Higgs and Naturalness of EW scale
Fan




Combined
u=0.80+0.14

H— bb
n=1.15+0.62

H—- 1t
w=1.10+0.41

H— vy
u=077+0.27

H— WW
u=0.68+0.20

H—oZZ
n=0.92+0.28

\s=7TeV,L<5.1fb' \s=8TeV,L<19.6 fb"

CMS Preliminary m, =125.7 GeV
Py, = 0-65

| | |
ATLAS Preliminary

W,ZH — bb
Vs=7TeV: [Ldt=4.7 b
Vs=8TeV: [Ldt=131b"

H— 1t

Vs=7TeV: [Ldt=4.6 "
Vs =8TeV: [Ldt 5*)13 fo!
H—WW'— vlv
Vs=7TeV: [Ldt=46fb"
Vs =8 TeV: [Ldt=20.7 fb"
H— vy

Vs=7TeV: fLdt=4.810"
Vs=8TeV: [ L(cit): 207"
H—ZZ7"— 4l
Vs=7TeV: [Ldt=4.6b"
Vs=8TeV: [Ldt=207b"

i m,=125.5 GeV

Combined
Vs=7TeV: [Ldt=4.6-4.81"
Vs=8TeV: [Ldt=13-20.7 b

u=1.30=+0.20

0.5

1.5 2 25
Best fit G/O'SM

Signal strength (u)




The big picture
2 Aneutral scalar boson at ~ 125 GeV;

< Currently the data is consistent with SM Higgs;

< Still room for 30% - 50% (large) deviations in the Higgs
couplings;

< Options: SM Higgs, SUSY Higgs, composite Higgs...




Outline
< Implications of Higgs mass for BSM theories: SUSY

< Higgs couplings:
how could they be modified in BSM theories?

< Implications of Higgs couplings for naturainess of EW
symmetry breaking

* Wiggs - DM coupling




Higgs mass in SUSY
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; S In MSSM, to get the Higgs mass

! susmect b 13 L to be 125 GeV, a large quantum correction
! pect \ ‘ \ ! ] .

/ FeynHiggs *, must be introduced with multi-TeV SUSY
IR | N breaking parameters;

P Y the fine-tuning is worse than a few percent.
SN\ \/ MSSM is tuned!!
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~ Beyond MSSM, one could add new tree level
interactions to raise the Higgs mass and mitigates

fine-tuning
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- Non-decoupling D-term models gt
i, H,;

Batra, Delgado, Kaplan and Tait 2004; Maloney, Pierce, Wacker 2004

- F-term models
W =SH,H;+ f(S)
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How could they be modified?
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Higgs couplings
2 Radiative effect: hgg, hyy couplings

Low energy Higgs theorem: hgg, hyy couplings are
related to beta function coefficients (Shifman et.al)
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“ Suppose the intermediate mass threshold M is a
function of the Higgs field M=M(h(x)) , one can
extract from the gauge kinetic term the Higgs
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- Mixing effect: h mixing with other scalars; new
fermions mixing with the SM fermions  Gunion, Haber 2002

~ Example: type Il 2HDM (where the second Higgs is
heavy and large tan beta) ()
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Natural SUSY

~ Concrete questions: What are the predications of
minimal natural and unnatural beyond SM theories?

How large deviations in Higgs couplings they could
obtain?
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Assuming that Higgs sector is approximately 2HDM in the low energy,
then all Higgs couplings are described by 4 parameters in natural scenario

tan 8, p, (0.6 <rl < 1.6) , (0.7 <X’ < 1.1)




suppress hbb coupling;
radiative effects from stops and charginos
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Radiative effect: stop/chargino (0.6 < ré < 1.6)
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Large stop mixing and fine tuning in B to X, y

BR(B — X,v)®P = (3.52+£0.25) x 10™%.
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Fine tuning associated with accidental cancelation




| — ,
chargino: Higgs diphoton coupling 0.7 <r¥ < 1.1
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Higgs mixing effect: type Il 2HDM
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Non-decoupling D-term (H, , H, are in vector-like
representation of the new gauge group)

- MSSM
)

)\35 = — ~ —0.14, )\5 >\6 )\7 = O, Ab = AT = 0.




Higgs mixing effect: type Il 2HDM
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- F-term models (Additional d.o.f could be integrated
out, e.g. , ASUSY Hall, Pinner, Ruderman, 2011)

V = VMSSM N2 H, Hyl?




Minimal BSM unnatural theory

- Any fine-tuning should serve an “environmental”
purpose.

- Minimal beyond SM unnatural theory: SM+fermions

~ Additional scalars or gauge bosons would introduce
fine-tunings that do not have an “anthropic” reason.




2 Unnatural SUSY: all squarks and gluino are heavy;

afew 10 TeV - C_’Iv
100 TeV
A few TeV g

Split SUSY: Wells; Arkani-Hamed, Dimopoulos; Giudice and Romanino 2004
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Before Moroind 2013, there is a small tension between Higgs diphoton rate
and split scenario

- To get a diphoton enhancement >~ 1.5, one needs to
have a light charged state with mass below 150 GeV
and a very low cutoff below 10 TeV.

- This light charged state, if exists, is within reach of
LHC 8 TeV running; at worst, 14 TeV running.

- Scallar degrees of freedorn must ki in below or




~ Split SUSY or in general, theory with low-energy
effective description containing only fermions +
Higgs up to 10 TeV predicts the diphoton
enhancement has to disappear!

- Alternatively, diphoton enhancement, if true, will
rule out split SUSY and its variants

~ Now diphoton enhancement is diminished given
CMS’ data




Outline
ETIPlICAtIONSIOTHIEESTTSSEOTIB STV KHEOTIESTSUSY)
EHISESICOUPIITNES?

HOWIEOUId THEYHEINouined ynBSIVIRIIEOrIeS:,

EMIPlICAtIONSIOTHISESICOUPIINESTOTAIaturalness o EW)
SYIMEtrybreaxing;




Continuum constraint on induced Higgs-DM coupling: E.g., scalar DM model

A 2 H 2m? — m?)?
<O"U> | Z n7,| ¢H| m; m; 5 24 ( @ - )
i=W,Z 27rm¢ My <4m<2b = m%) g
A\ 2
= |—O 358 3 x 107 %%cm?s ™1,

DM . ‘
Direct detection constraint R ,L/-L:: h




< If the new physics that modifies Higgs couplings have
order-one CP phases, EDM experiments could be
more sensitive than measurements of Higgs

coupling;

< Iwill use Higgs diphoton coupling as an illustrating
example




- Correlation between CP-even and CP-odd observables

A CP-odd version of low-energy theorem:

@ = . @ Oargdet M = v
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Higgs CP-violating decay (Voloshin 1208.4303); and CP-odd TGCs;
more importantly, it results in EDM through the RGE mixing:




Bar-Zee type diagram
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For order one phase, EDM bounds the diphoton rate
to be <~ 1.1 SM value;

To evade current EDM and have diphoton
enhancement ~ 1.5, the physical CP phase has to be
small <~ 0.1; -> Higgs CP problem!

(An order one phase will be ruled out unless

a few percent tuning is evoked)

In general, given new Higg

physics that modifies

=l




The ACME collaboration (Yale-Harvard group) will
potentially improve the bound by an order of magnitude
in a few years or measure it!




Conclusion
~ Higgs couplings would be a powerful indirect probe
of beyond SM physics!

~ Higgs coupling modifications in both natural SUSY
and unnatural SUSY could be small

~ EDM experiments could be an important constraint
on Higgs physics as well!




Thank you!




