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Omitting for the moment ∆b,τ , we have rb = rτ , and

rb =
vghbb̄

mb
= − sinα

cos β
, rt =

vghtt̄
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=

cos α

sinβ
, rV =

vghV V

2m2
V

= sin (β − α) , (3.3)

implying the inequalities

r2
b ≤ tan2 β + 1, r2

t ≤
1

tan2 β
+ 1, r2

V ≤ 1. (3.4)

We are free to choose two independent parameters to describe rb, rt and rV . We choose these
parameters to be tanβ and rb. With this choice we write

rt =

√
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b − 1

tan2 β
, rV =
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√
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b

)
, (3.5)

valid for all tanβ. We assumed that rt ≥ 0, taking the positive root.
We now comment on the validity of neglecting ∆b,τ in Eq. (3.5). As it turns out, ∆b,τ , that enter

the Higgs couplings tanβ-enhanced, only become quantitatively relevant at large tanβ. However, if
(rb/ tanβ)2 $ 1, then deviations in rt, rV are suppressed compared to deviations in rb. As we discuss
below in more detail, this results in the fact that whenever the values of rt or rV are non-negligible
phenomenologically, then Eq. (3.5) applies to high accuracy even when finite ∆b,τ are introduced.
This conclusion is useful: it means that for arbitrary new physics deformations of the MSSM Higgs
potential – just as long as the basic 2HDM structure is maintained – only two variables, rb and tanβ,
are required to describe Higgs mixing effects on the lighter Higgs effective couplings. Note, finally,
that similar diagrams to those that produce ∆b,τ , also produce finite λ6,7. As the latter couplings
are vanishing in the MSSM, this can lead to non-negligible modification to Higgs couplings [77, 82].
However, these corrections are fully accounted for in Eqs. (3.3-3.5), by assuming renormalized couplings
in the potential (3.1).
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where we used m2
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1 〉 + O(1/ tan2 β). The result for the coupling rτ is similar to rb, replacing
∆b → ∆τ .

4More precisely, we must require B2/(m2
H −m2

h)2 " 1, where mH,h are the mass eigenvalues. This condition can

be put as tan β #
`
1−m2

h/m2
H

´−1
.

5Compared with the basis of [80], 〈B/M2
1 〉 ∼ 1/ tan β and our λ35 equals their λ345.
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Following the discussion in Secs. 2 and 3, we classify the contributions to modified Higgs couplings
into loop effects and mixing. We can now parametrize Higgs observables using four independent
variables, two for each class of effects. These variables are

tanβ, rb,
(
0.6 < rt̃

G < 1.6
)

,
(
0.7 < rχ̃±

γ < 1.1
)

. (4.1)

Using rb and tanβ in Eq. (3.5) we can compute rt and rV . Using rt̃
G, rχ̃±

γ , rt and rV we can compute
the observable factors rG and rγ . A set of four free parameters, with a limited range of values, is a
rather predictive framework considering that experimental Higgs analyses will be sensitive to O(10)
different production/decay channels. A few comments are in order:

• The fact that four variables suffice to describe Higgs production and decay is not special to
our SUSY framework, but simply the result of assuming a 2HDM at the weak scale. This
assumption gave us rt and rV in terms of rb and tanβ,7 while to describe the Higgs photon and
gluon couplings we could have chosen to use rγ and rG directly.

• Our choice of the rχ̃±
γ and rt̃

G variables, is based on our ability to predict the viable numerical
ranges for them in the particular framework of natural SUSY. It is of interest to spell out what
part of the constraints on rχ̃±

γ and rt̃
G actually comes from naturalness vs. experimental limits:

– The upper limit rt̃
G < 1.6 comes from imposing the direct constraint mt̃ >100 GeV and,

when it is saturated, stops contribute significantly to (∆ρ/ρ). Requiring further that the
stop-sbottom contribution to (∆ρ/ρ) does not exceed 4σ would lower this bound to rt̃

G < 1.3.
Similarly, both the upper and lower limits on the chargino contribution rχ̃±

γ do not involve
naturalness considerations, but merely the direct constraint mχ̃± > 94 GeV.

– The lower limit rt̃
G > 0.6 does arise from naturalness considerations. More specifically, it

comes about by limiting the stop mixing to be modest.

– Finally, it was essentially naturalness (though assisted by direct constraints) that guided
us to neglect the stau and sbottom loop corrections to rγ and rG.

Let us apply our analysis to a number of experimental channels, defining the signal strength
µX = σ×BR(X)/SM. First, a 125 GeV SM Higgs has a partial width of ≈ 64.4% to bb̄ and τ τ̄ , 24.3%
to WW and ZZ, 8.5% to gluon pairs and 2.7% to cc̄. For our purpose it suffices to approximate the
total width modification by

Γ/ΓSM ≡ µtot ≈ 0.64r2
b + 0.24r2

V + 0.09r2
G + 0.03r2

t . (4.2)

Note that µtot depends mostly on Higgs mixing through rb and rV (rb, tanβ). Consider now the
following six processes, with GF, VBF and AP standing for gluon fusion, vector boson fusion and
associated production, respectively:

µγγ;GF = r2
Gr2

γ

µtot
, (4.3)

µγγ;V BF = r2
V r2

γ

µtot
, (4.4)

µZZ,WW ;GF = r2
Gr2

V
µtot

, (4.5)

µbb,ττ ;AP = r2
V r2

b
µtot

. (4.6)

7Alternatively, of course, we could have used the angle variables β, α.
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Following the discussion in Secs. 2 and 3, we classify the contributions to modified Higgs couplings
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Using rb and tanβ in Eq. (3.5) we can compute rt and rV . Using rt̃
G, rχ̃±

γ , rt and rV we can compute
the observable factors rG and rγ . A set of four free parameters, with a limited range of values, is a
rather predictive framework considering that experimental Higgs analyses will be sensitive to O(10)
different production/decay channels. A few comments are in order:

• The fact that four variables suffice to describe Higgs production and decay is not special to
our SUSY framework, but simply the result of assuming a 2HDM at the weak scale. This
assumption gave us rt and rV in terms of rb and tanβ,7 while to describe the Higgs photon and
gluon couplings we could have chosen to use rγ and rG directly.

• Our choice of the rχ̃±
γ and rt̃

G variables, is based on our ability to predict the viable numerical
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when it is saturated, stops contribute significantly to (∆ρ/ρ). Requiring further that the
stop-sbottom contribution to (∆ρ/ρ) does not exceed 4σ would lower this bound to rt̃
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Similarly, both the upper and lower limits on the chargino contribution rχ̃±

γ do not involve
naturalness considerations, but merely the direct constraint mχ̃± > 94 GeV.
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G > 0.6 does arise from naturalness considerations. More specifically, it

comes about by limiting the stop mixing to be modest.

– Finally, it was essentially naturalness (though assisted by direct constraints) that guided
us to neglect the stau and sbottom loop corrections to rγ and rG.

Let us apply our analysis to a number of experimental channels, defining the signal strength
µX = σ×BR(X)/SM. First, a 125 GeV SM Higgs has a partial width of ≈ 64.4% to bb̄ and τ τ̄ , 24.3%
to WW and ZZ, 8.5% to gluon pairs and 2.7% to cc̄. For our purpose it suffices to approximate the
total width modification by

Γ/ΓSM ≡ µtot ≈ 0.64r2
b + 0.24r2

V + 0.09r2
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Note that µtot depends mostly on Higgs mixing through rb and rV (rb, tanβ). Consider now the
following six processes, with GF, VBF and AP standing for gluon fusion, vector boson fusion and
associated production, respectively:
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where we neglect D-terms. We factored out an overall correction factor rt, defined via Eq. (1.1), that
comes about by Higgs mixing. The total hGG vertex correction reads

rG = rt r
t̃
G. (2.6)

Eq. (2.5) compares well with results from FeynHiggs; nevertheless, in numerical computations we
include the D-term contribution. Concerning the leading log approximation, this can be checked by
comparing the full fermion and scalar loop function ratio evaluated at mt and mt̃,[
F0

(
m2

h/4m
2
t̃

)
/F1/2

(
m2

h/4m
2
t

)]
, to the asymptotic value (1/4) of this ratio at mh → 0. Varying mt̃

between 150-1000 GeV, we find that the leading log approximation is good to about 6%.
For reasonably light stops, Eq. (2.5) leads to a substantial effect, e.g. with mt̃1 = mt̃2 = 250

GeV, rG = 1.24, implying 53% increase in GF production. As long as stop mixing is small, the hGG
coupling is enhanced compared to the SM and consequently the GF rate is enhanced. As discussed
in [67], large Xt could in principle reduce the hGG coupling. However, naturalness, together with the
direct bound mt̃1 > 100 GeV, limit this possibility: large Xt adds to the weak-scale fine tuning both
directly, through Eq. (2.3), and indirectly because it requires a larger diagonal soft mass to start with.
In the next section we exhibit further constraints on such large Xt that arise from rare B decays at
large tanβ.

There is an inverse correlation between the top/stop contributions to the Higgs effective coupling to
photons and to gluons, the negative sign coming because of the dominant W diagram that contributes
to hγγ with opposite sign from the matter loops. To see this, let us denote the W and top loop
contributions to the hγγ amplitude by Aγ

W and Aγ
t , respectively, and the stop contribution by Aγ

t̃
.

Let us further define the hGG top and stop-induced amplitudes by AG
t and AG

t̃
, and note that

Aγ
t̃

Aγ
t

=
AG

t̃

AG
t

= rt̃G − 1, (2.7)

to leading order in αs. This gives

rγ =
Aγ

W +Aγ
t +Aγ

t̃

(Aγ
W +Aγ

t )
SM ≈ 1.28rV − 0.28rG, W, top, and stop contributions, (2.8)

using Aγ
W ≈ 8.33 and Aγ

t ≈ −1.84 in the SM, valid for mh = 125 GeV.
Eqs. (2.6) and (2.8) do not include loop contributions of additional particles, notably charginos

and bottom and tau fermions and scalars. The bottom and tau fermion contributions remain below
about five percent of the top even for rb,τ ∼ 10. The chargino, sbottom and stau contributions can in
principle become relevant in some corners of the MSSM parameter space, resulting with some loss of
predictivity by disturbing the rγ − rG correlation of Eq. (2.8). Below we examine these terms in more
detail, concluding that in natural SUSY, the sbottom and stau contributions can be neglected while
charginos may lead to marginally observable effects.

2.1.3 Large stop mixing vs. fine-tuning in BR(B → Xsγ)

Light, mixed stops are constrained by rare B decays. The branching fraction for the rare decay
B → Xsγ has been measured experimentally to a precision of better than ten percent [69],

BR(B → Xsγ)
exp = (3.52± 0.25)× 10−4. (2.9)

The theoretical SM NNLO calculation has reached a similar accuracy [70]2,

BR(B → Xsγ)
SM = (2.98± 0.26)× 10−4. (2.10)

2Ref. [71] found the theoretical result BR(B → Xsγ)SM = (3.15± 0.25)× 10−4.
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The theoretical NNLO SM prediction is fully determined by observable quantities, namely the masses
of the top quark and W boson and gauge couplings. Therefore, the agreement (within ∼ 1.5σ) between
Eqs. (2.9) and (2.10) allows us to define an observable quantity, Obsγ , that we can compare against
models of new physics,

Obsγ =
BR(B → Xsγ)exp

BR(B → Xsγ)SM
− 1 = 0.18± 0.13. (2.11)

Eq. (2.11) means that new physics is now only allowed to contribute to B → Xsγ at about
thirty percent of the SM contribution. Because the SM contribution begins at one-loop, new physics
models such as SUSY can easily produce larger contributions. Recalling the possibility of accidental
cancellations, typical SUSY Higgs analyses in the literature either ignore B → Xsγ or focus on
parameter regions where cancellations occur. Here, given our interest in natural models, we will use
Eq. (2.11) to estimate the level of fine-tuning involved in the latter approach [72].

Given a model input parameter P (e.g., At) that contributes to BR(B → Xsγ), we assess the
degree of fine-tuning ∆ associated with it in a similar way to the fine-tuning measure commonly
associated with the Z boson mass. The only slight modification we apply here is to account for the
uncertainty in the experimental determination of Obsγ :

[
∆(P )

Obsγ

]−1
=

∣∣∣∣
Obsγ

σObsγ

∂ logObsγ

∂ logP

∣∣∣∣ =
∣∣∣∣
P

0.3

∂Obsγ

∂P

∣∣∣∣ , (2.12)

where we chose to combine linearly the absolute values of the central value and of the uncertainty on
the right hand side of Eq. (2.11), setting σObsγ = 0.3. A total fine tuning is defined as

∆−1
tot =
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To get a rough estimate of the importance of Eq. (2.12), consider minimally flavor violating new
physics contributions to the Wilson coefficients C7,8 of the electromagnetic and chromomagnetic dipole
operators O7,8,
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Taking C7,8 to be input at the top mass scale, the contribution to Obsγ can be approximated by [73]
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∗
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where F7,8(x, y) are loop functions that take O(1) values for x ∼ y = O(1). Using Eqs. (2.16), (2.15)
and (2.12) we see that if we wish to avoid accidental cancellations to a level of one part per ten, then
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The theoretical NNLO SM prediction is fully determined by observable quantities, namely the masses
of the top quark and W boson and gauge couplings. Therefore, the agreement (within ∼ 1.5σ) between
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models such as SUSY can easily produce larger contributions. Recalling the possibility of accidental
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The minimal version of split SUSY cannot give a big enough effect – indeed, the only source for
enhancement is the same chargino loop as in natural SUSY. Thus a large enhancement of 1.5 - 2
immediately rules out this version of split SUSY. We can however certainly imagine extra fermions
near the TeV scale; a collection of fermions can have their masses protected by a common chiral
symmetry and set by the same scale.

In what follows we ask whether the recent LHC data can be explained in a framework of this
sort. We show that restricting to un-natural models with only new fermions immediately leads us
to a very narrow set-up with sharp theoretical and experimental implications: (1) new, vector-like,
un-colored fermions with electroweak quantum numbers must exist and be very light, within the range
100 − 150 GeV; (2) the cut-off scale of the theory where additional bosonic degrees of freedom must
kick in, cannot be high and is in fact bounded by ΛUV ∼< 1 − 10 TeV. The cut-off can be somewhat
increased but only at the expanse of significant model-building gymnastics, which further destroys any
hope of perturbative gauge coupling unification.

2 The diphoton rate

A fermionic loop contribution enhancing the Higgs-diphoton coupling requires vector-like represen-
tations and large Yukawa couplings to the Higgs boson. This has important ramifications for the
consistency of the theory at high scale. To see this, note that in the presence of a new fermion f with
electric charge Q, the h → γγ partial width reads4

Γ(h → γγ)
Γ(h → γγ)SM

≈

∣∣∣∣∣1 +
1

Aγ
SM

Q2 4
3

(
∂ log mf

∂ log v

) (
1 +

7 m2
h

120 m2
f

)∣∣∣∣∣

2

, (2.1)

with Γ(h → γγ)SM =
(

GF α2m3
h

128
√

2π3

)
|Aγ

SM |2 and5 Aγ
SM = −6.49. Constructive interference between the

SM and the new fermion amplitude requires electroweak symmetry breaking to contribute negatively to
the mass of the new fermion. Thus f must be part of a vector-like representation with an electroweak-
conserving source of mass.

The basic building block is then the charged vector-like fermion mass matrix,

LM = −
(
ψ+Q χ+Q

)


 mψ
yv√

2
ycv√

2
mχ




(

ψ−Q

χ−Q

)
+ cc, (2.2)

with the Higgs VEV given by 〈H〉 = v/
√

2 = 174 GeV. Eq. (2.2) contains one physical phase, φ =
arg

(
m∗

ψm∗
χyyc

)
, that cannot be rotated away by field redefinitions. It is straightforward to show that

φ = 0 maximizes the effect we are after, making φ (= 0 an un-illuminating complication for our current
purpose. Hence for simplicity we assume φ = 0 in what follows. We are then allowed to take all of
the parameters in Eq. (2.2) to be real and positive. The two Dirac mass eigenvalues are split by an
amount

m2 = m1

(
1 +

√
∆2

v + ∆2
y + ∆2

m

)
, ∆2

v =
2yycv2

m2
1

, ∆2
y =

(y − yc)2 v2

2m2
1

, ∆2
m =

(mψ −mχ)2

m2
1

. (2.3)

4At leading-log plus leading finite-mass correction; see e.g. [? ] for a recent discussion.
5At leading-log, the SM amplitude is given by the top quark and W boson contributions to the QED beta function,`

Aγ
SM

´
leading−log

= bt + bW = +(4/3)2 − 7. Finite mass corrections modify this prediction slightly to Aγ
SM = −6.49.
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y, yc → g

Following the discussion in Secs. 2 and 3, we classify the contributions to modified Higgs couplings
into loop effects and mixing. We can now parametrize Higgs observables using four independent
variables, two for each class of effects. These variables are

tanβ, rb,
(
0.6 < rt̃

G < 1.6
)

,
(
0.7 < rχ̃±

γ < 1.1
)

. (4.1)

Using rb and tanβ in Eq. (3.5) we can compute rt and rV . Using rt̃
G, rχ̃±

γ , rt and rV we can compute
the observable factors rG and rγ . A set of four free parameters, with a limited range of values, is a
rather predictive framework considering that experimental Higgs analyses will be sensitive to O(10)
different production/decay channels. A few comments are in order:

• The fact that four variables suffice to describe Higgs production and decay is not special to
our SUSY framework, but simply the result of assuming a 2HDM at the weak scale. This
assumption gave us rt and rV in terms of rb and tanβ,7 while to describe the Higgs photon and
gluon couplings we could have chosen to use rγ and rG directly.

• Our choice of the rχ̃±
γ and rt̃

G variables, is based on our ability to predict the viable numerical
ranges for them in the particular framework of natural SUSY. It is of interest to spell out what
part of the constraints on rχ̃±

γ and rt̃
G actually comes from naturalness vs. experimental limits:

– The upper limit rt̃
G < 1.6 comes from imposing the direct constraint mt̃ >100 GeV and,

when it is saturated, stops contribute significantly to (∆ρ/ρ). Requiring further that the
stop-sbottom contribution to (∆ρ/ρ) does not exceed 4σ would lower this bound to rt̃

G < 1.3.
Similarly, both the upper and lower limits on the chargino contribution rχ̃±

γ do not involve
naturalness considerations, but merely the direct constraint mχ̃± > 94 GeV.

– The lower limit rt̃
G > 0.6 does arise from naturalness considerations. More specifically, it

comes about by limiting the stop mixing to be modest.

– Finally, it was essentially naturalness (though assisted by direct constraints) that guided
us to neglect the stau and sbottom loop corrections to rγ and rG.

Let us apply our analysis to a number of experimental channels, defining the signal strength
µX = σ×BR(X)/SM. First, a 125 GeV SM Higgs has a partial width of ≈ 64.4% to bb̄ and τ τ̄ , 24.3%
to WW and ZZ, 8.5% to gluon pairs and 2.7% to cc̄. For our purpose it suffices to approximate the
total width modification by

Γ/ΓSM ≡ µtot ≈ 0.64r2
b + 0.24r2

V + 0.09r2
G + 0.03r2

t . (4.2)

Note that µtot depends mostly on Higgs mixing through rb and rV (rb, tanβ). Consider now the
following six processes, with GF, VBF and AP standing for gluon fusion, vector boson fusion and
associated production, respectively:

µγγ;GF = r2
Gr2

γ

µtot
, (4.3)

µγγ;V BF = r2
V r2

γ

µtot
, (4.4)

µZZ,WW ;GF = r2
Gr2

V
µtot

, (4.5)

µbb,ττ ;AP = r2
V r2

b
µtot

. (4.6)

7Alternatively, of course, we could have used the angle variables β, α.
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Omitting for the moment ∆b,τ , we have rb = rτ , and

rb =
vghbb̄

mb
= − sinα

cos β
, rt =

vghtt̄

mt
=

cos α

sinβ
, rV =

vghV V

2m2
V

= sin (β − α) , (3.3)

implying the inequalities

r2
b ≤ tan2 β + 1, r2

t ≤
1

tan2 β
+ 1, r2

V ≤ 1. (3.4)

We are free to choose two independent parameters to describe rb, rt and rV . We choose these
parameters to be tanβ and rb. With this choice we write

rt =

√

1−
r2
b − 1

tan2 β
, rV =

tanβ

1 + tan2 β

(
rb

tanβ
+

√
1 + tan2 β − r2

b

)
, (3.5)

valid for all tanβ. We assumed that rt ≥ 0, taking the positive root.
We now comment on the validity of neglecting ∆b,τ in Eq. (3.5). As it turns out, ∆b,τ , that enter

the Higgs couplings tanβ-enhanced, only become quantitatively relevant at large tanβ. However, if
(rb/ tanβ)2 $ 1, then deviations in rt, rV are suppressed compared to deviations in rb. As we discuss
below in more detail, this results in the fact that whenever the values of rt or rV are non-negligible
phenomenologically, then Eq. (3.5) applies to high accuracy even when finite ∆b,τ are introduced.
This conclusion is useful: it means that for arbitrary new physics deformations of the MSSM Higgs
potential – just as long as the basic 2HDM structure is maintained – only two variables, rb and tanβ,
are required to describe Higgs mixing effects on the lighter Higgs effective couplings. Note, finally,
that similar diagrams to those that produce ∆b,τ , also produce finite λ6,7. As the latter couplings
are vanishing in the MSSM, this can lead to non-negligible modification to Higgs couplings [77, 82].
However, these corrections are fully accounted for in Eqs. (3.3-3.5), by assuming renormalized couplings
in the potential (3.1).

For the purpose of understanding the phenomenology of specific models it is useful to express rb

in terms of parameters in Eq. (3.1). As a simple but interesting scenario, consider tanβ ≥ 3, where
we can use (1/ tanβ) as an expansion parameter [77, 82]. We assume some hierarchy between the
masses of the two doublets4, m2

1 > m2
2, and neglect CP-violation and loop corrections from charged

and pseudo-scalar Higgs states. Defining the quantities

M2
1 = m2

1 +
λ35h2

2

2
, B = m2

12 +
λ7h2

2

2
, (3.6)

where λ35 = λ3+λ5
5, a direct diagrammatic evaluation, treating the parameter 〈B/M2

1 〉 = (1/ tanβ)+
O(1/ tan2 β) as perturbation, yields

rb =
(

1− m2
h

m2
H

)−1 (
1− 1

1 + ∆b tanβ

(
λ35v2

m2
H −m2

h

− λ7v2

m2
H

tanβ +
m2

h

m2
H

∆b tanβ

))
×

{
1 +O

(
1

tan2 β

)}
,

(3.7)

where we used m2
H = 〈M2

1 〉 + O(1/ tan2 β). The result for the coupling rτ is similar to rb, replacing
∆b → ∆τ .

4More precisely, we must require B2/(m2
H −m2

h)2 " 1, where mH,h are the mass eigenvalues. This condition can

be put as tan β #
`
1−m2

h/m2
H

´−1
.

5Compared with the basis of [80], 〈B/M2
1 〉 ∼ 1/ tan β and our λ35 equals their λ345.
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λ35 = −g2 + g′2

4
≈ −0.14, λ5 = λ6 = λ7 = 0, ∆b = ∆τ = 0.

λ35 = λMSSM
35

(
1 +

g2∆ + g′2∆′

g2 + g′2

)

VD =
∑

G

g2
G

2

(
1 +

g2
A

g2
B

M2
s

M2
V + M2

s

) (
H†

uT a
GHu + H†

dT a
GHd

)2
⊃ g2(1 + ∆) + g′2(1 + ∆′)

8

(∣∣h0
u

∣∣2 −
∣∣h0

d

∣∣2
)2

.
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2, and neglect CP-violation and loop corrections from charged

and pseudo-scalar Higgs states. Defining the quantities

M2
1 = m2

1 +
λ35h2

2

2
, B = m2

12 +
λ7h2

2

2
, (3.6)

where λ35 = λ3+λ5
5, a direct diagrammatic evaluation, treating the parameter 〈B/M2

1 〉 = (1/ tanβ)+
O(1/ tan2 β) as perturbation, yields

rb =
(

1− m2
h

m2
H

)−1 (
1− 1

1 + ∆b tanβ

(
λ35v2

m2
H −m2

h

− λ7v2

m2
H

tanβ +
m2

h

m2
H

∆b tanβ

))
×

{
1 +O

(
1

tan2 β

)}
,

(3.7)

where we used m2
H = 〈M2

1 〉 + O(1/ tan2 β). The result for the coupling rτ is similar to rb, replacing
∆b → ∆τ .

4More precisely, we must require B2/(m2
H −m2

h)2 " 1, where mH,h are the mass eigenvalues. This condition can

be put as tan β #
`
1−m2

h/m2
H

´−1
.

5Compared with the basis of [80], 〈B/M2
1 〉 ∼ 1/ tan β and our λ35 equals their λ345.
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(We will get the same results by making S a hypercharge-neutral SU(2) triplet.) If S is given a large
soft SUSY breaking mass, m2

s ! m2
H , M2

s , with mH being the mass of the heavier MSSM Higgs doublet
and Ms a possible supersymmetric mass for S, then the effective potential below ms is modified with
a non-decoupling correction,

V = V MSSM + |λ|2|HuHd|2. (3.16)

This gives, in our notation of Eq. (3.1),

λ4 = λMSSM
4 − |λ|2, λ35 = λMSSM

35 + |λ|2. (3.17)

By Eq. (3.7), these models tend to decrease rb. To estimate the size of the effect, note that the
correction to the Higgs mass, still neglecting mixing, is

δm2
h = m2

Z

(
2|λ|2

g2 + g′2

)
sin2 2β. (3.18)

In Fig. 9 we plot the value of λ required for mh = 125 GeV, by adding Eq. (3.18) to Eq. (2.1). Mixing
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Figure 9. Contours of mh = 120, 125, 130 GeV, in the (tan β, λ) plane. Smooth lines: tree level; dashed lines:

including stop correction with Xt = 0, mt̃1
= mt̃2

= 380 GeV.

with the heavy singlet S reduces the lightest Higgs mass due to level splitting [60]; as a result, for fixed
mh, the value of λ in Fig. 9 serves only as a lower bound. We conclude that λ35 is always positive in
this model and much larger than its gauge-coupling value in the MSSM. This reduces the hbb̄ coupling
below its SM value.

As pointed out in [60], the non-decoupling limit discussed above has limited applicability be-
cause naturalness constrains ms ∼<TeV. In contrast with D-term models, however, where electroweak
precision tests constrain the SUSY scale, the singlet F -term example is phenomenologicallly viable
also in the SUSY limit. In analogy with the D-term example, adding a supersymmetric mass term,
δW ⊃ (Ms/2)S2, the shift in λ35 is suppressed by factors of (ms/Ms); however, a supersymmetric cor-
rection λ7 = −(λ2µ∗/Ms) is generated. The λ7 term modifies the Higgs mass by δm2

h ∝ −(λ7v2/ tanβ).
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O Experiments Λi(TeV)

OWB EWPT [55] 12.6 [56]

OhW ,OhB Higgs decays !
OW CP-even TGCs [50, 51] 1

OW̃ CP-odd TGCs [53, 54]/electron EDM [55] 0.5/37

OhW̃ CP-odd TGCs [53, 54]/electron EDM [55] 0.7/24

OhB̃ CP-odd TGCs [53, 54]/electron EDM [55] 0.3/47

OW̃B CP-odd TGCs [53, 54]/electron EDM [55] 0.3/34

Table 1. Current experimental bounds on operator coefficients at 90% CL. The operator coefficient ai is

bounded by the interval [−1/Λ2
min, 1/Λ2

max]. The Λi (in TeV) shown in the table is the average of Λmin and

Λmax.

3.2 Correlation between CP-odd and CP-even observables

Now we want to explore possible correlations between CP-even and odd observables. Firstly, if the
charged matter is vector-like, e.g., two Weyl fermions married by a Dirac mass which does not depend
on the electroweak symmetry breaking, one can always rotate away the phases by field redefinitions.
Thus they could lead to a change in CP-even TGCs, which as we discussed, is only weakly bounded
and difficult to measure. If the charged matter is purely chiral with mass purely from the Higgs VEV,
e.g., fourth-generation leptons, there could be additional CKM-like phases. For colorless chiral matter
with mass around weak scale, they will decrease the branching fraction of Higgs decaying to diphotons,
leading to a rate that is at least one sigma away from the best fit values of current Higgs fit.

The most interesting case is vector-like matter which obtain part of their masses from electroweak
symmetry breaking. The general mass matrix, e.g., for fermions, is

LM = −
(
ψ+Q χ+Q

)


 mψ
yv√

2
ycv√

2
mχ




(

ψ−Q

χ−Q

)
+ cc, (3.6)

with the Higgs VEV given by 〈H〉 = v/
√

2 = 174 GeV and ψ, χ are Weyl fermions. There is one
physical phase, φ = arg

(
m∗

ψm∗
χyyc

)
, that cannot be rotated away by field redefinitions. There

is an analogous mass matrix for scalars, e.g., the left- and right- handed stau mass mixing matrix
with the diagonal entries the soft masses and off-diagonal entries A-terms, where the physical phase
is arg

(
A∗m2

s

)
. With insertion of the physical phase, the diagrams generating CP-even operators,

OW ,OhW ,OhB lead to OhW̃ ,OhB̃ . Notice that WWW̃ operator is not generated at one-loop. The
reason is that W ’s, Z only couple to fermion of the same chirality. Without introducing dependence
on the Higgs field, as each mass flips chirality, the diagram is always proportional to the even powers
of |mψ|2 or |mχ|2, which are always real. WWW̃ operator could be generated at the two-loop order
or similar to the Weinberg operator GGG̃, WWW̃ receives a finite threshold correction from a heavy
SU(2)W charged particle with a non-zero EDM de and mass m check the numerics here.

aW̃ =
g2

32π2

de

m
. (3.7)

Constraint on aW̃ translates into de
m < 3×10−20 e·cm

1 TeV .
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c

Λ2
H†HFµνF̃µν

c =
α

4π
yyc sinφ; Λ2 = mψmχ

de

e
< 10−27 cm→ Λ ≥ 700GeV

√
yyc sinφ

1

Bar‐Zee type diagram 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