2HDM Benchmarks for LHC Higgs Studies

Howard E. Haber April 22, 2013 @ UC Davis

HEFTI Workshop: "The LHC Higgs Signal: Characterization, Interpretation and BSM Model Implications"

<u>Outline</u>

- > Theoretical structure of the 2HDM
 - The Higgs basis and the Higgs-mass eigenstate basis
- ➤ A first step toward 2HDM benchmarks
 - Exploiting the decoupling limit
- Strategy for choosing 2HDM benchmark points
 - General case
 - CP-conserving limit
 - Inert 2HDM
- Higgs Yukawa couplings in the 2HDM
- > Conclusions

Theoretical structure of the 2HDM

Start with the 2HDM scalar doublet, hypercharge-one fields, Φ_1 and Φ_2 , in a generic basis, where $\langle \Phi_i \rangle = v_i$, and $v^2 \equiv |v_1|^2 + |v_2|^2 = (246 \text{ GeV})^2$. It is convenient to define new Higgs doublet fields:

$$H_1 = \begin{pmatrix} H_1^+ \\ H_1^0 \end{pmatrix} \equiv \frac{v_1^* \Phi_1 + v_2^* \Phi_2}{v}, \qquad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix} \equiv \frac{-v_2 \Phi_1 + v_1 \Phi_2}{v}.$$

It follows that $\langle H_1^0 \rangle = v/\sqrt{2}$ and $\langle H_2^0 \rangle = 0$. This is the *Higgs basis*, which is uniquely defined up to an overall rephasing, $H_2 \to e^{i\chi}H_2$. In the Higgs basis, the scalar potential is given by:

$$\mathcal{V} = Y_1 H_1^{\dagger} H_1 + Y_2 H_2^{\dagger} H_2 + [Y_3 H_1^{\dagger} H_2 + \text{h.c.}] + \frac{1}{2} Z_1 (H_1^{\dagger} H_1)^2
+ \frac{1}{2} Z_2 (H_2^{\dagger} H_2)^2 + Z_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + Z_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1)
+ \left\{ \frac{1}{2} Z_5 (H_1^{\dagger} H_2)^2 + [Z_6 (H_1^{\dagger} H_1) + Z_7 (H_2^{\dagger} H_2)] H_1^{\dagger} H_2 + \text{h.c.} \right\} ,$$

where Y_1, Y_2 and Z_1, \ldots, Z_4 are real and uniquely defined, whereas Y_3, Z_5, Z_6 and Z_7 are complex and transform under the rephasing of H_2 ,

$$[Y_3, Z_6, Z_7] \to e^{-i\chi}[Y_3, Z_6, Z_7]$$
 and $Z_5 \to e^{-2i\chi}Z_5$.

Motivation for a general analysis

- If Φ_1 and Φ_2 are intistinguishable fields, then observables can only depend on combinations of Higgs basis parameters that are independent of χ .
- Symmetries (such as discrete symmetries or supersymmetry) can distinguish between Φ_1 and Φ_2 , and select out a specific basis for the scalar fields, which yield additional observables (such as $\tan \beta$).
- Such symmetries are typically broken symmetries, so that below the symmetry-breaking energy scale, the effective 2HDM is generic, and all possible scalar potential terms can appear.

The Higgs mass-eigenstate basis

The physical charged Higgs boson is the charged component of the Higgs-basis doublet H_2 , and its mass is given by $m_{H^{\pm}}^2 = Y_2 + \frac{1}{2}Z_3v^2$.

The three physical neutral Higgs boson mass-eigenstates are determined by diagonalizing a 3×3 real symmetric squared-mass matrix that is defined in the Higgs basis

$$\mathcal{M}^{2} = v^{2} \begin{pmatrix} Z_{1} & \operatorname{Re}(Z_{6}) & -\operatorname{Im}(Z_{6}) \\ \operatorname{Re}(Z_{6}) & \frac{1}{2}Z_{345} + Y_{2}/v^{2} & -\frac{1}{2}\operatorname{Im}(Z_{5}) \\ -\operatorname{Im}(Z_{6}) & -\frac{1}{2}\operatorname{Im}(Z_{5}) & \frac{1}{2}Z_{345} - \operatorname{Re}(Z_{5}) + Y_{2}/v^{2} \end{pmatrix},$$

where $Z_{345} \equiv Z_3 + Z_4 + \text{Re}(Z_5)$. The diagonalizing matrix is a 3×3 real orthogonal matrix that depends on three angles: θ_{12} , θ_{13} and θ_{23} . The corresponding neutral Higgs masses will be denoted: m_1 , m_2 and m_3 . Under the rephasing $H_2 \to e^{i\chi}H_2$,

$$\theta_{12}$$
, θ_{13} are invariant, and $\theta_{23} \to \theta_{23} - \chi$.

A first step toward 2HDM benchmarks

> The general 2HDM scalar potential has too many parameters

After minimizing the scalar potential, $Y_1 = -\frac{1}{2}Z_1v^2$ and $Y_3 = -\frac{1}{2}Z_6v^2$. This leaves 11 free parameters: 1 vev, 8 real parameters, Y_2 , $Z_{1,2,3,4}$, $|Z_{5,6,7}|$, and two relative phases.

The LHC Higgs data suggests that the Higgs boson at 126 GeV is Standard Model (SM)-like. Thus, we can treat the deviations from SM-like behavior as a perturbation to simplify the general analysis.

 \triangleright A SM-like Higgs boson is naturally achieved in the decoupling limit in which $Y_2 >> v$. In this limit,

$$s_{12} \equiv \sin \theta_{12} \simeq \frac{\text{Re}(Z_6 e^{-i\theta_{23}}) v^2}{m_2^2} \ll 1,$$

$$s_{13} \equiv \sin \theta_{13} \simeq -\frac{\text{Im}(Z_6 e^{-i\theta_{23}}) v^2}{m_3^2} \ll 1,$$

$$\text{Im}(Z_5 e^{-2i\theta_{23}}) \simeq \frac{2m_2^2 \sin \theta_{12} \sin \theta_{13}}{v^2}$$

$$\simeq -\frac{\text{Im}(Z_6^2 e^{-2i\theta_{23}}) v^2}{m_3^2} \ll 1,$$

where $m_1^2 \simeq Z_1 v^2 \ll m_2^2, m_3^2$ and $m_3^2 - m_2^2 \simeq \mathcal{O}(v^2)$. For example, the $h_1 VV$ coupling (V = W or Z) relative to the SM is given by $c_{12}c_{13} \simeq 1 - \frac{1}{2}(s_{12}^2 + s_{13}^2)$, where $c_{12} \equiv \cos \theta_{12}$ and $c_{13} \equiv \cos \theta_{13}$.

Distinguishing between two types of decoupling

➤ Large-mass decoupling

Below the scale of the heavy Higgs bosons of mass $m_{2,3}$, the effective scalar theory is that of a single Higgs doublet.

Weak-coupling decoupling

In the limit of $Z_6 \to 0$, the tree-level couplings of h_1 are precisely those of the SM Higgs boson since $s_{12} = s_{13} = \text{Im}(Z_5 e^{-2i\theta_{23}}) = 0$, independent of values of m_1 , m_2 and m_3 . (In this case, it is possible to have decays such as $h_1 \to h_2 h_2$ if kinematically allowed.)

Strategy for choosing 2HDM benchmark points

- 1. Identify h_1 with the observed Higgs boson, with $m_1 \simeq 126$ GeV.
- 2. Choose input parameters s_{12} and s_{13} small to give SM-like h_1VV couplings.
- 3. Scan in the couplings Z_4 , $\operatorname{Re}(Z_5e^{-2i\theta_{23}})$ and $\operatorname{Re}(Z_6e^{-i\theta_{23}})$ [where these couplings are bounded by unitarity constraints]. These quantities determine the masses m_2 , m_3 and $m_{H^{\pm}}$, and the CP-violating quantity $\operatorname{Im}(Z_5^*Z_6^2)$, which governs the CP-mixing in h_2 and h_3 .

$$m_{2}^{2} = m_{1}^{2} + \frac{\operatorname{Re}(Z_{6}e^{-i\theta_{23}})v^{2}}{c_{13}s_{12}c_{12}},$$

$$m_{3}^{2} = m_{2}^{2} + \frac{v^{2}}{c_{13}^{2}} \left\{ \frac{c_{13}(c_{12}^{2}s_{13}^{2} - s_{12}^{2})}{s_{12}c_{12}} \operatorname{Re}(Z_{6}e^{-i\theta_{23}}) - \operatorname{Re}(Z_{5}e^{-2i\theta_{23}}) \right\},$$

$$m_{H^{\pm}}^{2} = m_{3}^{2}c_{13}^{2} - m_{1}^{2}s_{13}^{2}c_{12}^{2} - m_{2}^{2}s_{12}^{2}s_{13}^{2}$$

$$-\frac{1}{2} \left[Z_{4} - \operatorname{Re}(Z_{5}e^{-2i\theta_{23}}) \right]v^{2},$$

$$\operatorname{Im}(Z_5^* Z_6^2) v^6 = 2s_{13}c_{13}^2 s_{12}c_{12}(m_2^2 - m_1^2)(m_3^2 - m_1^2)(m_3^2 - m_2^2).$$

No approximations have been made in obtaining the above formulae.

A further simplification: The CP-conserving limit:

One can choose Higgs field phases such that $Z_{5,6,7}$ are real and $Z_6 > 0$. Then, we identify

$$c_{12} = \sin(\beta - \alpha),$$

 $s_{12} = -\cos(\beta - \alpha),$
 $\theta_{13} = \theta_{23} = 0,$

where β and α refers to some generic basis which has no special meaning, but $\beta - \alpha$ is an observable. Note that $m_2 > m_1$ implies that $\sin 2(\beta - \alpha) < 0$.

Notation: $c_{\beta-\alpha} \equiv \cos(\beta-\alpha)$ and $s_{\beta-\alpha} \equiv \sin(\beta-\alpha)$.

CP-conserving 2HDM benchmarks

- 1. Identify h with the observed Higgs boson, with $m_h \simeq 126 \text{ GeV}$.
- 2. Choose $c_{\beta-\alpha}$ to give SM-like hVV couplings.
- 3. Scan in the couplings Z_4 , Z_5 and Z_6 [where $Z_6 > 0$ and $s_{\beta-\alpha}c_{\beta-\alpha} < 0$ by convention]. These quantities determine the masses m_H , m_A and $m_{H^{\pm}}$,

$$m_H^2 = m_h^2 - \frac{Z_6 v^2}{s_{\beta - \alpha} c_{\beta - \alpha}},$$

$$m_A^2 = m_H^2 + \left[\frac{c_{\beta - \alpha}}{s_{\beta - \alpha}} Z_6 - Z_5 \right] v^2,$$

$$m_{H^{\pm}}^2 = m_A^2 - \frac{1}{2} (Z_4 - Z_5) v^2.$$

The case of $Z_6 = s_{\beta-\alpha} = 0$ will be treated separately.

Decoupling limit without heavy Higgs masses

The case of $Z_6=0$ is special (since it forbids H_1-H_2 mixing). It leads to one scalar state h with exact SM tree-level couplings. The other Higgs states have independent masses,

$$m_{H,A}^2 = Y_2 + \frac{1}{2} \left[Z_3 + Z_4 \pm \text{Re}(Z_5 e^{-2i\theta_{23}}) \right] v^2,$$

 $m_{H^{\pm}}^2 = Y_2 + \frac{1}{2} Z_3 v^2.$

In light of the scalar potential minimum conditions, we have $Y_3 = Z_6 = 0$. This condition is not natural unless $Z_7 = 0$ as well, in which case we have a Z_2 symmetry in the Higgs basis. The 2HDM with $Y_3 = Z_6 = Z_7 = 0$ is called the inert 2HDM. In this model, the Higgs potential is CP-conserving, and the Higgs basis field H_1 is identical to the SM Higgs boson. The lightest neutral scalar inside H_2 is absolutely stable (and provides a possible candidate for dark matter).

However, even in the inert 2HDM, there are some clues to distinguish h from the SM Higgs boson. In particular the hH^+H^- , hAA and hHH couplings are nonzero (H.E. Haber and D. O'Neil):

$$g_{hH^+H^-} = Z_3 v$$
,
 $g_{hAA} = \left[Z_3 + Z_4 - \text{Re}(Z_5 e^{-2i\theta_{23}}) \right] v$,
 $g_{hHH} = \left[Z_3 + Z_4 + \text{Re}(Z_5 e^{-2i\theta_{23}}) \right] v$.

Hence, even without detecting the non-minimal Higgs states, the properties of h can be shifted:

- The tri-linear Higgs couplings can introduce new radiative corrections. For example, a charged Higgs loop would (slightly) modify the rate for $h \to \gamma \gamma$.
- If any of the non-minimal Higgs states were lighter than $\frac{1}{2}m_h$, then new h decay channels would open up. In the inert 2HDM, this would lead to invisible Higgs decays (e.g. $h \to AA$).

Higgs Yukawa couplings in the 2HDM

In the Higgs basis, $\kappa^{U,D}$ and $\rho^{U,D}$, are the 3 × 3 Yukawa coupling matrices,

$$-\mathcal{L}_{Y} = \overline{U}_{L}(\kappa^{U}H_{1}^{0\dagger} + \rho^{U}H_{2}^{0\dagger})U_{R} - \overline{D}_{L}K^{\dagger}(\kappa^{U}H_{1}^{-} + \rho^{U}H_{2}^{-})U_{R}$$
$$+ \overline{U}_{L}K(\kappa^{D\dagger}H_{1}^{+} + \rho^{D\dagger}H_{2}^{+})D_{R} + \overline{D}_{L}(\kappa^{D\dagger}H_{1}^{0} + \rho^{D\dagger}H_{2}^{0})D_{R} + \text{h.c.},$$

where U = (u, c, t) and D = (d, s, b) are the physical quark fields and K is the CKM mixing matrix. (Repeat for the leptons.)

By setting $H_1^0 = v/\sqrt{2}$ and $H_2^0 = 0$, one obtains the quark mass terms. Hence, κ^U and κ^D are proportional to the diagonal quark mass matrices M_U and M_D , respectively,

$$M_U = \frac{v}{\sqrt{2}} \kappa^U = \text{diag}(m_u, m_c, m_t), \qquad M_D = \frac{v}{\sqrt{2}} \kappa^{D\dagger} = \text{diag}(m_d, m_s, m_b).$$

Note that $\rho^Q \to e^{-i\chi}\rho^Q$ under the rephasing $H_2 \to e^{i\chi}H_2$, (for Q = U, D).

The Yukawa couplings of the mass-eigenstate Higgs bosons to the quarks are:

$$-\mathcal{L}_{Y} = \frac{1}{v} \overline{D} \sum_{k} \left\{ M_{D}(q_{k1}P_{R} + q_{k1}^{*}P_{L}) + \frac{v}{\sqrt{2}} \left[q_{k2} \left[e^{i\theta_{23}} \rho^{D} \right]^{\dagger} P_{R} + q_{k2}^{*} e^{i\theta_{23}} \rho^{D} P_{L} \right] \right\} Dh_{k}$$

$$+ \frac{1}{v} \overline{U} \sum_{k} \left\{ M_{U}(q_{k1}P_{L} + q_{k1}^{*}P_{R}) + \frac{v}{\sqrt{2}} \left[q_{k2}^{*} e^{i\theta_{23}} \rho^{U} P_{R} + q_{k2} \left[e^{i\theta_{23}} \rho^{U} \right]^{\dagger} P_{L} \right] \right\} Uh_{k}$$

$$+ \left\{ \overline{U} \left[K \left[e^{i\theta_{23}} \rho^{D} \right]^{\dagger} P_{R} - \left[e^{i\theta_{23}} \rho^{U} \right]^{\dagger} K P_{L} \right] DH^{+} + \text{h.c.} \right\},$$

where $P_{L,R} = \frac{1}{2}(1 \mp \gamma_5)$ are left and right-handed projection operators, K is the CKM matrix, and the q_{ki} are invariant combinations of mixing angles:

k	q_{k1}	q_{k2}
1	$c_{12}c_{13}$	$-s_{12} - ic_{12}s_{13}$
2	$s_{12}c_{13}$	$c_{12} - is_{12}s_{13}$
3	s_{13}	ic_{13}

- The combinations $e^{i\theta_{23}}\rho^U$ and $e^{i\theta_{23}}\rho^U$ that appear in the interactions above are invariant under the rephasing of the Higgs basis field H_2 .
- Note that no $\tan \beta$ parameter appears above! This is because $\tan \beta$ is an unphysical parameter in the general 2HDM.

In general ρ^Q is a complex non-digaonal matrix. As a result, the most general 2HDM exhibits tree-level Higgs-mediated FCNCs and new sources of CP-violation in the interactions of the neutral Higgs bosons.

In the decoupling limit where $m_1 \ll m_{2,3}$, CP-violating and tree-level Higgs-mediated FCNCs are suppressed by factors of $\mathcal{O}(v^2/m_{2,3}^2)$. In contrast, the interactions of the heavy neutral Higgs bosons $(h_2 \text{ and } h_3)$ and the charge Higgs bosons (H^{\pm}) in the decoupling limit can exhibit both CP-violating and quark flavor non-diagonal couplings (proportional to ρ^Q).

Special case: a CP-conserving Higgs potential

In the generic 2HDM, new sources of CP-violation arise due to the fact that

- $Z_{5,6,7}$ are complex, and cannot be made real by rephasing $H_2 \to e^{i\chi} H_2$.
- CP-violating neutral Higgs-fermion couplings due to complex ρ^U and ρ^D .

Imposing CP-violation in the neutral Higgs sector, we take ρ^U and ρ^D to be real 3×3 matrices, and the q_{ki} are given by:

k	q_{k1}	q_{k2}	
$\begin{bmatrix} 1 \end{bmatrix}$	$s_{\beta-lpha}$	$c_{\beta-\alpha}$	
2	$-c_{\beta-\alpha}$	$s_{\beta-lpha}$	
3	0	i	

The resulting Higgs-fermion Yukawa couplings are:

$$-\mathcal{L}_{Y} = \overline{D} \left[\frac{M_{D}}{v} s_{\beta-\alpha} + \frac{\rho^{D}}{\sqrt{2}} c_{\beta-\alpha} \right] Dh^{0}$$

$$+ \overline{D} \left[\frac{M_{D}}{v} c_{\beta-\alpha} - \frac{\rho^{D}}{\sqrt{2}} s_{\beta-\alpha} \right] DH^{0} + \frac{i}{\sqrt{2}} \rho^{D} \overline{D} \gamma_{5} DA^{0}$$

$$+ \overline{U} \left[\frac{M_{U}}{v} s_{\beta-\alpha} + \frac{\rho^{U}}{\sqrt{2}} c_{\beta-\alpha} \right] Uh^{0}$$

$$+ \overline{U} \left[\frac{M_{U}}{v} c_{\beta-\alpha} - \frac{\rho^{U}}{\sqrt{2}} s_{\beta-\alpha} \right] UH^{0} - \frac{i}{\sqrt{2}} \rho^{U} \overline{U} \gamma_{5} UA^{0}$$

$$+ \left\{ \overline{U} \left[K \rho^{D} P_{R} - \rho^{U} K P_{L} \right] DH^{+} + \text{h.c.} \right\},$$

which exhibits Higgs-mediated FCNCs since ρ^D and ρ^U are generically non-diagonal matrices.

Special Case: Higgs bosons couple to only one generation of fermions

To sidestep the problem of Higgs-mediated FCNCs, suppose that the Higgs bosons couple primarily to third-generation quarks and leptons.

$$g_{hqq} = \frac{m_q}{v} s_{\beta-\alpha} + \frac{1}{\sqrt{2}} (S_q + i\gamma_5 P_q) c_{\beta-\alpha} ,$$

$$g_{Hqq} = \frac{m_q}{v} c_{\beta-\alpha} - \frac{1}{\sqrt{2}} (S_q + i\gamma_5 P_q) s_{\beta-\alpha} ,$$

$$g_{Att} = -\frac{1}{\sqrt{2}} (iS_u \gamma_5 - P_u) ,$$

$$g_{Abb} = \frac{1}{\sqrt{2}} (iS_d \gamma_5 - P_d) ,$$

$$g_{H+bt} = \frac{1}{2} [\rho^D (1 + \gamma_5) - \rho^U * (1 - \gamma_5)] ,$$

where q = (t, b) and

$$S_q \equiv \operatorname{Re} \rho^Q$$
, $P_q \equiv \operatorname{Im} \rho^Q$.

Note that If Im $\rho^Q \neq 0$, then there is a new source of CP-violation in the neutral Higgs-fermion interactions.

How to avoid tree-level Higgs-mediated FCNCs

- Arbitrarily declare ρ^U and ρ^D to be diagonal matrices. This is an unnaturally fine-tuned solution.
- Impose a discrete symmetry or supersymmetry (e.g., "Type-I" or "Type-II" Higgs-fermion interactions), which selects out a special basis of the 2HDM scalar fields. In this case, ρ^Q is automatically proportional to M_Q (for Q = U, D, L), and is hence diagonal.
- Impose alignment without a symmetry principle: $\rho^Q = \alpha^Q \kappa^Q$, (Q = U, D, L), where the α^Q are complex scalar parameters [e.g. see Pich and Tuzon (2009)].
- Impose the heavy Higgs mass decoupling limit. Tree-level Higgs-mediated FCNCs will be suppressed by factors of squared-masses of heavy Higgs states. (How heavy is sufficient?)

Example: Type-II 2HDM Higgs-fermion couplings

$$\rho^D = -\frac{\sqrt{2}m_b}{v} \tan \beta, \qquad \rho^U = \frac{\sqrt{2}m_t}{v} \cot \beta, \qquad \text{(Type-II)},$$

are real quantities, which yields:

$$g_{hbb} = -\frac{m_b}{v} \frac{\sin \alpha}{\cos \beta} = \frac{m_b}{v} (s_{\beta-\alpha} - \tan \beta \, c_{\beta-\alpha}),$$

$$g_{htt} = \frac{m_t}{v} \frac{\cos \alpha}{\sin \beta} = \frac{m_t}{v} (s_{\beta-\alpha} + \cot \beta \, c_{\beta-\alpha}),$$

$$g_{Hbb} = \frac{m_b}{v} \frac{\cos \alpha}{\cos \beta} = \frac{m_b}{v} (c_{\beta-\alpha} + \tan \beta \, s_{\beta-\alpha}),$$

$$g_{Htt} = \frac{m_t}{v} \frac{\sin \alpha}{\sin \beta} = \frac{m_t}{v} (c_{\beta-\alpha} - \cot \beta \, s_{\beta-\alpha}).$$

Contrast this case with Type-I 2HDM Higgs-fermion couplings, where

$$\rho^D = \frac{\sqrt{2}m_b}{v} \cot \beta, \qquad \rho^U = \frac{\sqrt{2}m_t}{v} \cot \beta, \qquad \text{(Type-I)}.$$

Conclusions

- 1. I propose a strategy for developing 2HDM benchmarks that are based on the current trend in the Higgs data
 - The observed Higgs boson is identified with the lightest CP-even Higgs boson h of the 2HDM
 - The coupling of the observed Higgs boson to vector boson pairs is close to the Standard Model expectation.
- 2. We can therefore identify small parameters for which the 2HDM is amenable to a perturbative analysis.
- 3. A set of scanning parameters are identified that yield a set of heavier Higgs states, whose masses are internally consistent.
- 4. The procedure is exhibited for both the generic model (with CP-violation) and a special case where the Higgs potential is CP-conserving.
- 5. The to-do list:
 - Choose a set of practical benchmark points.
 - \bullet Consider benchmarks where the observed Higgs boson is H.
 - Consider benchmarks where the observed Higgs signal is due to massdegenerate states.

Backup slides

The CP-conserving 2HDM with Type I or II Yukawa couplings

The scalar potential exhibits a \mathbb{Z}_2 symmetry that is at most softly broken,

$$V = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left(m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2$$
$$+ \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 + \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \left[\frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right],$$

where m_{12}^2 and λ_5 are real. The most general Yukawa Lagrangian, in terms of the quark mass-eigenstate fields, is:

$$-\mathscr{L}_{Y} = \overline{U}_{L}\widetilde{\Phi}_{a}^{0}\eta_{a}^{U}U_{R} + \overline{D}_{L}K^{\dagger}\widetilde{\Phi}_{a}^{-}\eta_{a}^{U}U_{R} + \overline{U}_{L}K\Phi_{a}^{+}\eta_{a}^{D}{}^{\dagger}D_{R} + \overline{D}_{L}\Phi_{a}^{0}\eta_{a}^{D}{}^{\dagger}D_{R} + \text{h.c.},$$

where $a=1,2,\ \widetilde{\Phi}_a\equiv (\widetilde{\Phi}^0\,,\ \widetilde{\Phi}^-)=i\sigma_2\Phi_a^*$ and K is the CKM mixing matrix. The $\eta^{U,D}$ are 3×3 Yukawa coupling matrices.

Type-I Yukawa couplings: $\eta_1^U = \eta_1^D = 0$.

	h^0	A^0	H^0
up-type quarks	$\cos \alpha / \sin \beta$	$\cot \beta$	$\sin \alpha / \sin \beta$
down-type quarks and leptons	$\cos \alpha / \sin \beta$	$-\cot \beta$	$\sin \alpha / \sin \beta$

Type-II Yukawa couplings: $\eta_1^U = \eta_2^D = 0$ [employed by the MSSM].

	h^0	A^0	H^0
up-type quarks	$\cos \alpha / \sin \beta$	$\cot eta$	$\sin \alpha / \sin \beta$
down-type quarks and leptons	$-\sin\alpha/\cos\beta$	$\tan eta$	$\cos \alpha / \cos \beta$

Here, α is the CP-even Higgs mixing angle and $\tan\beta=v_u/v_d$. The h^0 and H^0 are CP-even neutral Higgs bosons with $m_{h^0}\leq m_{H^0}$ and A^0 is a CP-odd neutral Higgs boson.

Example: decoupling of the non-minimal Higgs bosons of the MSSM Higgs sector (tree-level analysis)

The MSSM employs a type-II Higgs-fermion Yukawa coupling scheme. In addition, supersymmetry restricts the Higgs basis potential parameters,

$$Z_1 = Z_2 = \frac{1}{4}(g^2 + g'^2)\cos^2 2\beta$$
, $Z_3 = Z_5 + \frac{1}{4}(g^2 - g'^2)$, $Z_4 = Z_5 - \frac{1}{2}g^2$, $Z_5 = \frac{1}{4}(g^2 + g'^2)\sin^2 2\beta$, $Z_7 = -Z_6 = \frac{1}{4}(g^2 + g'^2)\sin 2\beta \cos 2\beta$.

In the limit of $m_A \gg m_Z$, the tree-level expressions for the MSSM Higgs masses and mixings are:

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta$$
, $m_H^2 \simeq m_A^2 + m_Z^2 \sin^2 2\beta$, $m_{H^{\pm}}^2 = m_A^2 + m_W^2$, $\cos^2(\beta - \alpha) \simeq \frac{m_Z^4 \sin^2 4\beta}{4m_A^4}$.

Indeed, $\cos(\beta - \alpha) = \mathcal{O}(m_Z^2/m_A^2)$ and $m_A \simeq m_H \simeq m_{H^{\pm}}$, up to corrections of $\mathcal{O}(m_Z^2/m_A)$, as expected. This is the decoupling limit of the MSSM Higgs sector.

In general, in the limit of $\cos(\beta - \alpha) \to 0$, all the h^0 couplings to SM particles approach their SM limits. In particular, if λ_V is a Higgs coupling to vector bosons and λ_f is a Higgs couplings to fermions, then

$$\frac{\lambda_V}{[\lambda_V]_{\text{SM}}} = \sin(\beta - \alpha) = 1 + \mathcal{O}\left(m_Z^4/m_A^4\right), \qquad \frac{\lambda_f}{[\lambda_f]_{\text{SM}}} = 1 + \mathcal{O}\left(m_Z^2/m_A^2\right).$$

The behavior of the h^0ff coupling is:

$$h^0 b \bar{b} \quad (\text{or } h^0 \tau^+ \tau^-) : \qquad -\frac{\sin \alpha}{\cos \beta} = \sin(\beta - \alpha) - \tan \beta \cos(\beta - \alpha) \,,$$

$$h^0 t \bar{t} : \qquad \frac{\cos \alpha}{\sin \beta} = \sin(\beta - \alpha) + \cot \beta \cos(\beta - \alpha) \,.$$

Note the extra $\tan \beta$ enhancement in the deviation of λ_{hbb} from $[\lambda_{hbb}]_{\rm SM}$.

Thus, the approach to decoupling is fastest for the h^0VV couplings, and slowest for the couplings of h^0 to down-type quarks and leptons (if $\tan \beta$ is large).