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 False vacuum decay with gravity

§One bubble open inflation

Quantum tunneling

Instanton = Euclidean solution of EOM

O(3,1)-symmetric bubble
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 Spatially open but homogeneous universe is formed 

inside the bubble.

Open universe 2
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 Quantum fluctuation is determined by the vacuum state whose 

mode functions are chosen by the analyticity when they are 

continued to the Euclidean region.

Not t=const. surface but 

r =const. surface is a 

Cauchy surface in the 
Center region



 2+1+1 decomposition is necessary
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Tensor perturbation

3-dim tensor harmonics
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But t=const. surface in the Right 

region is not a Cauchy surface, but 

r =const. surface in the Center 

region is a Cauchy surface.

2

2

2

2
ˆ 











C

K

For the decomposition in the Center region: 

Tensor perturbation in the open universe can be decomposed:

 Reduction of the quadratic action by 

means of gauge fixing and constraints: 
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variable for each l,m mode

(Garriga, Montes, Sasaki, Tanaka (’98, ‘99))
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Expand the function wlm =S f pl (rC) w p (C)

in terms of the eigen function of the 
operator K .
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f pl (rC)  is fixed to satisfy KG normalization and regularity 

for Euclidean extension.
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p2>0: continuum, two modes for each p2

p2<0: no discrete spectrum except for p2=-1

This unique discrete mode is gauge artifact.

After analytic continuation to the Right open universe, wp is related to 

the amplitude of tensor perturbation as

effective
potential 

C is a spatial coordinate. 



Total power of fluctuation
is IR divergent if Ds = 0 (no barrier)
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Thin wall approximation
Pure de Sitter inside the bubble

Shape of the spectrum depends on 
the height of the effective potential 
for the mode function

Ds ~0.02
Ds ~0.1

Ds~∞
Ds ~0.7

Higher barrier allows less 

penetration for small p modes
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w is the parameter to specify  

the location of the wall, 
but it is not so important

Typical shape of the spectrum



For 1-0<<1, shape of CMB spectrum is quite simple
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determined by the 
component close to p=0
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Typical shape of CMB spectrum

Usual scale invariant spectrum
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moderately small 1-0 might be preferred.

1-0=10-2~10-3

(Freivogel and Susskind (2004))

Primordial probability distribution: 

Smaller e-folds during inflation might be preferred 

Anthropic pressure: 

Smaller 1-0  is preferred for structure formation

The original open inflation with 1-0 ≈0.3 is 

observationally ruled out but….

§Renewed interest



§A little more hypothetical 
constraints

1) A typical false vacuum has Planck scale energy.

It will be so, if the energies of false vacua distribute 
uniformly in linear scale. 

2) The last inflation is slow roll type at relatively 
low energies.

It will be so, if KKLT-like scenario is typical. 

large hierarchy



§Models
1) Decoupled two-field model:

quasi-open inflation model. 

This supercurvature fluctuation has the amplitude 
determined by the Hubble rate in the false vacuum.

If ms is sufficiently small, there exists a supercurvature

(discrete) mode, which gives CMB anisotropy: 
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On large scales the state after tunneling is quite 
inhomogeneous. 
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§Models

2) Coupled two-field model:

Large initial mass eliminates 
the supercurvature mode. 

The above model will be 
equivalent after integrating out 
the direction perpendicular to 
the background trajectory. 
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3) Single field model after integrating out 
massive degrees of freedom:



§Tensor perturbation

If the tunneling energy scale 
is Planckian, it may produce 
robust signature in tensor 
perturbation.

Thin wall approximation: for simplicity
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fast roll down phase
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A Simple Model

Exact tracking for exponential potential

V’/V=const.

To add late-time slow roll inflation,

 2expV =const. 
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Spectrum
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 <<1: usual slow roll

 =1: only small p

modes remembers the 
initial large Hubble rate.

 >>1: No memory 
of large Hubble rate



CMB Spectrum

 <<1: usual slow roll

 =1: only small p

modes remembers the 
initial large Hubble rate.

 >>1: No memory 
of large Hubble rate



Small wall fluctuation mode

L=2 mode amplitude in CMB

Large wall fluctuation mode

Amplified by the factor 1/Ds



§Summary

 Open inflation scenario with large hierarchy was considered.

 There is a possibility of rapid roll phase after tunneling if 
the slow roll parameter  is not small, and it can alter the 
CMB spectrum. 

 We also have enhancement by the wall fluctuation, which 
can be large if the tension of the wall is small.

Too small tension also leads to bubble collision.

 Fortunately or unfortunately, depending on the detail of 
the models, it seems possible to construct models 
consistent with current observational constraints. 

 <<1: usual slow roll

 ~1: large angle scale anisotropies have a memory of the initial 
large Hubble rate.

 >>1: No memory of large Hubble rate
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