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SUSY status post-LHC7
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Atlas/CMS: no sign of mSUGRA at LHC7:

mg > 1400 GeV for mz >~ mz; mgz > 800 GeV for mz > my;

Oft-repeated story of SUSY electroweak naturalness:
sparticles should be <~ TeV:
Exacerbates Little Hierarchy Problem”:
disparity between weak scale and sparticle mass scale
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Natural SUSY

Incarnation# | : Kitano-Nomura 2005

m; = |p|? + 772."}1u |tree + m%,u |rads

o 3y 2 N 5 9 M mess
My |rad = _87:2 (mz33 + my;, + |At|“) ln( m )
A = ‘2577:12,
m;

o M2 1 (20% 3 M :
772? ;5 . 772 ‘"*Higgs ~ (700 GC\"Y)Q _ f ‘\[ _ iV Higgs ‘,

3v; (1 n %) A I M 1+2 | A- In Hze= /\ 200 GeV

* low mu

* light 3rd generation
* light sub-TeV spectra in pre-LHC era model
* M _mess not too far from TeV; minimize large logs
* sample spectra now highly excluded from LHC/m(h)
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NS#2: post LHC7 but pre LHC8/Higgs

° Arkani-Hamed 201 |

®  Papucci et al.

[ Brust et al.

® Essigetal

e  HB, Barger,Huang,
Tata

®  Wymant

® Arganda et al.
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* mu~100-250 GeV
*m(tl,t2,b1)<~500 GeV
* m(gluino<I1.5TeV
m(sq,slep)~10-20 TeV
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What else have we learned from LHCS8

® Higgs-like resonance at ~125 GeV!

® m(h) falls squarely within MSSM _,,
window! 8 o[ E
S N ; .

® requires: m(tl),m(t2)~ TeV regime

® |arge mixing

110 :l [ 4 1.1 1 l.r:|}|..:.1':'1'\;‘.’l..1'1 T.'l
® or else, extra beyond MSSM mass O
contributions e.g. NMSSM, exotic blue:m0<5 TeV
matter: orange: m0<20 TeV
yooo
e.g. Hall, Pinner,Ruderman, JHEP1204(2012) 1 3| HB, Barger, Mustafayev,

PRD85(2012)075010
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From LHCS:
No sign of SUSY:in models such as mSUGRA

mg ~ mg > 1.4 TeV or mz >~ 1 TeV 1if mz < myg

Squark mass bound and even more m(h) (which
needs m(tl,t2)> TeV) seemingly create even
greater tension with naturalness bounds:

Little Hierarchy Problem more severe!

These results have prompted many groups to
reconsider what weak scale SUSY would look
like: is it now unlikely or even excluded!?

see e.g. M. Shifman review, arXiv:1211.0004
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Some reactions from community

lgnore naturalness: e.g. K-L-O or Kane et al. G2MSSM stringy model with moduli
stabilization: scalars ~100 TeV with AMSB-like gauginos and wino=LSP or live far out in
mMSUGRA plane (note: Kane et al. claim lower mu~.5-1 TeV so maybe not so bad, but still
heavy stops); see also Hall, Nomura et al, Spread SUSY

natural SUSY ala Kitano-Nomura successor models (Arkani-Hamed, Brust et al., Papucci
et al.): these models, couched in MSSM, tend to have m(h)<125 GeV and large deviations
to b-> s gamma

compressed spectra: low energy release from cascade decays to maintain sub-TeV SUSY
masses but hide SUSY from LHC

RPV: similar approach: LSP decays hadronically

retain naturalness (light stops) but give extra contributions to m(h): NMSSM , lambda-
SUSY, vector-like or other exotic matter: model builders delight

accept some finetuning but try to minimize: HB/FP region of mSUGRA, effective SUSY

re-examine naturalness
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Traditional measure of EWV finetuning:

Barbieri-Giudice (even earlier Ellis et al.) introduced
the measure:

Am?, /m?, Olnm?,

Aai/ai - O In a;

ABG — max;

This measures fractional variation in m(Z£)"2
due to fractional variation in parameters a_|i

This measure was used by BG and DG
to show that better than 10% EWFT

requires m(chargino)<~100 GeV;
SUSY already finetuned post-LEP2?

Friday, April 26,2013



Some sample results using Az

For recent review, see |. L. Feng, arXiv:1302.6587

Feng & Sanford, PRD86 (2012) 055015

A0=0 nearly excluded by m(h)~125 GeV results
unless Delta>2000

a; 2 {mOaml/ZyAOaBOMU'O}

Allow non-universality, but with
mHu still fixed relative to m0;
can allow A0.ne.0 to raise m(h);

still, Delta>200-500

2500

500}

Hidden top Yukawa dependence since

L>a;=Aofs
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M, [GeV]

measure depends on highly on which
high-scale parameter set one adopts

200

MSUGRA tanp=15, Ag=0, pu>0

450

0.5%",

This plot from Kitano-Nomura PRD73 (2006) 095004
uses m(t) along with SUSY terms

400

350

300 Higgs boson mass bound
(1144GeV)
250 . 2%

200
The behavior is quite different:

150 low D_BG favors low m0, low mhf
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Apc also depends on where the high scale is

These three models have exactly
the same weak scale spectra,
but very different values of

Apg
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Re-phrase Little Hierarchy problem:

Question: how can it be that
m(Z)=91.2 GeV
while gluino and squark masses
sit at TeV or even far beyond
values?




Simple answer:
the parameters that enter the
scalar potential and contribute to
m(Z) are all not too far from m(Z)

No large uncorrelated contributions to m(Z)!




By answering this question, we shall see
that naturally accommodating
both m(Z)=91.2 GeV and m(h)=125 GeV
IS enormously constraining:
SUSY parameter space is not egalitarian
but instead these criteria are highly
selective!

Furthermore, we will find the results are
model independent, and deeply rooted in
data (why is m(Z)=91.2 GeV?)
and they are highly predictive!




In the MSSM, value of m(Z) is determined by
combinations of parameters which enter into the
scalar potential;
minimization leads to a relation between m(Z) and
weak scale SUSY parameters:

2

.m% (-m}z{d + Eg) — (m%]u + %) tan® 3 ) | 5
— — g ~—(my, +X,) —p

2 tan® 3 — 1

The radiative corrections X%, ¥¢ contain additional terms

Agw = mazx(C;) /(M7 /2)

Cy, = | — m%]u tan? B/(tan* 3 — 1)|, C, = | — p*| and Chy, = |m%d/(tan2 B—1)|

HB, Barger, Huang, Mustafayev, Tata, PRL109(2012) 161802
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New measure of naturalness:
how can m(Z)=91.2 GeV when sparticles >> TeV?

m%  (my, +33) — (_m%,u + X¥) tan? 3 B

2 tan2 3 — 1 F
Each contribution to m(Z) relation ought be of order m(z)!

i.e. no large cancellations amongst independent contributions to m(Z)

Apw = maz(C;)/(M3/2)

Model independent (impose at weak scale!)

2

~ —(mjy, + X4) — p?

Conservative (necessary but perhaps not sufficient)
measureable (reconstruct from weak scale Lagrangian)
unambiguous (depends on spectra not parameters)

predictive [m(higgsino)~m(higgs)]

falsifiable (no light higgsinos at 1 TeV ILC then SUSY EW naturalness dead)

simple to compute (Isajet 7.83)

Friday, April 26,2013
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What about high scale parameters?
Maybe only small portion of p-space leads
to low Delta_EW. What if I vary HS parameters and
Delta_EW moves up? Isnt this instability, and hence
arent you really still finetuned?

No. Nature doesnt have any adjustable parameters.
We regard the MSSM as an effective theory where
the parameters “parametrize” our ignorance
of a more fundamental theory where parameters are fixed.
The utility of parameters is that: if you find a set which
allows for agreement with data, then use those to predict
further phenomena. Then devise an experiment to
check consistency. If predictions are verified, then model
may be a good description of nature.
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While Delta_EW ignores large logs in mHu"2
running, even making use of these fo generate low
mHu"2 at weak scale, it is nonetheless highly

constraining: e.g. mSUGRA at best 1% EWFT and
usually much worse

mSUGRA: tanB=10, A , =0, . >0, m,=173.2 GeV mMSUGRA: tanf=10, A, =-2m,, u >0, m,=173.2 GeV
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Reason: as we increase mO into low mu region
to reduce EWFT, m(t1,+2) are dragged up and
increase EWFT: culprit: mHu=mO

HB,Barger,Huang, Mickelson,Mustafayev, Tata, arXiv: 1210.3019
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Each contribution ~“m(Z)

f\‘f‘% mi; . T Zg — (m%]u + %) tan? 3

]
_— L"
9 tanZ 8 — 1 ’

Most important:
low Agw also requires pu* ~ M7 /2.

In models such as mSUGRA, mu is
determined by m(Z) applied as constraint

here, mu is its own free parameter: NUHM models

Why should mu be so small when m(gl,sq) are so big?

Plausible: in gravity-mediation mu gets its
mass differently, e.g. in Giudice-Masiero or Kim-Nilles:

L~ )\777-3/2 so that |;1.| < mgz/o

Friday, April 26,2013
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Next: how can _m%{u (mweakz) ~ m22/27

Large top Yukawa radiatively drives
m%ru to small negative values

dm¥ 2 3 :
=" = Tem (_ggf..uf — 3g2M; + Eg’;’s +3 fEX,)
X = mp, +mi +my, +A]

Large logs are a feature, not a

hindrance; they are large because
T m(t)=173.2 GeV.

| Why is m(t) so large?
---% | | don’t know, but | am glad it is.

10" 10 10" 10

10° 10° 10" 10"

10"
Q (GeV)

In mSUGRA, this only happens in HB/FP region where stops also are heavy;
in NUHM models, this can occur even if lighter stops

my (meur) ~ (1.3 = 2)mg

Friday, April 26,2013
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Next: radiative corrections
Adopt Coleman-Weinberg eff. pot’l approach:

VHiggs = Viree + AV

av =3 ED
_; 6472

2 3
(2s; + 1)e;m; [log (m" ) - 5]

minimization gives:

Bupvg = (m%lu

+ u-2 — g%(vf‘; — 'vﬁ)) Uy + Xy

Buv, = (mi, + p° + gz (vG — v3)) va + X4,

Yy = Xlv, + Eﬁ'vd .
¥y = X4, + X%y and

yu = »nd
. OAV
Oy l?,
OAV
yd — d
d dlhd|2 min .
52d OAV

“ = (hahg + c.c.)

min

)

N’
d = ah'u,d

min

»% terms cancel

('m%{d + Eg) — (m%{u + X7) tan? 3 )
tanZ 3 — 1 ak
Bp = ((m%;u + 12+ 38 + (m%;d + o+ zﬁ)) sin 3 cos 3 + X9.

MZ2/2 =

HB, Barger, Huang, Mickelson, Mustafayeyv, Tata, arXiv:1212.2655
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largest contribution usually from stops:

Uiy — Fm2 Vx | £2 — 42 t ZAY S
u( 1,2) 1672 (771“'2) ft 9z + 772% — 777?
2 1

F(m?) = m? (log(m?/Q?%) — 1), with Q? = mg, Mg,

large stop mixing softens both t1 and t2
radiative corrections
while increasing m(h) up fo 125 GeV!

m,(3)=5TeV, m(1.2)=10TeV, m_, =0.7TeV, tanp=10, u=150GeV, m, =1TeV

% 128 E % 4.5 —
g 120 ? \ ':— 4 é— 2 B B ~—
= 124 | 8 35 F - ~
122 | g *F .
120 :_ ~—— 2.5 ;__ //.-
118 | 2/ b
116 | 1.5
L l l l U S I I
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< F N :
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50 l:' 1 =
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30 E 1E
20 F 2 E
2 3
10 E
o q l l Ll l l -4 :_l L1l I LA 1 1 I LA 1 1 I LA 1 1 I
2 1 0 1 2 2 -1 0 1 2
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One need not depart too far from mSUGRA/
CMSSM to find a model which allows low
Delta_EW while maintaining

desirable features of SUSY GUTs:

2-extra parameter non-universal Higgs model

Mo, Mys2, Ao, tanB, p and may

2 2
Here, we trade mg.,, Mg, = M, TMA

Friday, April 26,2013
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Which parameter choices lead to low
EWFT and how low can Agy be?

1 1 1 1 1 1 L 1 L
02 04 s o8 1 12 14 1.6 18 2

mj /2 (TeV)

High-scale models with

£ low AEW:
Radiatively-driven
natural SUSY, or RNS

HB, Barger, Huang, Mickelson, Mustafayeyv, Tata,
arXiv:1212.2655
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Compare RNS to mSUGRA for
similar parameters

mg = 7025 GeV, m, , = 568.3 GeV. Ag = —11426.6 GeV, tan 8 = 8.55 with g = 150 GeV and m, = 1000 GeV

RNS " RNsz,, “[ mSUGRA ?
0.04} ) i 5 Hu s mSUGRA
o Csu ~ (205 GeV)?
003 -
o CHd ~ (114 GGV)2 10F - 10}
002 -
[ szil ~ (22 GeV)2 Hy 5k - 5k
; 001 | . Hy .
e C, ~—(148 GeV)2 2 m2 /2 y o|mZ/2 = 5d |BNS2 |
S— |' X3 “3
- ok |
~ — 2 O
o CHu (173 GeV) sl s
-0.01
e m> /2~ (65 GeV)?
-10} -10
-0.02} [T
mSUGRA
5 -0.03 el -15f # -15} =
® CHu ~ (387 TGV)
-0.04 -20 -20

o C, ~ —(3.93 TeV)?
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Sparticle masses:
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SUSY spectra from
radiatively-driven natural SUSY (RNS)

parameter RNS1 RNS2 NS2
mo(1,2) 10000 7025.0 19542.2
mo(3) 5000 7025.0  2430.6
my9 700 568.3 1549.3
Ag -7300 -11426.6 873.2
tan 3 10 8.55 22.1
7] 150 150 150
ma 1000 1000 1652.7
S Ca n N U HM 2 S P ace . m; 1859.0  1562.8  3696.8
My, 10050.9 7020.9 19736.2
Mig 10141.6 7256.2 19762.6
Mz, 9909.9 6755.4 19537.2
, R _ _ m;, 14159 18434 572.0
e light higgsino-like W; and Z; 5 with mass ~ 100 — 300 GeV, m. 3494 8 1921.4 715.4
- =
e gluinos with mass mg ~ 1 — 4 TeV, Z: 2:;2(1; zg?jg 147?273.?8
e heavier top squarks than generic NS models: mg, ~ 1—-2TeV and m;, ~2—5 TeV, My 37537'5 6679.4 :2084'7
= My 5020.7 7116.9 2189.1
e first/second generation squarks and sleptons with mass msp ~ 1 — 8 TeV. The Mo 5000.1 283 2061.8
. . kg . . m-— 621.3 513.9 1341.2
mj range can be pushed up to 20-30 TeV if non-universality of generations with W2
. m-— 154.2 152.7 156.1
mg(1,2) > mg(3) is allowed. Wi
m; 631.2 525.2 13404
m 323.3 268.8 698.8
mz 158.5 159.2 156.2
mz 140.0 1354 149.2
Mh 123.7 125.0 121.1
Q“’E‘-l“h‘-’ 0.009 0.01 0.006
BF(b— svy) x 10* 3.3 3.3 3.6
BF(B; = ptp~) x 10° 3.8 3.8 4.0
o51(Z,p) (pb) 1.1x107% 1.7x 10°® 1.8 x 10~°
A 9.7 11.5 23.7
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MSUGRA: tanB=10, A, =

o u>0 m,=173.2 GeV
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What happens to mSUGRA plane?

NUHM2: tanf=10, A, =-1.6m,, 1 =150 GeV, m, =173.2 GeV

Little Hierarchy Problem melts away!
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What happens to B constraints?
These are trouble for version#1,2 NS models
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Heavier top squarks ameliorate these
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Prospects for radiatively-driven NS at LHC

Model line with
mo =5 TeV, my /3, Ag = —1.6mg, tan 5 =15, p =150 GeV, my =1 TeV

+?w N X
o g~ ~
% 3\;§£§§=000 e .....“fg;g; pp%gg
10° *{3 \: #4u EEREEERAERER—MAARARED +Z122 _ ~ o~
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102 2, i i
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o | 3 L
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29 Z1
LHC14 reClCh For gluino Int. lum. (fb~')|[m,;5 (GeV) |mz (TeV) (3]
10 400 1.4
Irs: 100 840 1.6
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HB, Barger,Lessa, Tata, PRD86(2012) | 17701 Sl 1000 2.0
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Distinctive new signature for LHC:
same-sign dibosons from models with light higgsinos

NUHM2: m,=5 TeV, A,=-1.6m, tanB=15, u=150 GeV, m,=1 TeV

W+

Nl

W+

HB, Barger, Huang, Mickelson, Mustafayey,
Sreethawong, Tata, arXiv:1302.581 6,
(PRL in press)

Int. lum. (fb~1)
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e exactly 2 isolated same-sign leptons with pr(£,) >
20 GeV and pr(fy) > 10 GeV,

e n(b — jets) = 0 (to aid in vetoing tf background).
o mP'™™ = min [mr(¢1,B7), mr(f2,H71)] > 125 GeV

By > 200 GeV

usual gluino pair search!
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Smoking gun signature: 4 light higgsinos at ILC!
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LHC/ILC complementarity

NUHM2: m =5 TeV, tanB=15, A, =-1.6m, m,=1TeV, m, =173.2 GeV

g 600 i ll I gl 1 | I III I Tl I T I | I L | LI I [ l—
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What about DM in RNS?
I heard higgsino-like wimp isnt a good
DM candidate?

Lightest neutralino all by itself in general
not good DM candidate: too much or foo little CDM

Scan over 19 parameters:
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Standard thermal abundance for RNS model
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Invoke Peccei-Quinn sol'n to strong CP
problem with SUSY

PQMSSM: Axions -+ SUSY = mixed a — LSP dark matter

b = L‘/’i" + iv/2fay, + AP F, in 4-comp. notation
Raby, Nilles, Kim; Rajagopal, Wilczek, Turner

axino is spin-% element of axion supermultiplet (/2-odd; possible LSP
candidate)

mz model dependent: keV— TeV, but ~ Mgy gy in gravity mediation
saxion is spin-0 element: R-even but gets SUSY breaking mass ~ 1 TeV

axion is usual QCD axion: gets produced via vacuum mis-alignment/
coherent oscillations as usual

additional PQ parameters: (f,, ms. mg. 0;, 05, ) and Ty
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Coupled Boltzmann calculation of mixed axion-
neutralino abundance

Bae, HB, Lessa, arXiv:1301.7428

Case for dominant s-> aa decay:
contributes to dark radiation
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Figure 2: Evolution of various energy densities versus scale parameter R/R, for the SUA bench-
mark.
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Mixed higgsino-axion CDM

In radiative natural SUSY
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Abundance of higgsinos is boosted due to

thermal production and decay of axinos : : :
; y Detection of relic axions

in early universe: the axion saves the day for
WIMP direct detection! also possible
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Direct higgsino detection rescaled
for minimal local abundance

m (higgsino) (GeV)

HB, Barger, Mickelson
arXiv:1303.3816

Deployment of Xe-Iton
coming soon!

Can test completely with ton scale detector
or equivalent (subject to minor caveats)
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Spin-dependent higgsino detection
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Higgsino detection via halo annihilations:
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Conclusions

® Delta_EW is more robust measure of Little
Hierarchy problem

® Why are m(Z),m(h)~100 GeV while sparticle
masses are >> 1 TeV?

® mu~ m(Z): light higgsinos (ILC!)
® m(Hu) driven somewhat, not grossly, negative

@® large mixing in stop sector

Under these conditions, the Little Hierarchy Problem seems
to melt away and the old paradigm of
SUSY GUTs remains strong:
but with huge implications for collider/dark matter searches!
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® The low lying sparticles (higgsinos)
have severely compressed spectra:
hard to see at LHC (but new

signatures e.qg. SS dibosons)

® No large cancellations in m(Z), m(h)=>
ILC is the right machine to build!

@® Dark matter production more intricate
than usual story: here, we suggest
mixed axion-higgsino (co-dark-matter)




Quotes from some practitioners of
EWFT arguments

“...naturalness is a notoriously brittle and Feng & Sanford, 2012
subjective subject...”

In this context, it is natural to wonder whether the continuing absence of sparticles should
disconcert advocates of the Minimal Supersymetric Extension of the Standard Model (MSSM).
After all, the only theoretical motivation for the appearance of sparticles at accessible energies
is in order to alleviate the fine tuning required to maintain the electroweak hierarchy [5], and
sparticles become less effective in this task the heavier their masses. Since the problem of
fine-tuning is a subjective one, it is not possible to provide a concise mathematical criterion
for deciding whether enough is enough, already. Moreover, the fine tuning can be discussed
only in concrete models for the soft supersymmetry breaking terms, and any conclusion refers
to the particular model under consideration. The fine-tuning price may also depend on other,

optional, theoretical assumptions. Chankowski, Ellis, Pokorski, 1998

We now return to naturalness and discuss attempts to quantify it in more detail. All
such attempts are subject to quantitative ambiguities. However, this fact should not ob-
scure the many qualitative differences that exist in naturalness prescriptions proposed in
the literature. In this section, we begin by describing a standard prescription for quantify-

This initial step is absolutely crucial, as all naturalness studies are inescapably model-
dependent. In any supersymmetry study, some fundamental framework must be adopted. In
studies of other topics, however, there exists, at least in principle, the possibility of a model- F 2 0 I 3 .
independent study, where no correlations among parameters are assumed. This model- eng’ review
independent study is the most general possible, in that all possible results from any other
(model-dependent) study are a subset of the model-independent study’s results. In studies
of naturalness, however, the correlations determine the results, and there is no possibility,
even in principle, of a model-independent study in the sense described above. I

We wish to refute these points of view

Friday, April 26,2013
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Some virtues of Agxw

e Model independent (within the context of models which reduce to the MSSM at the
weak scale): Apw is essentially determined by the sparticle spectrum|27], and -
unlike Apgs and other measures of fine-tuning — does not depend on the mechanism
by which sparticles acquire masses. Since Agw 1s determined only from weak scale
Lagrangian parameters, the phenomenological consequences which may be derived
by requiring low Apw will apply not only for the NUHM2 model considered here,
but also for other possibly more complete (or less complete, such as pMSSM) models
which lead to look-alike spectra at the weak scale.

e Conservative: Agw captures the minimal fine-tuning that is necessary for any given
sparticle spectrum, and so leads to the most conservative conclusions regarding fine-

tuning considerations.

e Measureable: Agw 1s in principle measurable in that it can be evaluated if the un-
derlying weak scale parameters can be extracted from data.

e Unambiguous: Fine-tuning measures which depend on high scale parameter choices,
such as the Barbieri-Guidice measure Apg discussed previously, are highly sensitive
to exactly which set of model input parameters one adopts: for example, it 1s well-
known that significantly different values of Apg result depending on whether the high
scale top-Yukawa coupling is or is not included as an input parameter[37]|. There is
no such ambiguity in the fine-tuning sensitivity as measured by both Agpw and Apys.

e Predictive: While Agw 1s less restrictive than Apgg, it still remains highly restrictive.
The requirement of low A gy highly disfavors models such as mSUGRA /CMSSM|[27],
while allowing for very distinct predictions from more general models such as NUHM2.

e Falsifiable: The most important prediction from requiring low Agw is that |u| cannot
be too far removed from Mz. This implies the existence of light higgsinos ~ 100— 300
GeV which are hard to see at hadron colliders, but which are easily detected at a
linear e*e™ collider with /s = 2|p|. If no higgsinos appear at ILC1000, then the idea
of electroweak naturalness in SUSY models 1s dead.
HB, Barger, Huang, Mickelson, Mustafayey, Tata,
arXiv:1212.2655

e Simple to calculate: Apw 1s extremely simple to encode in sparticle mass spectrum
programs, even if one adopts models with very large numbers of input parameters.
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