR.

The h decay branching fractions h0 → V V, γγ can be written approximately as

BR(h → XX)

BR(h0
SM → XX)

=
ΓXX

Γtotal
× ΓSM

total

ΓSM
XX

≈






sin2(β−α)

sin2(β−α)Br(hSM→V V )+ sin2 α
cos2 β

Br(hSM→bb)+...

Γ(h0→γγ)/Γ(hSM→γγ)

sin2(β−α)Br(hSM→V V )+ sin2 α
cos2 β

Br(hSM→bb)+...

, (22)

where we have explicit listed the dominant bb andWW channels and used “+ . . .” to indicate

other sub-dominant SM Higgs decay channels.

In the right panel of Fig. 1, we show contours of Br/BrSM for V V (solid lines) and γγ

(dashed lines) channels. Both V V and loop induced γγ channels exhibit similar parameter

dependence on tan β and sin(β − α) since both channels are dominantly controlled by the

same h0V V coupling. While contours of Br/BrSM � 1 appear near sin(β − α) ∼ ±1 for

unsuppressed hV V couplings, h → γγ shows a bit spread for negative sin(β−α) due to the

loop-indued hγγ coupling.

Combining both the production and the decay branching fractions, we present the con-

tours of σ ×Br/SM in Fig. 2 for γγ (left panel) and V V (right panel) for σ ×Br/SM = 0.5

(green), 1 (red), and 2 (blue). Once we demand that the cross section for these processes to

10
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FIG. 1. The normalized gg → h0 production cross-section contours (left panel) and h0 → V V

(solid lines of the right panel) and h0 → γγ (dashed lines of the right panel) branching fractions

in h0-126 case. The contour lines are σ/σSM , Br/BrSM = 0.5 (green), 1 (red), and 2 (blue). for

the Br plot, use V V, γγ. In plot, use Br instead of BR.

The h decay branching fractions h0 → V V, γγ can be written approximately as

BR(h → XX)

BR(h0
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=
ΓXX

Γtotal
× ΓSM

total
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
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sin2(β−α)Br(hSM→V V )+ sin2 α
cos2 β

Br(hSM→bb)+...

, (22)

where we have explicit listed the dominant bb andWW channels and used “+ . . .” to indicate

other sub-dominant SM Higgs decay channels.

In the right panel of Fig. 1, we show contours of Br/BrSM for V V (solid lines) and γγ

(dashed lines) channels. Both V V and loop induced γγ channels exhibit similar parameter

dependence on tan β and sin(β − α) since both channels are dominantly controlled by the

same h0V V coupling. While contours of Br/BrSM � 1 appear near sin(β − α) ∼ ±1 for

unsuppressed hV V couplings, h → γγ shows a bit spread for negative sin(β−α) due to the

loop-indued hγγ coupling.

Combining both the production and the decay branching fractions, we present the con-

tours of σ ×Br/SM in Fig. 2 for γγ (left panel) and V V (right panel) for σ ×Br/SM = 0.5

(green), 1 (red), and 2 (blue). Once we demand that the cross section for these processes to

10

)! - "sin(
-1 0 1

"
ta

n 

0

2

4

0.5

1

2

 h)# (gg 
SM$
$

)! - "sin(
-1 0 1

"
ta

n 

0

2

4

0.5 1
2

)## VV/$ (h 
SMBR

BR

FIG. 1. The normalized gg → h0 production cross-section contours (left panel) and h0 → V V
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in h0-126 case. The contour lines are σ/σSM , Br/BrSM = 0.5 (green), 1 (red), and 2 (blue). for
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FIG. 2. σ × Br/SM for the processes gg → h → γγ (left), and gg → h → WW/ZZ (right) in

h0-126 case. The contour lines are σ/σSM = 0.5 (green), 1 (red), and 2 (blue). The shaded gray

regions correspond to the range of signal cross-section reported by the LHC experiments which is

0.9 − 2.2 for the γγ channel and 0.2 − 1.4 for the WW/ZZ channel. right plot change WW

to VV. We shall use a consistent notation of either σ/σSM or σ × Br/SM.

be consistent with the experimental observation of a 125 GeV Higgs, as given in Eq. (18),

the allowed region of parameter space splits into five distinct regions, as indicated by the

shaded gray areas. There are two narrow regions one each at sin(β − α) = ±1 (the grey

regions overlap with the picture frame boundary therefore hard to see), one region near

sin(β − α) = +1, and two extended region spanning the entire range of sin(β − α) for

tan β < 1.

In Fig. 3, we show the correlations for σ × Br/SM for the γγ channel against WW , for

negative (positive) values of sin(β−α) in the left (right) panel as a density plot. The points

in red are the most dense (i.e., most likely) and points in blue are the least dense (i.e., less

likely). For negative sin(β − α), there are two branches: one region (more likely) along the

diagonal line with γγ : V V ∼ 1 and σγγ � 1; another region (less likely) in the upper-half

plane with γγ : V V > 3 and σγγ extends to 2 or larger. The diagonal region corresponds

to the sin(β − α) = −1 branch in Fig. 2. The other branch in which the V V is suppressed

relative to γγ corresponds to the extended region for negative sin(β − α) in Fig. 2.
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h0-126 case. The contour lines are σ/σSM = 0.5 (green), 1 (red), and 2 (blue). The shaded gray

regions correspond to the range of signal cross-section reported by the LHC experiments which is

0.9 − 2.2 for the γγ channel and 0.2 − 1.4 for the WW/ZZ channel. right plot change WW

to VV. We shall use a consistent notation of either σ/σSM or σ × Br/SM.
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regions overlap with the picture frame boundary therefore hard to see), one region near

sin(β − α) = +1, and two extended region spanning the entire range of sin(β − α) for
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negative (positive) values of sin(β−α) in the left (right) panel as a density plot. The points

in red are the most dense (i.e., most likely) and points in blue are the least dense (i.e., less

likely). For negative sin(β − α), there are two branches: one region (more likely) along the

diagonal line with γγ : V V ∼ 1 and σγγ � 1; another region (less likely) in the upper-half

plane with γγ : V V > 3 and σγγ extends to 2 or larger. The diagonal region corresponds

to the sin(β − α) = −1 branch in Fig. 2. The other branch in which the V V is suppressed
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FIG. 3. σ×Br/SM(gg → h0 → γγ) vs σ/σSM (gg → h0 → V V ) for negative sin(β−α) (left panel),

and positive sin(β − α) (right panel) in h0-126 case. Color map indicate the density of the points

with red being the most dense region and blue being the least dense region. The hatched region

are those that excluded by the current Higgs searches in the γ, WW and ZZ channel at 95% C.L.

[? ]. The horizontal and vertical dashed line indicate the lower end of the normalized signal cross

section range of γγ and V V channels being 0.9 and 0.2, respectively.

For positive values of sin(β − α), the diagonal region that is most probable, with γγ :

V V ∼ 1 and σγγ possibly extending over a large range. Branches with σγγ or σV V ∼ 0 is

strongly disfavored given the current observation of the Higgs signal.

Superimposed on both figures is the latest ATLAS and CMS results on the windows of

cross-sections for γγ, WW and ZZ as given in Eq. (18). Note that these signal windows

are also sketched in Fig. 2 as the shaded grey region. Concentrating on the region favored

by experiments (enclosed by the horizontal and vertical lines in Fig. 3), we see that in the

sin(β − α) < 0 case, the most likely region are the one with γγ : V V ∼ 1 and σγγ ∼ 1.

About an order of magnitude less likely are the region with γ : V V � 3 and σγγ � 0.9 and

σV V � 0.4. For positive values of sin(β − α), the most likely region is γγ : V V ∼ 1 with

σγγ,V V between 0.9 to 1.4.

Thus we see that for all values of sin(β−α), the V V and γγ channels are highly positively
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section range of γγ and V V channels being 0.9 and 0.2, respectively.

For positive values of sin(β − α), the diagonal region that is most probable, with γγ :

V V ∼ 1 and σγγ possibly extending over a large range. Branches with σγγ or σV V ∼ 0 is

strongly disfavored given the current observation of the Higgs signal.

Superimposed on both figures is the latest ATLAS and CMS results on the windows of

cross-sections for γγ, WW and ZZ as given in Eq. (18). Note that these signal windows

are also sketched in Fig. 2 as the shaded grey region. Concentrating on the region favored

by experiments (enclosed by the horizontal and vertical lines in Fig. 3), we see that in the

sin(β − α) < 0 case, the most likely region are the one with γγ : V V ∼ 1 and σγγ ∼ 1.

About an order of magnitude less likely are the region with γ : V V � 3 and σγγ � 0.9 and

σV V � 0.4. For positive values of sin(β − α), the most likely region is γγ : V V ∼ 1 with

σγγ,V V between 0.9 to 1.4.

Thus we see that for all values of sin(β−α), the V V and γγ channels are highly positively
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FIG. 4. Parameter regions in h0-126 case for tanβ versus sin(β − α) (left panel) and mH versus

sin(β−α) (right panel). We show regions excluded by stability, unitarity and perturbativity (dark

blue), ∆ρ (light blue), LEP results (green), Tevatron and LHC results (yellow). Regions that

survive all the theoretical and experimental constraints are shown in red. Also shown in dark

red are regions consistent with the light CP-even Higgs interpreted as the observation of 126 GeV

SM-Higgs, satisfying the cross section requirement of Eq. (18) for gg → h → γγ,WW/ZZ. Regions

enclosed by the black curves are the ones that survive the additional flavor constraints.

tan β � 1) agree well with the shaded region in Fig. 2. Regions with tan β � 4 are excluded

by perturbative bounds since one of λ1,2 becomes non-perturbative for larger value of tanβ

(cos β → 0), as shown in Eqs. (4). Consequently, the bottom loop contribution to the gluon

fusion production cross-section [6] is not a major factor for the h0
-126 case.

To further explore the flavor constraints, we show in Fig. 4 the region enclosed by the

black curves being those that survive the flavor bounds of Eq. (8)- (11). The extended regions

around tan β � 1 are disfavored by flavor consideration, which agree with previous works

[30, 31]. Regions near sin(β−α) ∼ ±1 still remains to be viable after all the considerations.

The right panel of Fig. 4 shows the allowed region in the sin(β−α)−mH plane. Imposing

all the theoretical constraints, in particular, the perturbativity requirement, translates into

an upper bounds of mH being around 750 GeV. Higgs search bounds from the LHC removes

a large region in negative sin(β − α), mostly from the stringent bounds from WW and
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sin(β−α) (right panel). We show regions excluded by stability, unitarity and perturbativity (dark

blue), ∆ρ (light blue), LEP results (green), Tevatron and LHC results (yellow). Regions that

survive all the theoretical and experimental constraints are shown in red. Also shown in dark

red are regions consistent with the light CP-even Higgs interpreted as the observation of 126 GeV

SM-Higgs, satisfying the cross section requirement of Eq. (18) for gg → h → γγ,WW/ZZ. Regions

enclosed by the black curves are the ones that survive the additional flavor constraints.
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by perturbative bounds since one of λ1,2 becomes non-perturbative for larger value of tanβ

(cos β → 0), as shown in Eqs. (4). Consequently, the bottom loop contribution to the gluon

fusion production cross-section [6] is not a major factor for the h0
-126 case.

To further explore the flavor constraints, we show in Fig. 4 the region enclosed by the

black curves being those that survive the flavor bounds of Eq. (8)- (11). The extended regions

around tan β � 1 are disfavored by flavor consideration, which agree with previous works

[30, 31]. Regions near sin(β−α) ∼ ±1 still remains to be viable after all the considerations.

The right panel of Fig. 4 shows the allowed region in the sin(β−α)−mH plane. Imposing

all the theoretical constraints, in particular, the perturbativity requirement, translates into

an upper bounds of mH being around 750 GeV. Higgs search bounds from the LHC removes
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FIG. 2. σ × Br/SM for the processes gg → h → γγ (left), and gg → h → WW/ZZ (right) in

h0-126 case. The contour lines are σ/σSM = 0.5 (green), 1 (red), and 2 (blue). The shaded gray

regions correspond to the range of signal cross-section reported by the LHC experiments which is

0.9 − 2.2 for the γγ channel and 0.2 − 1.4 for the WW/ZZ channel. right plot change WW

to VV. We shall use a consistent notation of either σ/σSM or σ × Br/SM.

be consistent with the experimental observation of a 125 GeV Higgs, as given in Eq. (18),

the allowed region of parameter space splits into five distinct regions, as indicated by the

shaded gray areas. There are two narrow regions one each at sin(β − α) = ±1 (the grey

regions overlap with the picture frame boundary therefore hard to see), one region near

sin(β − α) = +1, and two extended region spanning the entire range of sin(β − α) for

tan β < 1.

In Fig. 3, we show the correlations for σ × Br/SM for the γγ channel against WW , for

negative (positive) values of sin(β−α) in the left (right) panel as a density plot. The points

in red are the most dense (i.e., most likely) and points in blue are the least dense (i.e., less

likely). For negative sin(β − α), there are two branches: one region (more likely) along the

diagonal line with γγ : V V ∼ 1 and σγγ � 1; another region (less likely) in the upper-half

plane with γγ : V V > 3 and σγγ extends to 2 or larger. The diagonal region corresponds

to the sin(β − α) = −1 branch in Fig. 2. The other branch in which the V V is suppressed

relative to γγ corresponds to the extended region for negative sin(β − α) in Fig. 2.
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survive all the theoretical and experimental constraints are shown in red. Also shown in dark
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enclosed by the black curves are the ones that survive the additional flavor constraints.
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by perturbative bounds since one of λ1,2 becomes non-perturbative for larger value of tanβ

(cos β → 0), as shown in Eqs. (4). Consequently, the bottom loop contribution to the gluon

fusion production cross-section [6] is not a major factor for the h0
-126 case.

To further explore the flavor constraints, we show in Fig. 4 the region enclosed by the

black curves being those that survive the flavor bounds of Eq. (8)- (11). The extended regions

around tan β � 1 are disfavored by flavor consideration, which agree with previous works
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all the theoretical constraints, in particular, the perturbativity requirement, translates into
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fusion production cross-section [6] is not a major factor for the h0
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To further explore the flavor constraints, we show in Fig. 4 the region enclosed by the
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by perturbative bounds since one of λ1,2 becomes non-perturbative for larger value of tanβ

(cos β → 0), as shown in Eqs. (4). Consequently, the bottom loop contribution to the gluon

fusion production cross-section [6] is not a major factor for the h0
-126 case.

To further explore the flavor constraints, we show in Fig. 4 the region enclosed by the

black curves being those that survive the flavor bounds of Eq. (8)- (11). The extended regions

around tan β � 1 are disfavored by flavor consideration, which agree with previous works

[30, 31]. Regions near sin(β−α) ∼ ±1 still remains to be viable after all the considerations.

The right panel of Fig. 4 shows the allowed region in the sin(β−α)−mH plane. Imposing

all the theoretical constraints, in particular, the perturbativity requirement, translates into

an upper bounds of mH being around 750 GeV. Higgs search bounds from the LHC removes
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ZZ channels for heavy Higgs. The positive sin(β − α) region is less constrained since

gg → H
0 → WW/ZZ are much more suppressed. Requiring h

0 − 126 to be SM-like further

narrows down the favored region, as shown in dark red. For sin(β − α) = ±1, mH could

be as large as 600 GeV. For 0.6 � sin(β − α) � 1, mH is constrained to be less than 300

GeV. For the extended region of 0.1 � sin(β − α) � 0.4, mH extends to around 500 GeV,

while for −1 � sin(β − α) � −0.3, mH is restricted to be less than 180 GeV. Imposing the

flavor constraints further narrows (enclosed by black curves) down the regions to strips at

sin(β − α) = ±1 or region near sin(β − α) = 1. Note in particular that if a heavy CP-even

Higgs is found to be between 500 and 600 GeV, sin(β−α) is constrained to be very close to

±1, indicating the lighter Higgs having SM-like couplings to the gauge sector. In addition,

when deviations from sin(β−α) = 1 are allowed, the heavy Higgs mass is constrained to be

less than 300 GeV.
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FIG. 5. Parameter regions in h0-126 case for tanβ versus mH with sin(β−α) > 0 (left panel) and
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In Fig. 5, we present the parameter regions for tan β versus mH with sin(β−α) > 0 (left

panel) and sin(β − α) < 0 (right panel). Regions with large mH are typically realized for

small tan β roughly between 1 and 2. There are also noticeable difference for positive or

negative sin(β − α) for regions that survive all the experimental constraints (red regions).

Negative sin(β − α) allows larger values of tan β for a given mass of mH . Small value of
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ZZ channels for heavy Higgs. The positive sin(β − α) region is less constrained since

gg → H
0 → WW/ZZ are much more suppressed. Requiring h

0 − 126 to be SM-like further

narrows down the favored region, as shown in dark red. For sin(β − α) = ±1, mH could

be as large as 600 GeV. For 0.6 � sin(β − α) � 1, mH is constrained to be less than 300

GeV. For the extended region of 0.1 � sin(β − α) � 0.4, mH extends to around 500 GeV,
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h0 126 GeV: sin(β-α) vs. mA (mHpm)
-

tan β is disfavored by the flavor constraints, in particular, ∆mBd
, as pointed out in Ref. [30].

Why large TB, small mH?
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FIG. 6. Parameter regions in h0-126 case for mH± versus sin(β − α) (left panels) and mA versus

sin(β − α) (right label). Color coding is the same as Fig. 4.

Fig. 6 shows the parameter regions in mH± versus sin(β−α) (left panels) and mA versus

sin(β − α) (right label). The signal regions exhibit similar features as the mH − sin(β − α)

in the right panel of Fig. 4. Note that for the negative sin(β − α) between -0.4 to -0.1,

only windows of 60 GeV < mA < 80 GeV survives the LHC Higgs search bounds. This

is because H
0 → A

0
A

0 open up in this region, which leads to the suppression of H0 →

WW/ZZ to escape the experimental constraints. The corresponding surviving region in 120

GeV < mH± < 250 is again introduced by ∆ρ consideration. Imposing the cross section

requirement for h0 to satisfy the Higgs signal region results in four bands in both mA and

mH± . Only small mA ∼ 60 GeV, and mH± between 120 and 250 GeV are allowed in the

extended region in negative sin(β − α) WHY?, while larger values for mA and mH± can

appear in other regions. Imposing the flavor constrains leaves mH± � 300 GeV open with

sin(β − α) = −1 or sin(β − α) between 0.6 − 1, while smaller values for mA remains viable

at sin(β − α) = ±1.

The allowed regions in the mH± − tan β and mA − tan β planes share similar features

before flavor constraints are taken into account, which are shown in Fig. 7. The top two
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FIG. 7. Parameter regions in h0-126 case for mH± versus tanβ (top panels) and mA versus tanβ

(lower panels) with sin(β − α) > 0 (left panels) and sin(β − α) < 0 (right panels). Color coding is

the same as Fig. 4.

panels show the allowed regions in themH±−tan β plane for negative and positive sin(β−α),

while the lower two panels are for mA − tan β. LEP places a lower bound on the charged

Higgs mass around 70 GeV. In the signal region for sin(β − α) < 0, both mH± and mA are

less than about 600 GeV, while their masses could be extended to 800 GeV for sin(β−α) > 0

and tan β > 1.5. The difference of mA range between positive and negative sin(β − α) can
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(lower panels) with sin(β − α) > 0 (left panels) and sin(β − α) < 0 (right panels). Color coding is

the same as Fig. 4.

panels show the allowed regions in themH±−tan β plane for negative and positive sin(β−α),

while the lower two panels are for mA − tan β. LEP places a lower bound on the charged

Higgs mass around 70 GeV. In the signal region for sin(β − α) < 0, both mH± and mA are

less than about 600 GeV, while their masses could be extended to 800 GeV for sin(β−α) > 0

and tan β > 1.5. The difference of mA range between positive and negative sin(β − α) can
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h0 126 GeV: mA vs. mHpm

-

be chased back to the Higgs signal region of tan β versus sin(β − α) (left panel of Fig. 4).

Regions with mA > 600 GeV can only occur for | sin(β − α)| between 0.4 and 0.8, as shown

in Fig. 6. Only the positive sin(β − α) region could accommodate tan β > 1.5.

Flavor bounds, as expected, have a marked effect here ruling out any value of mH± < 300

GeV for all values of tan β. For the CP-odd Higgs, only a corner of tan β > 2 and mA < 300

GeV is excluded, due to the combination of flavor and ∆ρ constraints. As shown in Fig. 5,

only relatively light mH � 300 GeV is allowed for tan β > 2. The flavor constraints of

mH± � 300 GeV is then translated to mA � 300 GeV since mA − mH± is constrained by

∆ρ considerations.
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FIG. 8. Parameter regions in h0-126 case for mA versus mH± with sin(β−α) > 0 (left panels) and

sin(β − α) < 0 (right panels). Color coding is the same as Fig. 4. flip mA and mHpm?

In Fig. 8, we present the parameter region in the mA − mH± plane for positive and

negative values of sin(β−α). mA and mH± are uncorrelated for most part of the parameter

space. For sin(β − α) > 0 when large mA,H± could reach values larger than 600 GeV, tan β

is at least 1.5 or large (see Fig. 7). mH is restricted to less than 300 GeV in this region.

Strong correlation between mA and mH± shows up due to the ∆ρ constraints, restrict the

masses to be along the diagonal line.

Fig. 9 show the parameter space in the mH − mA plane for negative (left panel) and

positive (right panel) sin(β − α). These two masses are largely uncorrelated for either
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FIG. 9. Parameter regions in h0-126 case for mH versus mA with sin(β − α) > 0 (left panels) and

sin(β − α) < 0 (right panels). Color coding is the same as Fig. 4.

values of sin(β − α). Note that for sin(β − α) > 0, large mA between 600 − 800 GeV is

only possible for small value of mH � 300 GeV. The lower-left corners excluded by flavor

constraints correspond to the upper-left corners in mA−tan β plots in Fig. 7. SS: May skip

this plot as it does not show much features except large mA, small mH region.

We conclude this section with the following comments:

• If h0
were to be the 126 GeV resonance, γγ channel is mostly correlated withWW/ZZ.

A moderate excess in γγ should be accompanied by a corresponding excess inWW/ZZ.

• Combination of theoretical constraints requires tanβ < 4. Therefore, the bottom-loop

enhancement to the gluon fusion diagrams [6] is never a major factor. Regions of

sin(β − α) and tan β are highly restricted once we require the light CP-even Higgs to

be 126 GeV and SM-like: tan β between 0.5 to 4 for sin(β−α) = ±1, tan β between 1.5

to 4 for 0.6 < sin(β−α) < 1, or the extended region in sin(β−α) with tan β � 1. The

masses for the other Higgses, mH , mA, and mH± , however, are largely unrestricted

and uncorrelated, except for the region of sin(β − α) > 0 and mA,H± � 600 GeV,

which exhibit a strong correlation between these two masses.

• The discovery of any one of the extra scalars can largely narrow down the parameter
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h0 126 GeV:  bb/ττ
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tral jet-veto. Other production channels, V H and ttH associated production, can also be

of interesting for Higgs decay to bb. In this section, we discuss the cross-sections for other

search channels for the SM-like Higgs.
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FIG. 17. σ × Br/SM for V BF/V H → h
0 → WW/ZZ (left) and V BF/V H → h

0 → bb/ττ (right)

for the h
0
-126 case. The contour lines show σ/σSM = 0.5(green), 1 (red) and 2 (blue). The shaded

gray regions correspond to the range of signal cross-section reported by the LHC experiments which

is 0.9 − 2.2 for the γγ channel and 0.2 − 1.4 for the WW/ZZ channel. left plot, change WW

to VV. Show contours of 0.1? Change σ/σSM to σ × Br/SM.

In Fig. 17, we show the ratio of cross-section for theWW/ZZ (left panel) and bb̄/ττ (right

panel) final states via VBF or V H associated production (both production cross sections

are controlled by V V h
0 coupling) in the tan β versus sin(β − α) plane for the h

0-126 case.

For V BF/V H → WW/ZZ, both the production and decay are proportional to sin(β − α),

resulting in regions highly centered around sin(β − α) ∼ ±1 for any enhancement above

the SM value. For the gray regions near sin(β − α) ∼ 1, V BF/V H → h
0 → WW/ZZ is

typically in the range of 0.5 − 1 of the SM value, while a strong suppression of xxx (0.1)?

could occur in the extended signal region with small tan β. verify.

For V BF/V H → h
0 → bb/ττ , the cross section is suppressed for most of the regions,

except in the neighborhood of sin(β − α) = −1 where the SM rates can be achieved. The

current preferred signal regions typically have a suppression of 0.5 or stronger for this bb/ττ
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H0 126 GeV
-

Heavy CP-even Higgs as 126 GeV SM-like Higgs
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FIG. 10. The normalized gg → H
0 production cross-section contours (left panel) and H

0 → V V

(solid lines of the right panel) and H
0 → γγ (dashed lines of the right panel) branching fractions

in H
0-126 case. The contour lines are σ/σSM , Br/BrSM = 0.5 (green), 1 (red), and 2 (blue). In

plot, use Br instead of BR.

Br(H
0 → V V, γγ)/BrSM can also be expressed similar to Eq. (22):

BR(H
0 → XX)

BR(hSM → XX)
=

ΓXX

Γtotal

× ΓSM

total

ΓSM

XX

=






cos2(β−α)

cos2(β−α)Br(hSM→V V )+ cos2 α
cos2 β

Br(hSM→bb)+...

Γ(H→γγ)/Γ(hSM→γγ)

cos2(β−α)Br(hSM→V V )+ cos2 α
cos2 β

Br(hSM→bb)+...

, (25)

with the contour lines given in the right panel of Fig. 10. The relative enhancement of the

branching fractions over the SM values are again observed in extended region of negative

sin(β − α), while it is mostly suppressed for positive sin(β − α).

Combine both the production cross sections and the decay branching fractions, the con-

tours for the overall cross sections of gg → H
0 → XX are given in Fig. 11 for γγ channel

(left panel) and WW/ZZ channels (right panel). Requiring the cross section to be consistent

with the observed Higgs signal: 0.9 − 2.4 for the γγ channel and 0.2 − 1.4 for the WW/ZZ

channel, results in two distinguished regions: a normal region of sin(β−α) ∼ 0, an extended

region of −0.6 � sin(β − α) � −0.1.

Fig. 12 shows the correlation between γγ and V V channel. Most of the points falls into

the diagonal region: γγ : V V ∼ 1, corresponding to sin(β − α) ∼ 0 region. The 95% C.L.
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FIG. 11. σ × Br/SM for the processes gg → H
0 → γγ (left), and gg → H

0 → WW/ZZ (right) in

H
0
-126 case. The contour lines are σ/σSM = 0.5 (green), 1 (red), and 2 (blue). The shaded gray

regions correspond to the range of signal cross-section reported by the LHC experiments which is

0.9 − 2.2 for the γγ channel and 0.2 − 1.4 for the WW channel. change H to H
0, WW to V V .

exclusion limits from current Higgs searches of WW and ZZ channel limits σ×Br/SM < 1.4

for γγ channel as well. A second branch of γγ : WW ∼ 2 also appears, which corresponds

to the very low tan β < 1 region in Fig. 11. Such region is strongly constrained by the flavor

physics, and is therefore not considered further in our study.

B. Parameter Spaces

We now present the results for H
0
-126 case with the full parameter scan, including

all the theoretical and experimental constraints. Fig. 13 present the parameter regions

in tan β versus sin(β − α) for the H
0
-126 case. The color coding is the same as in Fig. 4,

except that the signal regions in dark red are those with the heavy CP-even Higgs H
0

interpreted as the observed SM-like Higgs. Imposing the theoretical considerations and

experimental constraints leaves the red region viable: tanβ < 5 for all values of sin(β − α)

or | sin(β − α)| � 0.4 for all values of tan β.

Further requiring the heavy CP-even Higgs satisfy the cross section range of the observed
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FIG. 11. σ × Br/SM for the processes gg → H
0 → γγ (left), and gg → H

0 → WW/ZZ (right) in

H
0
-126 case. The contour lines are σ/σSM = 0.5 (green), 1 (red), and 2 (blue). The shaded gray

regions correspond to the range of signal cross-section reported by the LHC experiments which is

0.9 − 2.2 for the γγ channel and 0.2 − 1.4 for the WW channel. change H to H
0, WW to V V .

exclusion limits from current Higgs searches of WW and ZZ channel limits σ×Br/SM < 1.4

for γγ channel as well. A second branch of γγ : WW ∼ 2 also appears, which corresponds

to the very low tan β < 1 region in Fig. 11. Such region is strongly constrained by the flavor

physics, and is therefore not considered further in our study.

B. Parameter Spaces

We now present the results for H
0
-126 case with the full parameter scan, including

all the theoretical and experimental constraints. Fig. 13 present the parameter regions

in tan β versus sin(β − α) for the H
0
-126 case. The color coding is the same as in Fig. 4,

except that the signal regions in dark red are those with the heavy CP-even Higgs H
0

interpreted as the observed SM-like Higgs. Imposing the theoretical considerations and

experimental constraints leaves the red region viable: tanβ < 5 for all values of sin(β − α)

or | sin(β − α)| � 0.4 for all values of tan β.

Further requiring the heavy CP-even Higgs satisfy the cross section range of the observed
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FIG. 12. σ × Br/SM(gg → H
0 → γγ) versus σ × Br/SM(gg → H → V V ). Color coding is the

same as in Fig. 3. H to H
0, and WW to V V .

Higgs signal results in two signal regions: region near sin(β−α) ∼ 0 and an extended region

of −0.6 � sin(β − α) � −0.1, consistent with the normal region and the extended region

shown in grey in Fig. 11. Note however that the normal region around sin(β − α) ∼ 0

is actually reduced to tan β � 7. This is because larger values of tan β leads to smaller

mh such that mh < mH/2 (see right panel of Fig. 14 below). The opening of H
0 → h

0
h
0

channel reduces the the branching fractions of H
0 → WW/ZZ, γγ to be outside the signal

cross section region. Regions survive the flavor bounds are given by the ones enclosed by

the black curves. Larger values of tan β � 17 are disfavored.

Fig. 14 shows the parameter region in mh versus sin(β − α) (left panel) and mh versus

tan β (right panel). For the normal region of sin(β − α) ∼ 0, mh expands over the entire

region up to 126 GeV. For −0.6 � sin(β − α) � −0.4, when the HWW,HZZ couplings

could be significantly deviate from the SM value while hWW , hZZ couplings are sizable, the

light CP-even Higgs mass is bounded to be larger than about 90 GeV based on LEP Higgs

searches. This is the interesting region where the two Higgses are close to being degenerate,

with both h
0
and H

0
show significant deviation of their couplings to the gauge bosons from

the SM value. Explanation for the gap of SBA around -0,3?

The right panel of Fig. 14 shows the parameter region ofmh versus tan β. Larger values of
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FIG. 13. Parameter regions in H
0
-126 case for tanβ versus sin(β − α). Color coding is the same

as Fig. 4 except that the dark red regions are the ones consistent with the heavy CP-even Higgs

interpreted as the observed Higgs signal. try to separate two regions. is the connecting

points only a plotting issue?

tan β is not allowed for larger values of mh. The red region at mh < 60 GeV and small tan β

can not satisfy the Higgs signal cross section requirement due to the open of H
0 → h

0
h
0

mode, which corresponds to the mh < 60 GeV, sin(β − α) ∼ 0 red region in mh versus

sin(β − α) plot (left panel of Fig. 14 ). Impose the flavor bounds further rules out regions

with light mh below about 25 GeV, mainly due to the process Bs → µ
+
µ
−
.

Fig. 15 shows mA,H± versus sin(β − α) (left panels) and tan β (right panels). The plots

for mA and mH± are very similar in feature, except for very low masses. Very large values

of mA,H± � 800 GeV are excluded by theoretical considerations, similar to h
0
-126 case.

mA � 100 GeV and tan β � 5 are excluded by the LEP Higgs search, while the triangle

region of 130 � mA � 250 GeV and tan β � 13 is excluded by the LHC searches for the

CP-odd Higgs in ττ mode. For the charged Higgs, small values of mH± � 100 GeV are ruled

out by LEP searches on charged Higgs. Tevatron and the LHC charged Higgs searches:

t → H
±
b → τντb further rules out regions of mH± � 150 GeV and tan β � 17. The

small triangle in mH± versus tan β plot for 200 GeV � mH± � 300 GeV and tan β � 20 is

translated from the corresponding region in tan β versus mA, due to the correlation between
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FIG. 13. Parameter regions in H
0
-126 case for tanβ versus sin(β − α). Color coding is the same

as Fig. 4 except that the dark red regions are the ones consistent with the heavy CP-even Higgs

interpreted as the observed Higgs signal. try to separate two regions. is the connecting

points only a plotting issue?

tan β is not allowed for larger values of mh. The red region at mh < 60 GeV and small tan β

can not satisfy the Higgs signal cross section requirement due to the open of H
0 → h

0
h
0

mode, which corresponds to the mh < 60 GeV, sin(β − α) ∼ 0 red region in mh versus

sin(β − α) plot (left panel of Fig. 14 ). Impose the flavor bounds further rules out regions

with light mh below about 25 GeV, mainly due to the process Bs → µ
+
µ
−
.

Fig. 15 shows mA,H± versus sin(β − α) (left panels) and tan β (right panels). The plots

for mA and mH± are very similar in feature, except for very low masses. Very large values

of mA,H± � 800 GeV are excluded by theoretical considerations, similar to h
0
-126 case.

mA � 100 GeV and tan β � 5 are excluded by the LEP Higgs search, while the triangle

region of 130 � mA � 250 GeV and tan β � 13 is excluded by the LHC searches for the

CP-odd Higgs in ττ mode. For the charged Higgs, small values of mH± � 100 GeV are ruled

out by LEP searches on charged Higgs. Tevatron and the LHC charged Higgs searches:

t → H
±
b → τντb further rules out regions of mH± � 150 GeV and tan β � 17. The

small triangle in mH± versus tan β plot for 200 GeV � mH± � 300 GeV and tan β � 20 is

translated from the corresponding region in tan β versus mA, due to the correlation between
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FIG. 11. σ × Br/SM for the processes gg → H
0 → γγ (left), and gg → H

0 → WW/ZZ (right) in

H
0
-126 case. The contour lines are σ/σSM = 0.5 (green), 1 (red), and 2 (blue). The shaded gray

regions correspond to the range of signal cross-section reported by the LHC experiments which is

0.9 − 2.2 for the γγ channel and 0.2 − 1.4 for the WW channel. change H to H
0, WW to V V .

exclusion limits from current Higgs searches of WW and ZZ channel limits σ×Br/SM < 1.4

for γγ channel as well. A second branch of γγ : WW ∼ 2 also appears, which corresponds

to the very low tan β < 1 region in Fig. 11. Such region is strongly constrained by the flavor

physics, and is therefore not considered further in our study.

B. Parameter Spaces

We now present the results for H
0
-126 case with the full parameter scan, including

all the theoretical and experimental constraints. Fig. 13 present the parameter regions

in tan β versus sin(β − α) for the H
0
-126 case. The color coding is the same as in Fig. 4,

except that the signal regions in dark red are those with the heavy CP-even Higgs H
0

interpreted as the observed SM-like Higgs. Imposing the theoretical considerations and

experimental constraints leaves the red region viable: tanβ < 5 for all values of sin(β − α)

or | sin(β − α)| � 0.4 for all values of tan β.

Further requiring the heavy CP-even Higgs satisfy the cross section range of the observed
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FIG. 14. Parameter regions in H
0-126 case for mh versus sin(β − α) (left panel) and mh versus

tanβ (right panel). Color coding is the same as Fig. 13.

mA and mH± introduced by ∆ρ, as shown below. Imposing the flavor constraints further

limit mA � 250 GeV, mH± � 300 GeV and tan β � 17.

mA and mH± exhibit much stronger correlation in the H
0
-126 case, mostly due to the

the ∆ρ constraints, as shown in the left panel of Fig. 16. Comparing with the h
0
-126 case,

in which mH could be large with a relaxed constraints on mA and mH± mass correlations,

in the H
0
-126 case, both mh and MH are relatively small. mA and mH± are therefore

highly correlated in order to avoid large custodial symmetry breaking in the Higgs sector.

However, there is a small strip of allowed region at mH± = 100 GeV with mA vary between

150 − 700 GeV. Such region survives the ∆ρ constraints since for mH± ∼ mh ∼ mH , the

contribution to∆ρ introduced by the large mass difference betweenmA andmH± is cancelled

by the (h
0
, A

0
) loop and (H

0
, A

0
) loop. Imposing the flavor constraints again limit mH±

to be larger than 300 GeV. mA is constrained to be more than 250 GeV as well due to the

correlations.

The right panel of Fig. 16 shows the parameter region of mh versus mA, which does not

show much of the correlations. For mh � 90 GeV, low values of mA � 100 GeV is excluded

by LEP searches of hA channel. High values of mA � 600 GeV are excluded for mh < 90

GeV. This is because such large value of mA can only be realized for | sin(β − α)| > 0.3
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FIG. 14. Parameter regions in H
0-126 case for mh versus sin(β − α) (left panel) and mh versus

tanβ (right panel). Color coding is the same as Fig. 13.

mA and mH± introduced by ∆ρ, as shown below. Imposing the flavor constraints further

limit mA � 250 GeV, mH± � 300 GeV and tan β � 17.

mA and mH± exhibit much stronger correlation in the H
0
-126 case, mostly due to the

the ∆ρ constraints, as shown in the left panel of Fig. 16. Comparing with the h
0
-126 case,

in which mH could be large with a relaxed constraints on mA and mH± mass correlations,

in the H
0
-126 case, both mh and MH are relatively small. mA and mH± are therefore

highly correlated in order to avoid large custodial symmetry breaking in the Higgs sector.

However, there is a small strip of allowed region at mH± = 100 GeV with mA vary between

150 − 700 GeV. Such region survives the ∆ρ constraints since for mH± ∼ mh ∼ mH , the

contribution to∆ρ introduced by the large mass difference betweenmA andmH± is cancelled

by the (h
0
, A

0
) loop and (H

0
, A

0
) loop. Imposing the flavor constraints again limit mH±

to be larger than 300 GeV. mA is constrained to be more than 250 GeV as well due to the

correlations.

The right panel of Fig. 16 shows the parameter region of mh versus mA, which does not

show much of the correlations. For mh � 90 GeV, low values of mA � 100 GeV is excluded

by LEP searches of hA channel. High values of mA � 600 GeV are excluded for mh < 90

GeV. This is because such large value of mA can only be realized for | sin(β − α)| > 0.3
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FIG. 15. Parameter regions in H
0-126 case for mA versus sin(β − α) (upper left panel) and tanβ

(upper right panel), as well as similar plots for m
±
H

(lower panels). Color coding is the same as

Fig. 13. sinba around -0.3 strip?

(see the upper-left panel of Fig. 15). Such regions of | sin(β − α)| > 0.3 and mh < 90 GeV

are excluded by the LEP Higgs search of h0Z channel, as shown clearly in the mh versus

sin(β − α) plot (left panel of Fig. 14).

We end the section with the following observations:

• Contrary to the h0
-126 case, fixing the heavier of the two Higgses to be the 126 GeV
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FIG. 15. Parameter regions in H
0-126 case for mA versus sin(β − α) (upper left panel) and tanβ

(upper right panel), as well as similar plots for m
±
H

(lower panels). Color coding is the same as

Fig. 13. sinba around -0.3 strip?

(see the upper-left panel of Fig. 15). Such regions of | sin(β − α)| > 0.3 and mh < 90 GeV

are excluded by the LEP Higgs search of h0Z channel, as shown clearly in the mh versus

sin(β − α) plot (left panel of Fig. 14).

We end the section with the following observations:

• Contrary to the h0
-126 case, fixing the heavier of the two Higgses to be the 126 GeV
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FIG. 15. Parameter regions in H
0-126 case for mA versus sin(β − α) (upper left panel) and tanβ

(upper right panel), as well as similar plots for m
±
H

(lower panels). Color coding is the same as

Fig. 13. sinba around -0.3 strip?

(see the upper-left panel of Fig. 15). Such regions of | sin(β − α)| > 0.3 and mh < 90 GeV

are excluded by the LEP Higgs search of h0Z channel, as shown clearly in the mh versus

sin(β − α) plot (left panel of Fig. 14).

We end the section with the following observations:

• Contrary to the h0
-126 case, fixing the heavier of the two Higgses to be the 126 GeV
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FIG. 15. Parameter regions in H
0-126 case for mA versus sin(β − α) (upper left panel) and tanβ

(upper right panel), as well as similar plots for m
±
H

(lower panels). Color coding is the same as

Fig. 13. sinba around -0.3 strip?

(see the upper-left panel of Fig. 15). Such regions of | sin(β − α)| > 0.3 and mh < 90 GeV

are excluded by the LEP Higgs search of h0Z channel, as shown clearly in the mh versus

sin(β − α) plot (left panel of Fig. 14).

We end the section with the following observations:

• Contrary to the h0
-126 case, fixing the heavier of the two Higgses to be the 126 GeV
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FIG. 16. Parameter regions in H
0-126 case for mA versus mH± (left panel) and mh versus mA

(right panel). Color coding is the same as Fig. 13. flip mA and mHpm?

resonance forces us into a small narrow region of sin(α−β) ≈ 0 with tan β � 17 or an

extended region of −0.6 � sin(α− β) � −0.1 with far less restricted value of tan β.

• The lighter Higgs to have any value up to 126 GeV, with smaller mh only allowed for

sin(β − α) ∼ 0.

• mA and mH± exhibit strong correlations: mA ∼ mH± , mostly due to ∆ρ constraints.

• Flavor bounds impose the strong constraint: tan β � 17,mh > 20 GeV, andmH± >300

GeV. mA is also constrained to be more than 250 GeV due to the correlation between

mA and mH± .

VI. FUTURE DIRECTIONS

Thus far, we have concentrated on the gluon fusion production mechanism and the dom-

inant γγ, ZZ and WW decay channels for the Higgs. The vector boson fusion channel

channel is another important production channel for the CP-even Higgses. In certain cases,

for example, ττ mode, it is the channel that provides the dominant sensitivity due to the

excellent discrimination of the background from the two forward tagging jets and the cen-
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FIG. 16. Parameter regions in H
0-126 case for mA versus mH± (left panel) and mh versus mA

(right panel). Color coding is the same as Fig. 13. flip mA and mHpm?

resonance forces us into a small narrow region of sin(α−β) ≈ 0 with tan β � 17 or an

extended region of −0.6 � sin(α− β) � −0.1 with far less restricted value of tan β.

• The lighter Higgs to have any value up to 126 GeV, with smaller mh only allowed for

sin(β − α) ∼ 0.

• mA and mH± exhibit strong correlations: mA ∼ mH± , mostly due to ∆ρ constraints.

• Flavor bounds impose the strong constraint: tan β � 17,mh > 20 GeV, andmH± >300

GeV. mA is also constrained to be more than 250 GeV due to the correlation between

mA and mH± .

VI. FUTURE DIRECTIONS

Thus far, we have concentrated on the gluon fusion production mechanism and the dom-

inant γγ, ZZ and WW decay channels for the Higgs. The vector boson fusion channel

channel is another important production channel for the CP-even Higgses. In certain cases,

for example, ττ mode, it is the channel that provides the dominant sensitivity due to the

excellent discrimination of the background from the two forward tagging jets and the cen-
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H0 126 GeV: bb and ττ
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  Conclusion (part II) 
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FIG. 13. Parameter regions in H
0
-126 case for tanβ versus sin(β − α). Color coding is the same

as Fig. 4 except that the dark red regions are the ones consistent with the heavy CP-even Higgs

interpreted as the observed Higgs signal. try to separate two regions. is the connecting

points only a plotting issue?

tan β is not allowed for larger values of mh. The red region at mh < 60 GeV and small tan β

can not satisfy the Higgs signal cross section requirement due to the open of H
0 → h

0
h
0

mode, which corresponds to the mh < 60 GeV, sin(β − α) ∼ 0 red region in mh versus

sin(β − α) plot (left panel of Fig. 14 ). Impose the flavor bounds further rules out regions

with light mh below about 25 GeV, mainly due to the process Bs → µ
+
µ
−
.

Fig. 15 shows mA,H± versus sin(β − α) (left panels) and tan β (right panels). The plots

for mA and mH± are very similar in feature, except for very low masses. Very large values

of mA,H± � 800 GeV are excluded by theoretical considerations, similar to h
0
-126 case.

mA � 100 GeV and tan β � 5 are excluded by the LEP Higgs search, while the triangle

region of 130 � mA � 250 GeV and tan β � 13 is excluded by the LHC searches for the

CP-odd Higgs in ττ mode. For the charged Higgs, small values of mH± � 100 GeV are ruled

out by LEP searches on charged Higgs. Tevatron and the LHC charged Higgs searches:

t → H
±
b → τντb further rules out regions of mH± � 150 GeV and tan β � 17. The

small triangle in mH± versus tan β plot for 200 GeV � mH± � 300 GeV and tan β � 20 is

translated from the corresponding region in tan β versus mA, due to the correlation between
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FIG. 4. Parameter regions in h0-126 case for tanβ versus sin(β − α) (left panel) and mH versus

sin(β−α) (right panel). We show regions excluded by stability, unitarity and perturbativity (dark

blue), ∆ρ (light blue), LEP results (green), Tevatron and LHC results (yellow). Regions that

survive all the theoretical and experimental constraints are shown in red. Also shown in dark

red are regions consistent with the light CP-even Higgs interpreted as the observation of 126 GeV

SM-Higgs, satisfying the cross section requirement of Eq. (18) for gg → h → γγ,WW/ZZ. Regions

enclosed by the black curves are the ones that survive the additional flavor constraints.

tan β � 1) agree well with the shaded region in Fig. 2. Regions with tan β � 4 are excluded

by perturbative bounds since one of λ1,2 becomes non-perturbative for larger value of tanβ

(cos β → 0), as shown in Eqs. (4). Consequently, the bottom loop contribution to the gluon

fusion production cross-section [6] is not a major factor for the h0
-126 case.

To further explore the flavor constraints, we show in Fig. 4 the region enclosed by the

black curves being those that survive the flavor bounds of Eq. (8)- (11). The extended regions

around tan β � 1 are disfavored by flavor consideration, which agree with previous works

[30, 31]. Regions near sin(β−α) ∼ ±1 still remains to be viable after all the considerations.

The right panel of Fig. 4 shows the allowed region in the sin(β−α)−mH plane. Imposing

all the theoretical constraints, in particular, the perturbativity requirement, translates into

an upper bounds of mH being around 750 GeV. Higgs search bounds from the LHC removes

a large region in negative sin(β − α), mostly from the stringent bounds from WW and

14

๏ 125 GeV (~SM strength) in Type II 2HDM
- parameters and σXBr study 

๏ h0 125 GeV
- small tan β ≤4
- sin(β-α) - tan β branches (with flavor)
- correlations between mH and tan β
- correlation between mA and mHpm for sin(β-α)>0
- correlation between γγ and WW/ZZ 

๏ H0 125 GeV
- accommodate large tan β 
- sin(β-α) ≤ 0 versus tan β branch (with flavor)
- mh up to 126 GeV possible, with small mh for sin(β-α) ≤ 0
- correlation between mA and mHpm

- correlation between γγ, WW/ZZ 


